Chinese Journal of Catalysis ›› 2021, Vol. 42 ›› Issue (2): 297-309.DOI: 10.1016/S1872-2067(20)63658-0
• Articles • Previous Articles Next Articles
Bihua Chena, Tong Dinga, Xi Denga, Xin Wanga, Dawei Zhanga,b, Sanguan Maa, Yongya Zhanga, Bing Nic, Guohua Gaoa,*()
Received:
2020-03-29
Accepted:
2020-05-08
Online:
2021-02-18
Published:
2021-01-21
Contact:
Guohua Gao
About author:
*Tel/Fax: +86-21-62233323; E-mail: ghgao@chem.ecnu.edu.cnSupported by:
Bihua Chen, Tong Ding, Xi Deng, Xin Wang, Dawei Zhang, Sanguan Ma, Yongya Zhang, Bing Ni, Guohua Gao. Honeycomb-structured solid acid catalysts fabricated via the swelling-induced self-assembly of acidic poly(ionic liquid)s for highly efficient hydrolysis reactions[J]. Chinese Journal of Catalysis, 2021, 42(2): 297-309.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(20)63658-0
Scheme 1. Schematic illustration of the synthesis process of acidic poly(ionic liquid)s with swelling ability (SAPILs). Here AIBN, VSIm, VSbIm, [EG3(Vim)2]Br2, and [O(Vim)2]Br2 denote 2,2?-azobisisobutyronitrile, 1-vinyl-3-(3-sulfopropyl)imidazolium, 1-vinyl-3-(4-sulfobutyl)imidazolium, 1,8-triethylene glycoldiyl-3,3?-divinylimidazolium bromide, and 1,8-dioctyl-3,3?-divinylimidazolium bromide, respectively.
Sample | IL a (mmol) | NaSS b (mmol) | Crosslinker (mmol) | Q (g/g) |
---|---|---|---|---|
SAPIL-1 | 4.875 | 4.875 | 0.25 | 24.5 |
SAPIL-2 | 4.750 | 4.750 | 0.50 | 14.3 |
SAPIL-3 | 4.500 | 4.500 | 1.00 | 6.5 |
SAPIL-4 | 4.000 | 4.000 | 2.00 | 1.6 |
SAPIL-5 d | 4.875 | 4.875 | 0.25 | 14.4 |
SAPIL-6 e | 4.875 | 4.875 | 0.25 | 27.4 |
Table 1 Conditions for the synthesis of acidic poly(ionic liquid)s with swelling ability (SAPILs) and their swelling ratios (Q) in water.c
Sample | IL a (mmol) | NaSS b (mmol) | Crosslinker (mmol) | Q (g/g) |
---|---|---|---|---|
SAPIL-1 | 4.875 | 4.875 | 0.25 | 24.5 |
SAPIL-2 | 4.750 | 4.750 | 0.50 | 14.3 |
SAPIL-3 | 4.500 | 4.500 | 1.00 | 6.5 |
SAPIL-4 | 4.000 | 4.000 | 2.00 | 1.6 |
SAPIL-5 d | 4.875 | 4.875 | 0.25 | 14.4 |
SAPIL-6 e | 4.875 | 4.875 | 0.25 | 27.4 |
Fig. 1. 13C solid-state magic angle spin NMR spectra of SAPIL-1 (a), SAPIL-2 (b), SAPIL-3 (c), SAPIL-4 (d), SAPIL-5 (e), and 13C NMR spectra of 1-vinyl-3-(3-sulfopropyl)imidazolium (VSIm) and sodium p-styrenesulfonate (NaSS) (dimethyl sulfoxide (DMSO)-d6).
Fig. 2. (a) XPS profiles of SAPIL-1 precursor and SAPIL-1; (b) TG curves of SAPIL-1-5 and Amberlite IR-120(H); (c) 31P solid-state magic angle spinning NMR spectra of TMPO chemically adsorbed on SAPIL-1 and H-ZSM-5 (Si/Al = 25). The asterisks denote spinning sidebands. The peaks at δ ≈ 43 and 33 belonged to the crystalline and physiosorbed TMPO, respectively [36].
Fig. 3. (a) SEM image of dried SAPIL-1; cryogenic SEM images of fully swollen SAPIL-1 in water sublimated for 5 min (b) and 30 min (c); (d) magnified image of area marked in (c).
![]() | |||||
---|---|---|---|---|---|
Entry | Catalyst | Type | Acid concentration b (mmol/g) | Conversion c (%) | Selectivity d (%) |
1 | — | — | — | 1.4 | 100 |
2 | SAPIL-1 | Hetero | 1.95 | 81.9 | 98.3 |
3 | SAPIL-2 | Hetero | 1.59 | 70.0 | 98.7 |
4 | SAPIL-3 | Hetero | 1.12 | 62.9 | 98.9 |
5 | SAPIL-5 | Hetero | 1.99 | 72.9 | 98.5 |
6 | SAPIL-6 | Hetero | 2.03 | 81.5 | 98.7 |
7 | Amberlite IR-120(H) | Hetero | 4.60 | 28.5 | 96.8 |
8 e | H-ZSM-5 | Hetero | 0.86 | 49.3 | 36.3 |
9 | [VSIm]HSO4 | Homo | 6.23 | 47.1 | 99.2 |
10 f | H2SO4 | Homo | 20.39 | 46.2 | 98.9 |
11 | p-TsOH | Homo | 5.25 | 69.4 | 98.4 |
Table 2 Hydrolysis of cyclohexyl acetate catalyzed using various catalysts.a
![]() | |||||
---|---|---|---|---|---|
Entry | Catalyst | Type | Acid concentration b (mmol/g) | Conversion c (%) | Selectivity d (%) |
1 | — | — | — | 1.4 | 100 |
2 | SAPIL-1 | Hetero | 1.95 | 81.9 | 98.3 |
3 | SAPIL-2 | Hetero | 1.59 | 70.0 | 98.7 |
4 | SAPIL-3 | Hetero | 1.12 | 62.9 | 98.9 |
5 | SAPIL-5 | Hetero | 1.99 | 72.9 | 98.5 |
6 | SAPIL-6 | Hetero | 2.03 | 81.5 | 98.7 |
7 | Amberlite IR-120(H) | Hetero | 4.60 | 28.5 | 96.8 |
8 e | H-ZSM-5 | Hetero | 0.86 | 49.3 | 36.3 |
9 | [VSIm]HSO4 | Homo | 6.23 | 47.1 | 99.2 |
10 f | H2SO4 | Homo | 20.39 | 46.2 | 98.9 |
11 | p-TsOH | Homo | 5.25 | 69.4 | 98.4 |
Fig. 5. Catalytic kinetics of various catalysts for the hydrolysis of cyclohexyl acetate. Reaction conditions: 10 mmol cyclohexyl acetate, 250 mmol H2O, 0.4 mmol catalyst, 100 °C, 1 bar N2.
Fig. 6. Catalytic activity of various catalysts for the hydrolysis of cyclohexyl propionate, cyclohexyl butyrate, and phenyl acetate. Reaction conditions: 10 mmol ester, 250 mmol H2O, 0.4 mmol catalyst, 100 °C, 7 h, 1 bar N2.
Fig. 7. (a) Concentration of cyclohexyl acetate in the aqueous phase of the simulated reaction mixtures. (b) Cyclohexyl acetate-to-cyclohexanol molar ratio in the aqueous phase of the simulated reaction mixtures. (c) Contact angles of (i) cyclohexyl acetate and (ii) cyclohexanol on the surface of SAPIL-1. Mixture-10%: cyclohexyl acetate (9 mmol), H2O (249 mmol), cyclohexanol (1 mmol), acetic acid (1 mmol); Mixture-30%: cyclohexyl acetate (7 mmol), H2O (247 mmol), cyclohexanol (3 mmol), acetic acid (3 mmol); Mixture-50%: cyclohexyl acetate (5 mmol), H2O (245 mmol), cyclohexanol (5 mmol), acetic acid (5 mmol); Mixture-70%: cyclohexyl acetate (3 mmol), H2O (243 mmol), cyclohexanol (7 mmol), acetic acid (7 mmol); Mixture-90%: cyclohexyl acetate (1 mmol), H2O (241 mmol), cyclohexanol (9 mmol), acetic acid (9 mmol); SAPIL-1 (0.102 g, 0.2 mmol); p-TsOH (0.038 g, 0.2 mmol).
Fig. 9. Direct hydration of cyclohexene to cyclohexanol catalyzed by SAPIL-1 and p-TsOH. Reaction conditions: 20 mmol cyclohexene, 200 mmol H2O, 0.2 mmol (1 mol%) catalyst, 130 °C, 0.5 MPa N2, 1000 rpm.
Fig. 10. Hydration of ethylene oxide (EO) to ethylene glycol (EG) over various catalysts. Optimized reaction conditions (see Table S10): 50 mmol EO, 500 mmol H2O, 0.06 mmol (0.12 mol%) catalyst, 100 °C, 0.5 h, 1.0 MPa N2.
|
[1] | Qi Xue, Zhe Wang, Yu Ding, Fumin Li, Yu Chen. Chemical functionalized noble metal nanocrystals for electrocatalysis [J]. Chinese Journal of Catalysis, 2023, 45(2): 6-16. |
[2] | Qifeng Lei, Chang Wang, Weili Dai, Guangjun Wu, Naijia Guan, Michael Hunger, Landong Li. Tandem Lewis acid catalysis for the conversion of alkenes to 1,2-diols in the confined space of bifunctional TiSn-Beta zeolite [J]. Chinese Journal of Catalysis, 2021, 42(7): 1176-1184. |
[3] | Chengxiang Shi, Sana Ullah, Ke Li, Wei Wang, Rongrong Zhang, Lun Pan, Xiangwen Zhang, Ji-Jun Zou. Low-temperature synthesis of ultrasmall spinel MnxCo3-xO4 nanoparticles for efficient oxygen reduction [J]. Chinese Journal of Catalysis, 2020, 41(12): 1818-1825. |
[4] | Zhi-Hua Zhou, Xiao Zhang, Yong-Fu Huang, Kai-Hong Chen, Liang-Nian He. Synthesis of α-hydroxy ketones by copper(I)-catalyzed hydration of propargylic alcohols: CO2 as a cocatalyst under atmospheric pressure [J]. Chinese Journal of Catalysis, 2019, 40(9): 1345-1351. |
[5] | Zheng Chen, Qinge Huang, Baokun Huang, Fuxiang Zhang, Can Li. A hydrated amorphous iron oxide nanoparticle as active water oxidation catalyst [J]. Chinese Journal of Catalysis, 2019, 40(1): 38-42. |
[6] | Lijuan Shen, Gaojie Wang, Xiaoxiao Zheng, Yanning Cao, Yufeng Guo, Ke Lin, Lilong Jiang. Tuning the growth of Cu-MOFs for efficient catalytic hydrolysis of carbonyl sulfide [J]. Chinese Journal of Catalysis, 2017, 38(8): 1373-1381. |
[7] | Weihua Yu, Pengpeng Wang, Chunhui Zhou, Hanbin Zhao, Dongshen Tong, Hao Zhang, Huimin Yang, Shengfu Ji, Hao Wang. Acid-activated and WOx-loaded montmorillonite catalysts and their catalytic behaviors in glycerol dehydration [J]. Chinese Journal of Catalysis, 2017, 38(6): 1087-1100. |
[8] | Amin Talebian-Kiakalaieh, Nor Aishah Saidina Amin. Coke-tolerant SiW20-Al/Zr10 catalyst for glycerol dehydration to acrolein [J]. Chinese Journal of Catalysis, 2017, 38(10): 1697-1710. |
[9] | Yue Shen, Yuru Kang, Jiankui Sun, Chao Wang, Bo Wang, Feng Xu, Runcang Sun. Efficient production of 5-hydroxymethylfurfural from hexoses using solid acid SO42-/In2O3-ATP in a biphasic system [J]. Chinese Journal of Catalysis, 2016, 37(8): 1362-1368. |
[10] | Yilong Wang, Yun Zhang, Aijun Sun, Yunfeng Hu . Characterization of a novel marine microbial esterase and its use to make D-methyl lactate [J]. Chinese Journal of Catalysis, 2016, 37(8): 1396-1402. |
[11] | Changhui Liu, Bin Pan, Yanlong Gu. Lewis base-assisted Lewis acid-catalyzed selective alkene formation via alcohol dehydration and synthesis of 2-cinnamyl-1,3-dicarbonyl compounds from 2-aryl-3,4-dihydropyrans [J]. Chinese Journal of Catalysis, 2016, 37(6): 979-986. |
[12] | Dun Deng, Yun Zhang, Aijun Sun, Yunfeng Hu. Enantio-selective preparation of (S)-1-phenylethanol by a novel marine GDSL lipase MT6 with reverse stereo-selectivity [J]. Chinese Journal of Catalysis, 2016, 37(11): 1966-1974. |
[13] | Baohui Chen, Jiazheng Lu, Lianping Wu, Zisheng Chao. Dehydration of bio-ethanol to ethylene over iron exchanged HZSM-5 [J]. Chinese Journal of Catalysis, 2016, 37(11): 1941-1948. |
[14] | Wenting Luo, Yuan Lyu, Leifeng Gong, Hong Du, Miao Jiang, Yunjie Ding. Alcohol-treated SiO2 as the support of Ir-Re/SiO2 catalysts for glycerol hydrogenolysis [J]. Chinese Journal of Catalysis, 2016, 37(11): 2009-2017. |
[15] | Chenglong Zou, Guanyu Sha, Haifang Gu, Yao Huang, Guoxing Niu. Facile solvothermal post-treatment to improve hydrothermal stability of mesoporous SBA-15 zeolite [J]. Chinese Journal of Catalysis, 2015, 36(8): 1350-1357. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||