Chinese Journal of Catalysis ›› 2021, Vol. 42 ›› Issue (2): 334-346.DOI: 10.1016/S1872-2067(20)63617-8
• Articles • Previous Articles Next Articles
Jia Zhaoa,*(), Saisai Wanga, Bolin Wanga,b, Yuxue Yuea, Chunxiao Jina, Jinyue Lua, Zheng Fanga, Xiangxue Panga, Feng Fenga, Lingling Guoa, Zhiyan Panb, Xiaonian Lia,#(
)
Received:
2020-03-21
Accepted:
2020-05-10
Online:
2021-02-18
Published:
2021-01-21
Contact:
Jia Zhao,Xiaonian Li
About author:
#Tel: +86-571-88320002; E-mail: xnli@zjut.edu.cnSupported by:
Jia Zhao, Saisai Wang, Bolin Wang, Yuxue Yue, Chunxiao Jin, Jinyue Lu, Zheng Fang, Xiangxue Pang, Feng Feng, Lingling Guo, Zhiyan Pan, Xiaonian Li. Acetylene hydrochlorination over supported ionic liquid phase (SILP) gold-based catalyst: Stabilization of cationic Au species via chemical activation of hydrogen chloride and corresponding mechanisms[J]. Chinese Journal of Catalysis, 2021, 42(2): 334-346.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(20)63617-8
Fig. 1. Characterizations of the Au-N(CN)2/AC catalyst. (a) N2 gas adsorption/desorption isotherms; (b) STEM image and elemental mapping analysis; (c) XRD patterns; (d) representative HAADF-STEM image and (e) Au 4f XPS spectra.
Sample | SBET (m2 g-1) a | Volume (cm3 g-1) b | Diameter (nm) c |
---|---|---|---|
Au-N(CN)2/AC | 722 | 0.39 | 2.01 |
Au-Cl/AC | 737 | 0.40 | 2.04 |
AC | 1135 | 0.64 | 2.20 |
Table 1 Textural properties of the AC support and Au-SILP catalysts.
Sample | SBET (m2 g-1) a | Volume (cm3 g-1) b | Diameter (nm) c |
---|---|---|---|
Au-N(CN)2/AC | 722 | 0.39 | 2.01 |
Au-Cl/AC | 737 | 0.40 | 2.04 |
AC | 1135 | 0.64 | 2.20 |
Sample | Scattering path | CN a | R (Å) b | σ2 (Å2) c | ΔE0 (eV) d | R factor |
---|---|---|---|---|---|---|
Au foil | Au-Au | 12 | 2.86 | 0.0079 | 3.9 | 0.004 |
KAuCl4 | Au-Cl | 3.9 | 2.27 | 0.0024 | 9.2 | 0.018 |
(PPh3)AuCH3 | Au-P | 1.7 | 2.28 | 0.0032 | 2.4 | 0.008 |
Au-C | 1.0 | 2.05 | ||||
Au-Cl/AC | Au-Cl | 3.0 | 2.27 | 0.0012 | 8.3 | 0.014 |
Au-Au | 0.5 | 2.86 | ||||
Au-N(CN)2/AC | Au-Cl | 1.4 | 2.27 | 0.0013 | 2.0 | 0.019 |
Au-N | 5.3 | 3.22 |
Table 2 EXAFS fitting parameters at the Au L3-edge for Au-N(CN)2/AC and Au-Cl/AC catalysts.
Sample | Scattering path | CN a | R (Å) b | σ2 (Å2) c | ΔE0 (eV) d | R factor |
---|---|---|---|---|---|---|
Au foil | Au-Au | 12 | 2.86 | 0.0079 | 3.9 | 0.004 |
KAuCl4 | Au-Cl | 3.9 | 2.27 | 0.0024 | 9.2 | 0.018 |
(PPh3)AuCH3 | Au-P | 1.7 | 2.28 | 0.0032 | 2.4 | 0.008 |
Au-C | 1.0 | 2.05 | ||||
Au-Cl/AC | Au-Cl | 3.0 | 2.27 | 0.0012 | 8.3 | 0.014 |
Au-Au | 0.5 | 2.86 | ||||
Au-N(CN)2/AC | Au-Cl | 1.4 | 2.27 | 0.0013 | 2.0 | 0.019 |
Au-N | 5.3 | 3.22 |
Fig. 2. The edge-normalized XANES spectra at the Au L3-edge for the Au-N(CN)2/AC and Au-Cl/AC catalysts and reference Au samples. (a) White line intensity and (b) R-space.
Fig. 3. VCM productivity as a function of (a) time on stream, h, and at GHSV(C2H2) = 1000 h-1; (b) VCM productivity versus the GHSV and Au loading for the investigated Au-N(CN)2/AC; (c) apparent activation energies of the Au-Cl/AC and Au-N(CN)2/AC catalysts; (d) VCM productivity of Au-N(CN)2/AC and other Au-based catalysts reported in literature. Numbers 11-13 indicate the productivity of the Au-N(CN)2/AC catalyst at different GHSV(C2H2) values; (e) VCM productivity as a function of the deactivation rate for various samples.
Fig. 4. Optimized structures of (a) [Bmim][Cl], (b) C2H2-[Bmim][Cl], (c) HCl-[Bmim][Cl], (d) [Bmim][N(CN)2], (e) C2H2-[Bmim][N(CN)2], and (f) HCl-[Bmim][N(CN)2]. The dotted lines represent the possible modes of interaction, with interatomic distances in angstroms. The solubilities of (g) C2H2 and (h) HCl in the investigated [Bmim][Cl] and [Bmim][N(CN)2] ILs at different temperatures; (i) diffusion coefficients for C2H2 and HCl in [Bmim][Cl] and [Bmim][N(CN)2]. Color code: H, white; C, gray; N, blue; Cl, light green.
Sample | SBET (m2 g-1) a | Volume (cm3 g-1) b | Au content (wt%) c |
---|---|---|---|
Spent Au-N(CN)2/AC | 695 | 0.38 | 0.09 |
Spent Au-Cl/AC | 787 | 0.37 | 0.11 |
Table 3 Porous structure and metal content of the spent Au-based catalysts.
Sample | SBET (m2 g-1) a | Volume (cm3 g-1) b | Au content (wt%) c |
---|---|---|---|
Spent Au-N(CN)2/AC | 695 | 0.38 | 0.09 |
Spent Au-Cl/AC | 787 | 0.37 | 0.11 |
|
[1] | Xingzong Dong, Guangye Liu, Zhaoan Chen, Quan Zhang, Yunpeng Xu, Zhongmin Liu. Enhanced performance of Pd-[DBU][Cl]/AC mercury-free catalysts in acetylene hydrochlorination [J]. Chinese Journal of Catalysis, 2023, 46(3): 137-147. |
[2] | Qing Yu, Shiyi Wang, Mengru Wang, Xiaoling Mou, Ronghe Lin, Yunjie Ding. M/C3N4/AC (M = Au, Pt, Ru)-catalyzed acetylene coupling with ethylene dichloride: How effective are the bifunctionalities? [J]. Chinese Journal of Catalysis, 2022, 43(3): 820-831. |
[3] | Xiaolong Wang, Guojun Lan, Zaizhe Cheng, Wenfeng Han, Haodong Tang, Huazhang Liu, Ying Li. Carbon-supported ruthenium catalysts prepared by a coordination strategy for acetylene hydrochlorination [J]. Chinese Journal of Catalysis, 2020, 41(11): 1683-1691. |
[4] | Jian Li, Jiangtao Fan, Sajjad Ali, Guojun Lan, Haodong Tang, Wenfeng Han, Huazhang Liu, Bo Li, Ying Li. The origin of the extraordinary stability of mercury catalysts on the carbon support: the synergy effects between oxygen groups and defects revealed from a combined experimental and DFT study [J]. Chinese Journal of Catalysis, 2019, 40(2): 141-146. |
[5] | Hang Li, Botao Wu, Jianhui Wang, Fumin Wang, Xubin Zhang, Gang Wang, Haichao Li. Efficient and stable Ru(III)-choline chloride catalyst system with low Ru content for non-mercury acetylene hydrochlorination [J]. Chinese Journal of Catalysis, 2018, 39(11): 1770-1781. |
[6] | Jie Liu, Guojun Lan, Yiyang Qiu, Xiaolong Wang, Ying Li. Wheat flour-derived N-doped mesoporous carbon extrudes as an efficient support for Au catalyst in acetylene hydrochlorination [J]. Chinese Journal of Catalysis, 2018, 39(10): 1664-1671. |
[7] | Xinping Duan, Yan Yin, Xuelin Tian, Jinhuo Ke, Zhaojun Wen, Jianwei Zheng, Menglin Hu, Linmin Ye, Youzhu Yuan. C-X(X=Cl, Br, I) bond dissociation energy as a descriptor for the redispersion of sintered Au/AC catalysts [J]. Chinese Journal of Catalysis, 2016, 37(10): 1794-1803. |
[8] | L. Elsellami, N. Hafidhi, F. Dappozze, A. Houas, C. Guillard. Kinetics and mechanism of thymine degradation by TiO2 photocatalysis [J]. Chinese Journal of Catalysis, 2015, 36(11): 1818-1824. |
[9] | WANG Ling;GAO Baojiao*;WANG Shiwei. Preparation of Quaternary Phosphonium-Type Triphase Catalysts and Rela-tionship between Chemical Structure and Phase Transfer Catalytic Activity [J]. Chinese Journal of Catalysis, 2010, 31(1): 112-119. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||