Chinese Journal of Catalysis ›› 2022, Vol. 43 ›› Issue (3): 820-831.DOI: 10.1016/S1872-2067(21)63913-X
• Articles • Previous Articles Next Articles
Qing Yua,†, Shiyi Wanga,†, Mengru Wanga, Xiaoling Moua,$(), Ronghe Lina,#(
), Yunjie Dinga,b,c,*(
)
Received:
2021-05-10
Revised:
2021-05-10
Online:
2022-03-18
Published:
2022-02-18
Contact:
Xiaoling Mou, Ronghe Lin, Yunjie Ding
About author:
First author contact:† Contributed equally to this work.
Supported by:
Qing Yu, Shiyi Wang, Mengru Wang, Xiaoling Mou, Ronghe Lin, Yunjie Ding. M/C3N4/AC (M = Au, Pt, Ru)-catalyzed acetylene coupling with ethylene dichloride: How effective are the bifunctionalities?[J]. Chinese Journal of Catalysis, 2022, 43(3): 820-831.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(21)63913-X
Fig. 1. Characterizations of the bulk and supported carbon nitride catalysts. (a) XRD; (b) TEM; (c) N 1s XPS. (d) The distribution of different functionalities: (1) C=N-C; (2) N-(C)3 or H-N-(C)2; (3) quaternary N; and (4) π-excitations.
Sample a | Vtotal b/(cm3 g‒1) | Vmicro c/(cm3 g‒1) | Ameso c/(m2 g‒1) | ABET d/(m2 g‒1) | M e/(wt%) | C f/(at%) | N f/(at%) | O f/(at%) |
---|---|---|---|---|---|---|---|---|
C3N4 | 0.02 | 0.00 | 5 | 6 | — | 42.1 | 55.9 | 2.0 |
AC | 0.52 | 0.22 | 467 | 979 | — | — | — | — |
C3N4-D/AC | 0.33 | 0.15 | 285 | 634 | — | 88.2 | 8.1 | 3.7 |
C3N4-D/AC-523 | 0.33 | 0.14 | 296 | 621 | — | 87.7 | 8.0 | 4.3 |
C3N4-D/AC-573 | 0.38 | 0.15 | 334 | 689 | — | 86.5 | 8.7 | 4.8 |
C3N4-D/AC-623 | 0.43 | 0.17 | 385 | 786 | — | 88.3 | 8.0 | 3.7 |
C3N4-U/AC | 0.54 | 0.21 | 477 | 979 | — | 94.2 | 2.3 | 3.5 |
C3N4-U/AC-523 | 0.46 | 0.21 | 402 | 889 | — | — | — | — |
C3N4-U/AC-573 | 0.98 | 0.21 | 407 | 894 | — | 94.0 | 3.1 | 2.9 |
C3N4-U/AC-623 | 0.98 | 0.22 | 439 | 939 | — | — | — | — |
C3N4-D/AC-623-100h g | 0.17 | 0.01 | 202 | 225 | — | — | — | — |
C3N4-U/AC-573-100h g | 0.43 | 0.15 | 412 | 754 | — | — | — | — |
Au/AC | 0.52 | 0.23 | 425 | 968 | 1.01 | — | — | — |
Au/C3N4 | 0.10 | 0.00 | 26 | 26 | 1.00 | — | — | — |
Au/C3N4-U/AC-573 | 0.49 | 0.21 | 422 | 905 | 0.99 | 90.5 | 2.8 | 5.7 |
Pt/C3N4-U/AC-573 | 0.48 | 0.19 | 427 | 893 | 1.02 | — | — | — |
Ru/C3N4-U/AC-573 | 0.44 | 0.22 | 336 | 858 | 1.01 | — | — | — |
BaCl2/AC | 0.44 | 0.19 | 339 | 788 | 10.63 | — | — | — |
Au/C3N4-U/AC-573-50h h | 0.34 | 0.13 | 314 | 628 | — | — | — | — |
Table 1 Characterization data of the selected catalysts.
Sample a | Vtotal b/(cm3 g‒1) | Vmicro c/(cm3 g‒1) | Ameso c/(m2 g‒1) | ABET d/(m2 g‒1) | M e/(wt%) | C f/(at%) | N f/(at%) | O f/(at%) |
---|---|---|---|---|---|---|---|---|
C3N4 | 0.02 | 0.00 | 5 | 6 | — | 42.1 | 55.9 | 2.0 |
AC | 0.52 | 0.22 | 467 | 979 | — | — | — | — |
C3N4-D/AC | 0.33 | 0.15 | 285 | 634 | — | 88.2 | 8.1 | 3.7 |
C3N4-D/AC-523 | 0.33 | 0.14 | 296 | 621 | — | 87.7 | 8.0 | 4.3 |
C3N4-D/AC-573 | 0.38 | 0.15 | 334 | 689 | — | 86.5 | 8.7 | 4.8 |
C3N4-D/AC-623 | 0.43 | 0.17 | 385 | 786 | — | 88.3 | 8.0 | 3.7 |
C3N4-U/AC | 0.54 | 0.21 | 477 | 979 | — | 94.2 | 2.3 | 3.5 |
C3N4-U/AC-523 | 0.46 | 0.21 | 402 | 889 | — | — | — | — |
C3N4-U/AC-573 | 0.98 | 0.21 | 407 | 894 | — | 94.0 | 3.1 | 2.9 |
C3N4-U/AC-623 | 0.98 | 0.22 | 439 | 939 | — | — | — | — |
C3N4-D/AC-623-100h g | 0.17 | 0.01 | 202 | 225 | — | — | — | — |
C3N4-U/AC-573-100h g | 0.43 | 0.15 | 412 | 754 | — | — | — | — |
Au/AC | 0.52 | 0.23 | 425 | 968 | 1.01 | — | — | — |
Au/C3N4 | 0.10 | 0.00 | 26 | 26 | 1.00 | — | — | — |
Au/C3N4-U/AC-573 | 0.49 | 0.21 | 422 | 905 | 0.99 | 90.5 | 2.8 | 5.7 |
Pt/C3N4-U/AC-573 | 0.48 | 0.19 | 427 | 893 | 1.02 | — | — | — |
Ru/C3N4-U/AC-573 | 0.44 | 0.22 | 336 | 858 | 1.01 | — | — | — |
BaCl2/AC | 0.44 | 0.19 | 339 | 788 | 10.63 | — | — | — |
Au/C3N4-U/AC-573-50h h | 0.34 | 0.13 | 314 | 628 | — | — | — | — |
Fig. 2. Characterization of the fresh Au/C3N4-U/AC-573 catalyst. (a) HAADF-STEM images at different magnifications, XPS spectra of Au 4f (b) and Cl 2p (c); (d) Normalized XANES spectra; (e) FT-EXAFS of Au L3 edge of the Au/C3N4-U/AC-573 catalyst and the reference samples.
Fig. 3. (a) Catalytic performance of different catalysts in the dehydrochlorination of ethylene dichloride; (b) Effect of pre-oxidation treatment on the catalytic performance of supported carbon nitride catalysts with different precursors; (c) Comparison of the performance of the developed catalysts with those of previously reported results; (d) Time-on-stream performance of the best-performing catalysts in this work. Reaction conditions: (a,b) GHSVEDC = 144 h-1, FT = 100 cm3 min-1, Tbed = 573 K, PEDC = 2.4%, Wcat. = 0.5 g; (c,d) PEDC = 4.8 %, FT = 50 cm3 min-1, Tbed = 573 K, Wcat .= 1 g (100 TOS) or 0.25 g (50 h TOS). Reference catalysts: DAR-3-700 [12], C4444P+Cl- [16], N-AC [17], TPPC/AC [18], g-C3N4/AC [19], N-AC [21], and 30Pyrrole/AC [22].
Fig. 4. Characterizations of the fresh catalysts and those after 100 h on-stream tests in the dehydrochlorination of ethylene dichloride. (a) N2 sorption; (b) TG (top) and DTG (bottom) analysis.
Fig. 5. (a) Comparison of the performance of different catalysts in single-bed reactor for dehydrochlorination of ethylene dichloride, reaction conditions: GHSVEDC = 144 h-1, FT = 50 cm3 min-1, Tbed = 573 K, PEDC = 4.8 %, Wcat = 0.5 g, and acetylene coupling with ethylene dichloride, reaction conditions: GHSVEDC = 144 h-1, nEDC/nC2H2 = 1.2, Tbed = 573 K, Wcat = 0.5 g; performance of bifunctional catalysts in dual-bed reactor for acetylene coupling with ethylene dichloride (b) accompanied with time-on-stream performance of the best-developed dual-bed system (e). Reaction conditions: GHSVEDC = 72 h-1, nEDC/nC2H2 = 1.2, Tbed = 573 K, Cat.-T: C3N4-U/AC-573, Wcat. = 0.5 g, Cat.-B: M/C3N4-U/AC-573, Wcat. = 0.5 g. Au/C3N4-U/AC-573* was packed at the top. Schematic illustrations of the reaction pathways over the single- (c) and dual-bed (d) systems. The formation of HCl was facilitated (solid purple arrow) on the dual-bed system while it was inhibited (dashed purple arrow) in the single-bed reactor.
|
[1] | Xingzong Dong, Guangye Liu, Zhaoan Chen, Quan Zhang, Yunpeng Xu, Zhongmin Liu. Enhanced performance of Pd-[DBU][Cl]/AC mercury-free catalysts in acetylene hydrochlorination [J]. Chinese Journal of Catalysis, 2023, 46(3): 137-147. |
[2] | Jia Zhao, Saisai Wang, Bolin Wang, Yuxue Yue, Chunxiao Jin, Jinyue Lu, Zheng Fang, Xiangxue Pang, Feng Feng, Lingling Guo, Zhiyan Pan, Xiaonian Li. Acetylene hydrochlorination over supported ionic liquid phase (SILP) gold-based catalyst: Stabilization of cationic Au species via chemical activation of hydrogen chloride and corresponding mechanisms [J]. Chinese Journal of Catalysis, 2021, 42(2): 334-346. |
[3] | Matthias Scharfe, Guido Zichittella, Vladimir Paunovic, Javier Pérez-Ramírez. Ceria in halogen chemistry [J]. Chinese Journal of Catalysis, 2020, 41(6): 915-927. |
[4] | Xiaoshan Feng, Yingbin Zheng, Daifeng Lin, Enhui Wu, Yongjin Luo, Yufeng You, Hun Xue, Qingrong Qian, Qinghua Chen. Novel synthetic route to Ce-Cu-W-O microspheres for efficient catalytic oxidation of vinyl chloride emissions [J]. Chinese Journal of Catalysis, 2020, 41(12): 1864-1872. |
[5] | Xiaolong Wang, Guojun Lan, Zaizhe Cheng, Wenfeng Han, Haodong Tang, Huazhang Liu, Ying Li. Carbon-supported ruthenium catalysts prepared by a coordination strategy for acetylene hydrochlorination [J]. Chinese Journal of Catalysis, 2020, 41(11): 1683-1691. |
[6] | Jian Li, Jiangtao Fan, Sajjad Ali, Guojun Lan, Haodong Tang, Wenfeng Han, Huazhang Liu, Bo Li, Ying Li. The origin of the extraordinary stability of mercury catalysts on the carbon support: the synergy effects between oxygen groups and defects revealed from a combined experimental and DFT study [J]. Chinese Journal of Catalysis, 2019, 40(2): 141-146. |
[7] | Hang Li, Botao Wu, Jianhui Wang, Fumin Wang, Xubin Zhang, Gang Wang, Haichao Li. Efficient and stable Ru(III)-choline chloride catalyst system with low Ru content for non-mercury acetylene hydrochlorination [J]. Chinese Journal of Catalysis, 2018, 39(11): 1770-1781. |
[8] | Jie Liu, Guojun Lan, Yiyang Qiu, Xiaolong Wang, Ying Li. Wheat flour-derived N-doped mesoporous carbon extrudes as an efficient support for Au catalyst in acetylene hydrochlorination [J]. Chinese Journal of Catalysis, 2018, 39(10): 1664-1671. |
[9] | Li Wang, Hongkai Xie, Xingdan Wang, Guizhen Zhang, Yanglong Guo, Yun Guo, Guanzhong Lu. Preparation of LaMnO3 for catalytic combustion of vinyl chloride [J]. Chinese Journal of Catalysis, 2017, 38(8): 1406-1412. |
[10] | Yong Yang, Guojun Lan, Xiaolong Wang, Ying Li. Direct synthesis of nitrogen-doped mesoporous carbons for acetylene hydrochlorination [J]. Chinese Journal of Catalysis, 2016, 37(8): 1242-1248. |
[11] | Catherine J. Davies, Peter J. Miedziak, Gemma L. Brett, Graham J. Hutchings. Vinyl chloride monomer production catalysed by gold: A review [J]. Chinese Journal of Catalysis, 2016, 37(10): 1600-1607. |
[12] | Xinping Duan, Yan Yin, Xuelin Tian, Jinhuo Ke, Zhaojun Wen, Jianwei Zheng, Menglin Hu, Linmin Ye, Youzhu Yuan. C-X(X=Cl, Br, I) bond dissociation energy as a descriptor for the redispersion of sintered Au/AC catalysts [J]. Chinese Journal of Catalysis, 2016, 37(10): 1794-1803. |
[13] | A. Hamza, N. Nagaraju. Amorphous metal-aluminophosphate catalysts for aldol condensation of n-heptanal and benzaldehyde to jasminaldehyde [J]. Chinese Journal of Catalysis, 2015, 36(2): 209-215. |
[14] | Mohammad Bakherad, Ali Keivanloo, Shahrzad Samangooei. Poly(vinyl chloride)-supported Pd(Ⅱ) complex as an efficient catalyst for Heck and Cu-free Sonogashira reactions under aerobic conditions [J]. Chinese Journal of Catalysis, 2014, 35(3): 324-328. |
[15] | WAN Yi-Ling, ZHANG Chuan-Hui, GUO Yang-Long, GUO Yun, LU Guan-Zhong. Catalytic Combustion of Vinyl Chloride Emission over CeO2-MnOx Catalyst [J]. Chinese Journal of Catalysis, 2012, 33(3): 557-562. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||