Chinese Journal of Catalysis ›› 2023, Vol. 52: 207-216.DOI: 10.1016/S1872-2067(23)64499-7
• Articles • Previous Articles Next Articles
Xin Liua,c, Maodi Wanga,c, Yiqi Rena,c, Jiali Liua,c, Huicong Daib, Qihua Yangb,*()
Received:
2023-06-29
Accepted:
2023-08-02
Online:
2023-09-18
Published:
2023-09-25
Contact:
Qihua Yang
Supported by:
Xin Liu, Maodi Wang, Yiqi Ren, Jiali Liu, Huicong Dai, Qihua Yang. Construction of modularized catalytic system for transfer hydrogenation: Promotion effect of hydrogen bonds[J]. Chinese Journal of Catalysis, 2023, 52: 207-216.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(23)64499-7
Fig. 1. (a) Conversion and selectivity to COL as a function of reaction time, and (b) reaction rate in CTH of CAL with isopropyl alcohol, (I) Cu2Cr2O5 and Cu2Cr2O5 with (II) 10% TPTTA, (III) 50% TPTTA, (IV) 100% TPTTA. (c) Arrhenius plots showing apparent activation barriers of Cu2Cr2O5 and Cu2Cr2O5 with 100% TPTTA in CTH of CAL. (d) Recycling stability of Cu2Cr2O5 with 100% TPTTA in the CTH of CAL (The second run was without calcination of Cu2Cr2O5. For the other runs, Cu2Cr2O5 was separated from the reaction system and calcined at 400 °C in air. Reaction condition: 0.1 mmol CAL, 26.5 mg Cu2Cr2O5, 150 °C, 0.5 MPa N2, 2 mL isopropyl alcohol.
Entry a | Substrate | Product | t (h) | Conv. (%) | Sel. (%) |
---|---|---|---|---|---|
1 | ![]() | ![]() | 0.7 | 96 (34) | > 99 (> 99) |
2 | ![]() | ![]() | 0.7 | 90 (15) | > 99 (> 99) |
3 | ![]() | ![]() | 1 | 97 (44) | > 99 (> 99) |
4 | ![]() | ![]() | 12 | 81 (< 1) | > 99 (-) |
5 b | ![]() | ![]() | 0.5 | 99 (22) | > 99 (> 99) |
6 | ![]() | ![]() | 0.5 | 92 (21) | > 99 (> 99) |
7 c | ![]() | ![]() | 0.5 | 90 (22) | > 99 (> 99) |
8 d | ![]() | ![]() | 0.5 | 91 (30) | > 99 (> 99) |
9 b | ![]() | ![]() | 0.5 | 93 (26) | > 99 (> 99) |
Table 1 Substrate scope of modularized catalytic systems (Cu2Cr2O5 with 100% TPTTA) and Cu2Cr2O5 in the CTH of unsaturated aldehydes with isopropyl alcohol.
Entry a | Substrate | Product | t (h) | Conv. (%) | Sel. (%) |
---|---|---|---|---|---|
1 | ![]() | ![]() | 0.7 | 96 (34) | > 99 (> 99) |
2 | ![]() | ![]() | 0.7 | 90 (15) | > 99 (> 99) |
3 | ![]() | ![]() | 1 | 97 (44) | > 99 (> 99) |
4 | ![]() | ![]() | 12 | 81 (< 1) | > 99 (-) |
5 b | ![]() | ![]() | 0.5 | 99 (22) | > 99 (> 99) |
6 | ![]() | ![]() | 0.5 | 92 (21) | > 99 (> 99) |
7 c | ![]() | ![]() | 0.5 | 90 (22) | > 99 (> 99) |
8 d | ![]() | ![]() | 0.5 | 91 (30) | > 99 (> 99) |
9 b | ![]() | ![]() | 0.5 | 93 (26) | > 99 (> 99) |
Fig. 2. (a) Acetone yields in isopropyl alcohol dehydrogenation catalyzed by Cu2Cr2O5 and Cu2Cr2O5 with 100% TPTTA. (b) Kinetic isotope effect (KIE) experiments on transfer hydrogenation of CAL over Cu2Cr2O5 and Cu2Cr2O5 with 100% TPTTA using (CH3)2CHOH and isotopic deuterium (CH3)2CHOD as hydrogen sources at 150 °C.
Fig. 3. (a) Chemical structures of model compounds. (b,c) Conversion and selectivity of CAL to COL over Cu2Cr2O5 in the presence of different types of COFs and model compounds. Reaction conditions: 0.1 mmol CAL, 26.5 mg Cu2Cr2O5, 150 °C, 0.5 MPa N2, t = 1 h, 2 mL isopropyl alcohol, a mass ratio of 0.1 between COFs, and Cu2Cr2O5.
Model compound | Site | Ead (eV) | Bond length (Å) |
---|---|---|---|
Model compound 1 | Site 1 | ‒0.23 | 0.97449 |
Site 2 | ‒0.43 | 0.98582 | |
Model compound 2 | Site 3 | ‒0.26 | 0.97505 |
Site 4 | ‒0.19 | 0.97512 |
Table 2 Adsorption energies (Ead) and bond length of the hydroxyl group of isopropyl alcohol on different sites of model compounds.
Model compound | Site | Ead (eV) | Bond length (Å) |
---|---|---|---|
Model compound 1 | Site 1 | ‒0.23 | 0.97449 |
Site 2 | ‒0.43 | 0.98582 | |
Model compound 2 | Site 3 | ‒0.26 | 0.97505 |
Site 4 | ‒0.19 | 0.97512 |
|
[1] | Qing Niu, Linhua Mi, Wei Chen, Qiujun Li, Shenghong Zhong, Yan Yu, Liuyi Li. Review of covalent organic frameworks for single-site photocatalysis and electrocatalysis [J]. Chinese Journal of Catalysis, 2023, 50(7): 45-82. |
[2] | Fangpei Ma, Qingping Tang, Shibo Xi, Guoqing Li, Tao Chen, Xingchen Ling, Yinong Lyu, Yunpeng Liu, Xiaolong Zhao, Yu Zhou, Jun Wang. Benzimidazole-based covalent organic framework embedding single-atom Pt sites for visible-light-driven photocatalytic hydrogen evolution [J]. Chinese Journal of Catalysis, 2023, 48(5): 137-149. |
[3] | Zhipeng Xie, Xiubei Yang, Pei Zhang, Xiating Ke, Xin Yuan, Lipeng Zhai, Wenbin Wang, Na Qin, Cheng-Xing Cui, Lingbo Qu, Xiong Chen. Vinylene-linked covalent organic frameworks with manipulated electronic structures for efficient solar-driven photocatalytic hydrogen production [J]. Chinese Journal of Catalysis, 2023, 47(4): 171-180. |
[4] | Chaochen Shao, Qing He, Mochun Zhang, Lin Jia, Yujin Ji, Yongpan Hu, Youyong Li, Wei Huang, Yanguang Li. A covalent organic framework inspired by C3N4 for photosynthesis of hydrogen peroxide with high quantum efficiency [J]. Chinese Journal of Catalysis, 2023, 46(3): 28-35. |
[5] | Dengmeng Song, Wenhua Xu, Jun Li, Jiale Zhao, Qing Shi, Fei Li, Xuzhuo Sun, Ning Wang. "All-in-one" covalent organic framework for photocatalytic CO2 reduction [J]. Chinese Journal of Catalysis, 2022, 43(9): 2425-2433. |
[6] | Fulin Zhang, Xia Li, Xiaoyun Dong, Huimin Hao, Xianjun Lang. Thiazolo[5,4-d]thiazole-based covalent organic framework microspheres for blue light photocatalytic selective oxidation of amines with O2 [J]. Chinese Journal of Catalysis, 2022, 43(9): 2395-2404. |
[7] | Guoxing Jiang, Longhai Zhang, Wenwu Zou, Weifeng Zhang, Xiujun Wang, Huiyu Song, Zhiming Cui, Li Du*. Precise and controllable tandem strategy triggering boosted oxygen reduction activity [J]. Chinese Journal of Catalysis, 2022, 43(4): 1042-1048. |
[8] | Ling-Ling Zheng, Long-Shuai Zhang, Ying Chen, Lei Tian, Xun-Heng Jiang, Li-Sha Chen, Qiu-Ju Xing, Xiao-Zhen Liu, Dai-She Wu, Jian-Ping Zou. A new strategy for the fabrication of covalent organic framework-metal-organic framework hybrids via in-situ functionalization of ligands for improved hydrogen evolution reaction activity [J]. Chinese Journal of Catalysis, 2022, 43(3): 811-819. |
[9] | Long Sun, Lingling Li, Juan Yang, Jiajie Fan, Quanlong Xu. Fabricating covalent organic framework/CdS S-scheme heterojunctions for improved solar hydrogen generation [J]. Chinese Journal of Catalysis, 2022, 43(2): 350-358. |
[10] | Pengyu Dong, Aicaijun Zhang, Ting Cheng, Jinkang Pan, Jun Song, Lei Zhang, Rongfeng Guan, Xinguo Xi, Jinlong Zhang. 2D/2D S-scheme heterojunction with a covalent organic framework and g-C3N4 nanosheets for highly efficient photocatalytic H2 evolution [J]. Chinese Journal of Catalysis, 2022, 43(10): 2592-2605. |
[11] | Zhiming Zhou, Chuanbiao Bie, Peize Li, Bien Tan, Yan Shen. A thioether-functionalized pyrene-based covalent organic framework anchoring ultrafine Au nanoparticles for efficient photocatalytic hydrogen generation [J]. Chinese Journal of Catalysis, 2022, 43(10): 2699-2707. |
[12] | Zizhan Liang, Rongchen Shen, Peng Zhang, Youji Li, Neng Li, Xin Li. All-organic covalent organic frameworks/perylene diimide urea polymer S-scheme photocatalyst for boosted H2 generation [J]. Chinese Journal of Catalysis, 2022, 43(10): 2581-2591. |
[13] | Yiqi Ren, Lin Tao, Chunzhi Li, Sanjeevi Jayakumar, He Li, Qihua Yang. Development of efficient solid chiral catalysts with designable linkage for asymmetric transfer hydrogenation of quinoline derivatives [J]. Chinese Journal of Catalysis, 2021, 42(9): 1576-1585. |
[14] | Mengyang Li, Cuibo Liu, Yi Huang, Shuyan Han, Bing Zhang. Water-involving transfer hydrogenation and dehydrogenation of N-heterocycles over a bifunctional MoNi4 electrode [J]. Chinese Journal of Catalysis, 2021, 42(11): 1983-1991. |
[15] | Si Ma, Ziping Li, Ji Jia, Zhenwei Zhang, Hong Xia, He Li, Xiong Chen, Yanhong Xu, Xiaoming Liu. Amide-linked covalent organic frameworks as efficient heterogeneous photocatalysts in water [J]. Chinese Journal of Catalysis, 2021, 42(11): 2010-2019. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||