Chinese Journal of Catalysis ›› 2024, Vol. 57: 105-113.DOI: 10.1016/S1872-2067(23)64584-X
• Articles • Previous Articles Next Articles
Qian Zhanga,b, Xunzhu Jianga,b, Yang Sua, Yang Zhaoc, Botao Qiaoa,*()
Received:
2023-09-28
Accepted:
2023-12-18
Online:
2024-02-18
Published:
2024-02-10
Contact:
* E-mail: Supported by:
Qian Zhang, Xunzhu Jiang, Yang Su, Yang Zhao, Botao Qiao. Catalytic propane dehydrogenation by anatase supported Ni single-atom catalysts[J]. Chinese Journal of Catalysis, 2024, 57: 105-113.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(23)64584-X
Fig. 1. (a-c) The AC-HAADF-STEM images and corresponding EDS mapping of Ni1/A-TiO2-H600 sample, Ni single atoms are highlighted in yellow circles. The AC-HAADF-STEM images (d,e) and size distribution (f) of NiNP/A-TiO2-H600 sample. (g-i) In-situ CO-DRIFT spectra at saturation coverage and followed by helium (He) purge for 30, 60, 90 and 120 s (as labeled) at low temperature (-115 °C) on A-TiO2 and Ni/A-TiO2 catalysts after 600 °C reduction.
Fig. 2. Ni K-edge FT-EXAFS spectra (a), Wavelet transform (WT)-EXAFS of k2-weighted k-space (b) and Ni K-edge XANES spectra (c) of Ni foil, NiO, Ni1/A-TiO2-H600 and NiNP/A-TiO2-H600. (d) In-situ XPS spectra of Ni 2p3/2 for Ni1/A-TiO2-H600 and NiNP/A-TiO2-H600 samples.
Fig. 3. (a) Propane conversion and propene selectivity as a function of time on stream at 580 °C. Conditions: 250 mg catalyst, C3H8/H2/N2 = 1/1/4, WHSV of propane = 2.0 h-1, total flow of 25 mL min-1. EPR spectra (b), Ti 2p (c) and O 1s (d) spectra of pure A-TiO2 and Ni/A-TiO2-H600 samples.
Fig. 4. (a,b) HRTEM images of spent NiNP/A-TiO2 after PDH reaction. (c) In-situ CO-DRIFT spectra at saturation coverage and followed by He purge at low temperature (-115 °C) on spent NiNP/A-TiO2. (d) Propane conversion and propene selectivity over NiNP/A-TiO2 sample with different reduction. Conditions: 580 °C, 250 mg catalyst, C3H8/H2/N2 = 1/1/4, WHSV of propane = 2.0 h-1, total flow of 25 mL min-1. (e) TG analysis and MS signal for the spent catalysts.
|
[1] | Zhe Wang, Chunpeng Wang, Bing Lu, Zhirong Chen, Yong Wang, Shanjun Mao. Electronic perturbation-promoted interfacial pathway for facile C-H dissociation [J]. Chinese Journal of Catalysis, 2024, 56(1): 130-138. |
[2] | Jiachen Sun, Sai Chen, Donglong Fu, Wei Wang, Xianhui Wang, Guodong Sun, Chunlei Pei, Zhi-Jian Zhao, Jinlong Gong. Role of oxygen transfer and surface reaction in catalytic performance of VOx-Ce1‒xZrxO2 for propane dehydrogenation [J]. Chinese Journal of Catalysis, 2023, 52(9): 217-227. |
[3] | Guoqing An, Xiaowei Zhang, Canyang Zhang, Hongyi Gao, Siqi Liu, Geng Qin, Hui Qi, Jitti Kasemchainan, Jianwei Zhang, Ge Wang. Metal-organic-framework-based materials as green catalysts for alcohol oxidation [J]. Chinese Journal of Catalysis, 2023, 50(7): 126-174. |
[4] | Yanan Xing, Leilei Kang, Jingyuan Ma, Qike Jiang, Yang Su, Shengxin Zhang, Xiaoyan Xu, Lin Li, Aiqin Wang, Zhi-Pan Liu, Sicong Ma, Xiao Yan Liu, Tao Zhang. Sn1Pt single-atom alloy evolved stable PtSn/nano-Al2O3 catalyst for propane dehydrogenation [J]. Chinese Journal of Catalysis, 2023, 48(5): 164-174. |
[5] | Xingzong Dong, Guangye Liu, Zhaoan Chen, Quan Zhang, Yunpeng Xu, Zhongmin Liu. Enhanced performance of Pd-[DBU][Cl]/AC mercury-free catalysts in acetylene hydrochlorination [J]. Chinese Journal of Catalysis, 2023, 46(3): 137-147. |
[6] | Longkang Zhang, Yue Ma, Changcheng Liu, Zhipeng Wan, Chengwei Zhai, Xin Wang, Hao Xu, Yejun Guan, Peng Wu. Demetallation and reduction induced ultra-dispersed PtZn alloy confined in zeolite for propane dehydrogenation [J]. Chinese Journal of Catalysis, 2023, 55(12): 241-252. |
[7] | Diab khalafallah, Yunxiang Zhang, Hao Wang, Jong-Min Lee, Qinfang Zhang. Energy-saving electrochemical hydrogen production via co-generative strategies in hybrid water electrolysis: Recent advances and perspectives [J]. Chinese Journal of Catalysis, 2023, 55(12): 44-115. |
[8] | Liqing Wu, Qing Liang, Jiayi Zhao, Juan Zhu, Hongnan Jia, Wei Zhang, Ping Cai, Wei Luo. A Bi-doped RuO2 catalyst for efficient and durable acidic water oxidation [J]. Chinese Journal of Catalysis, 2023, 55(12): 182-190. |
[9] | Hangjie Li, Yuehua Xiao, Jiale Xiao, Kai Fan, Bingkuan Li, Xiaolong Li, Liang Wang, Feng-Shou Xiao. Selective hydrogenation of CO2 into dimethyl ether over hydrophobic and gallium-modified copper catalysts [J]. Chinese Journal of Catalysis, 2023, 54(11): 178-187. |
[10] | Xianbiao Fu. Some thoughts about the electrochemical nitrate reduction reaction [J]. Chinese Journal of Catalysis, 2023, 53(10): 8-12. |
[11] | Qinggang Liu, Junguo Ma, Chen Chen. Rational design and precise manipulation of nano-catalysts [J]. Chinese Journal of Catalysis, 2022, 43(4): 898-912. |
[12] | Xiang-dong Meng, Chao Zhen, Gang Liu, Hui-Ming Cheng. Stabilizing CuO photocathode with a Cu3N protection shell [J]. Chinese Journal of Catalysis, 2022, 43(3): 755-760. |
[13] | Qi Zhang, Hui Chen, Lan Yang, Xiao Liang, Lei Shi, Qing Feng, Yongcun Zou, Guo-Dong Li, Xiaoxin Zou. Non-catalytic, instant iridium (Ir) leaching: A non-negligible aspect in identifying Ir-based perovskite oxygen-evolving electrocatalysts [J]. Chinese Journal of Catalysis, 2022, 43(3): 885-893. |
[14] | Yeqin Feng, Lin Qin, Junhao Zhang, Fangyu Fu, Huijie Li, Hua Xiang, Hongjin Lv. Wheel-shaped icosanuclear Cu-containing polyoxometalate catalyst: Mechanistic and stability studies on light-driven hydrogen generation [J]. Chinese Journal of Catalysis, 2022, 43(2): 442-450. |
[15] | Tongbao Wang, Guangtai Han, Ziyun Wang, Yuhang Wang. Overcoming coke formation in high-temperature CO2 electrolysis [J]. Chinese Journal of Catalysis, 2022, 43(12): 2938-2945. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||