Chinese Journal of Catalysis ›› 2024, Vol. 61: 301-311.DOI: 10.1016/S1872-2067(24)60040-9
• Articles • Previous Articles Next Articles
Xiaomin Zhanga,b,1, Kai Caia,c,1, Ying Lia,d, Ji Qie,*(), Yue Wanga, Yunduo Liua,b, Mei-Yan Wanga, Shouying Huanga,b,*(
), Xinbin Maa
Received:
2024-02-06
Accepted:
2024-04-10
Online:
2024-06-18
Published:
2024-06-20
Contact:
* E-mail: About author:
1Contributed equally to this work.
Supported by:
Xiaomin Zhang, Kai Cai, Ying Li, Ji Qi, Yue Wang, Yunduo Liu, Mei-Yan Wang, Shouying Huang, Xinbin Ma. Mechanistic insights and the role of spatial confinement in catalytic dimethyl ether carbonylation over SSZ-13 zeolite[J]. Chinese Journal of Catalysis, 2024, 61: 301-311.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(24)60040-9
Sample | Si/Ala | B acid amount (µmol g‒1) | ||
---|---|---|---|---|
Total b | 6-MR c | 8-MR c | ||
H-SSZ-13 | 14.4 | 565 | 214 | 351 |
3Na/H-SSZ-13 | 14.2 | 531 | 186 | 345 |
12Na/H-SSZ-13 | 14.3 | 501 | 161 | 340 |
25Na/H-SSZ-13 | 14.2 | 432 | 119 | 313 |
31Na/H-SSZ-13 | 14.4 | 377 | 106 | 271 |
3Cs/H-SSZ-13 | 14.3 | 516 | 195 | 321 |
Table 1 Composition and acidic properties of the xM/H-SSZ-13 sample.
Sample | Si/Ala | B acid amount (µmol g‒1) | ||
---|---|---|---|---|
Total b | 6-MR c | 8-MR c | ||
H-SSZ-13 | 14.4 | 565 | 214 | 351 |
3Na/H-SSZ-13 | 14.2 | 531 | 186 | 345 |
12Na/H-SSZ-13 | 14.3 | 501 | 161 | 340 |
25Na/H-SSZ-13 | 14.2 | 432 | 119 | 313 |
31Na/H-SSZ-13 | 14.4 | 377 | 106 | 271 |
3Cs/H-SSZ-13 | 14.3 | 516 | 195 | 321 |
Fig. 3. DME conversion (a,c) and MA selectivity (b,d) over H-SSZ-13, xNa/H-SSZ-13, and 3Cs/H-SSZ-13 samples. Reaction conditions: 473 K, 1.5 MPa, DME/CO = 1/49, 3000 h-1.
Fig. 5. Relationship between the space time yield of MA and the amount of 8-MR BAS over all samples. (For convenience, the sample name xM/H-SSZ-13 has been simplified to xM).
Fig. 6. Structure of the model with two H atoms and the relative energy of the model. (The energy of the A-O1-B-O4 model was used as a benchmark. Atom labels: pink: Al, yellow: Si, red: O; white: H).
Fig. 7. Location of the Na after ion exchange and relative energy of the model. (The energy of the model in which Na replaces the H atom in 6-MR and bonds with O2 and O3 atoms was used as a benchmark. Atom labels: pink: Al, yellow: Si, red: O; white: H; purple: Na).
Sample | Surface area (m2 g‒1) | Pore volume (cm3 g‒1) | |||||
---|---|---|---|---|---|---|---|
BET | Micropore | External | Total | Micropore | Mesopore | ||
SSZ-13 | 816.3 | 801.3 | 15.0 | 0.329 | 0.299 | 0.030 | |
3Na/H-SSZ-13 | 763.7 | 756.5 | 7.2 | 0.303 | 0.283 | 0.020 | |
12Na/H-SSZ-13 | 739.4 | 723.8 | 15.6 | 0.307 | 0.271 | 0.036 | |
25Na/H-SSZ-13 | 691.6 | 682.8 | 8.8 | 0.282 | 0.256 | 0.026 | |
31Na/H-SSZ-13 | 671.7 | 652.2 | 19.5 | 0.286 | 0.247 | 0.038 | |
3Cs/H-SSZ-13 | 740.4 | 729.3 | 11.1 | 0.307 | 0.276 | 0.038 |
Table 2 Pore structure information of the xM/H-SSZ-13 samples.
Sample | Surface area (m2 g‒1) | Pore volume (cm3 g‒1) | |||||
---|---|---|---|---|---|---|---|
BET | Micropore | External | Total | Micropore | Mesopore | ||
SSZ-13 | 816.3 | 801.3 | 15.0 | 0.329 | 0.299 | 0.030 | |
3Na/H-SSZ-13 | 763.7 | 756.5 | 7.2 | 0.303 | 0.283 | 0.020 | |
12Na/H-SSZ-13 | 739.4 | 723.8 | 15.6 | 0.307 | 0.271 | 0.036 | |
25Na/H-SSZ-13 | 691.6 | 682.8 | 8.8 | 0.282 | 0.256 | 0.026 | |
31Na/H-SSZ-13 | 671.7 | 652.2 | 19.5 | 0.286 | 0.247 | 0.038 | |
3Cs/H-SSZ-13 | 740.4 | 729.3 | 11.1 | 0.307 | 0.276 | 0.038 |
Fig. 9. Structures for the reactant, transition state, and final product of the CO insertion step over Na/H-SSZ-13 (a) and Cs/H-SSZ-13 (b). (c) Reaction barrier of CO insertion step in three different confining environments. (Atom labels: pink: Al, yellow: Si, red: O, white: H, purple: Na, dark purple: Cs).
Fig. 11. Adsorption energy of the side reaction intermediate (heptaMB+) over Na/H-SSZ-13, and Cs/H-SSZ-13 models. (Atom labels: pink: Al, yellow: Si, red: O, white: H, purple: Na, dark purple: Cs).
|
[1] | Zhi-Peng Bao, Nai-Xian Sun, Xiao-Feng Wu. A general palladium-catalyzed carbonylative synthesis of α-CF3-substituted ketones and carboxylic acid derivatives [J]. Chinese Journal of Catalysis, 2024, 60(5): 171-177. |
[2] | Ke Huang, Shicheng Yuan, Rongyan Mei, Ge Yang, Peng Bai, Hailing Guo, Chunzheng Wang, Svetlana Mintova. Mo-promoted Pd/NaY catalyst for indirect oxidative carbonylation of methanol to dimethyl carbonate [J]. Chinese Journal of Catalysis, 2024, 60(5): 327-336. |
[3] | Xingju Li, Zheng Li, Siquan Feng, Xiangen Song, Li Yan, Jiali Mu, Qiao Yuan, Lili Ning, Weimiao Chen, Zhongkang Han, Yunjie Ding. Promotional role of Ag1 on Pd1 in dual-site configurations from atomic dispersion of alloy nanoparticles for alkyne dialkoxycarbonylation [J]. Chinese Journal of Catalysis, 2024, 59(4): 282-292. |
[4] | Yu-Shuai Xu, Hong-Hui Wang, Qi-Yuan Li, Shi-Nan Zhang, Si-Yuan Xia, Dong Xu, Wei-Wei Lei, Jie-Sheng Chen, Xin-Hao Li. Functional ladder-like heterojunctions of Mo2C layers inside carbon sheaths for efficient CO2 fixation [J]. Chinese Journal of Catalysis, 2024, 58(3): 138-145. |
[5] | Changpo Ma, Ying Lai, Tiange Zhao, Xiaoxuan Zhang, Haichao Liu, Weiran Yang. Direct synthesis of α,ω-dicarboxylic acids via dicarbonylation of cyclic ethers [J]. Chinese Journal of Catalysis, 2024, 56(1): 122-129. |
[6] | Xing-Wei Gu, Youcan Zhang, Fengqian Zhao, Han-Jun Ai, Xiao-Feng Wu. Phosphine-catalyzed photo-induced alkoxycarbonylation of alkyl iodides with phenols and 1,4-dioxane through charge-transfer complex [J]. Chinese Journal of Catalysis, 2023, 48(5): 214-223. |
[7] | Hua Liu, Leilei Kang, Hua Wang, Qike Jiang, Xiao Yan Liu, Aiqin Wang. Ru single-atom catalyst anchored on sulfated zirconia for direct methane conversion to methanol [J]. Chinese Journal of Catalysis, 2023, 46(3): 64-71. |
[8] | Shanfan Lin, Yuchun Zhi, Wenna Zhang, Xiaoshuai Yuan, Chengwei Zhang, Mao Ye, Shutao Xu, Yingxu Wei, Zhongmin Liu. Hydrogen transfer reaction contributes to the dynamic evolution of zeolite-catalyzed methanol and dimethyl ether conversions: Insight into formaldehyde [J]. Chinese Journal of Catalysis, 2023, 46(3): 11-27. |
[9] | Kaipeng Cao, Dong Fan, Shu Zeng, Benhan Fan, Nan Chen, Mingbin Gao, Dali Zhu, Linying Wang, Peng Tian, Zhongmin Liu. Organic-free synthesis of MOR nanoassemblies with excellent DME carbonylation performance [J]. Chinese Journal of Catalysis, 2021, 42(9): 1468-1477. |
[10] | Lulu Li, Chengyan Ge, Jiawei Ji, Wei Tan, Xin Wang, Xiaoqian Wei, Kai Guo, Changjin Tang, Lin Dong. Effects of different methods of introducing Mo on denitration performance and anti-SO2 poisoning performance of CeO2 [J]. Chinese Journal of Catalysis, 2021, 42(9): 1488-1499. |
[11] | Sen Wang, Zhikai Li, Zhangfeng Qin, Mei Dong, Junfen Li, Weibin Fan, Jianguo Wang. Catalytic roles of the acid sites in different pore channels of H-ZSM-5 zeolite for methanol-to-olefins conversion [J]. Chinese Journal of Catalysis, 2021, 42(7): 1126-1136. |
[12] | Zhou Ren, Yang Liu, Yuan Lyu, Xiangen Song, Changyong Zheng, Zheng Jiang, Yunjie Ding. Quaternary phosphonium polymer-supported dual-ionically bound [Rh(CO)I3]2- catalyst for heterogeneous ethanol carbonylation [J]. Chinese Journal of Catalysis, 2021, 42(4): 606-617. |
[13] | Weifeng Chu, Xiaona Liu, Zhiqiang Yang, Hiroya Nakata, Xingzhi Tan, Xuebin Liu, Longya Xu, Peng Guo, Xiujie Li, Xiangxue Zhu. Constrained Al sites in FER-type zeolites [J]. Chinese Journal of Catalysis, 2021, 42(11): 2078-2087. |
[14] | Mingyang Gao, Zhongmiao Gong, Xuefei Weng, Weixiang Shang, Yuchao Chai, Weili Dai, Guangjun Wu, Naijia Guan, Landong Li. Methane combustion over palladium catalyst within the confined space of MFI zeolite [J]. Chinese Journal of Catalysis, 2021, 42(10): 1689-1699. |
[15] | Li Yang, Lijun Shi, Chungu Xia, Fuwei Li. Intermediate formation enabled regioselective access to amide in the Pd-catalyzed reductive aminocarbonylation of olefin with nitroarene [J]. Chinese Journal of Catalysis, 2020, 41(7): 1152-1160. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||