Chinese Journal of Catalysis ›› 2024, Vol. 60: 327-336.DOI: 10.1016/S1872-2067(24)60019-7
• Articles • Previous Articles Next Articles
Ke Huanga, Shicheng Yuana, Rongyan Meia, Ge Yangb, Peng Baia, Hailing Guoa, Chunzheng Wanga,*(), Svetlana Mintovaa,c,*(
)
Received:
2024-03-07
Accepted:
2024-03-20
Online:
2024-05-18
Published:
2024-05-23
Contact:
E-mail: Supported by:
Ke Huang, Shicheng Yuan, Rongyan Mei, Ge Yang, Peng Bai, Hailing Guo, Chunzheng Wang, Svetlana Mintova. Mo-promoted Pd/NaY catalyst for indirect oxidative carbonylation of methanol to dimethyl carbonate[J]. Chinese Journal of Catalysis, 2024, 60: 327-336.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(24)60019-7
Fig. 1. Conversion of CO and CH3ONO, selectivity of DMC, dimethoxymethane (DMM) and methyl formate (MF) over the catalysts Pd/NaY (A) and Pd-Mo/NaY (B) as a function of time on stream in the gas-solid phase indirect oxidation of methanol to DMC. Reaction conditions: 0.100 g catalyst, CO/CH3ONO/N2 = 1/6/33 (volume), GHSV = 8000 mL gcat.?1 h?1, 110 °C, 0.1 MPa.
Fig. 2. Effect of the CO/CH3ONO ratio on the CH3ONO conversion and DMC selectivity over the Pd-Mo/NaY catalyst in the gas-solid phase indirect oxidation of methanol to DMC. Reaction conditions: 0.100 g catalyst, CO/CH3ONO/N2 = 1, 1.2, 1.5, 2, 3/6/33 (volume), GHSV = 8000-12000 mL gcat.?1 h?1, 110 °C, 0.1 MPa.
Catalyst | Status | SBET a (m2 g−1) | Vmic a (cm3 g−1) | TOF (s−1)b | Ea c (kJ mol−1) |
---|---|---|---|---|---|
Pd/NaY | fresh | 887 | 0.33 | 0.005 | 72 |
Pd/NaY | after 30 h test | 863 | 0.32 | - | - |
Pd-Mo/NaY | fresh | 857 | 0.32 | 0.019 | 87 |
Pd-Mo/NaY | after 30 h test | 794 | 0.30 | - | - |
Table 1 Physicochemical properties and catalytic performance of the Pd/NaY and Pd-Mo/NaY catalysts.
Catalyst | Status | SBET a (m2 g−1) | Vmic a (cm3 g−1) | TOF (s−1)b | Ea c (kJ mol−1) |
---|---|---|---|---|---|
Pd/NaY | fresh | 887 | 0.33 | 0.005 | 72 |
Pd/NaY | after 30 h test | 863 | 0.32 | - | - |
Pd-Mo/NaY | fresh | 857 | 0.32 | 0.019 | 87 |
Pd-Mo/NaY | after 30 h test | 794 | 0.30 | - | - |
Fig. 3. Arrhenius plot for the DMC synthesis on the Pd/NaY and Pd-Mo/NaY catalysts (Ea, apparent activation energy). Reaction conditions: mixture of 0.010 g catalyst and 0.090 g α-Al2O3 (diluent), CO/CH3ONO/N2 = 1/6/33 (volume), GHSV = 80,000 mL gcat.?1 h?1, 0.1 MPa.
Fig. 4. XRD patterns in the range of 3°-50°(A) and enlarged patterns (B) in the range of 30°-45°: fresh Pd/NaY (a), Pd/NaY after 30 h catalytic test (b), fresh Pd-Mo/NaY (c), Pd-Mo/NaY after 30 h catalytic test (d), and NaY zeolite (e).
Fig. 5. TEM images of used catalysts after 30 h catalytic test: Pd/NaY (a1,a2) and Pd-Mo/NaY (b1,b2). Insets: particle size distribution of Pd nanoparticles in samples Pd/NaY (a1) and Pd-Mo/NaY (b1) determined by measuring of about 200 nanoparticles.
Fig. 8. FT-IR spectra of CO adsorbed at -140 °C on NaY (A), Mo/NaY (B), Pd/NaY (D) and Pd-Mo/NaY (E) samples. (C) The band areas at 2167 cm-1 versus the CO partial pressure. (F) The band areas at 2169 cm-1 versus the CO partial pressure. The spectra were collected at the equilibrium CO partial pressure of 132 Pa (a) -385 Pa (g).
Fig. 9. DRIFTS spectra of CO adsorbed on used Pd/NaY catalysts after 2 h (a) and 6 h (b) catalytic test, and on used Pd-Mo/NaY catalysts after 2 h (c) and 6 h (d) catalytic test recorded at 35 °C.
Catalyst | Area of Pd0 | Area of Pd2+ | Pd2/Pd0 ratio | ||
---|---|---|---|---|---|
Pd/NaY | 1367a | 1640a | 1.2 | ||
Pd-Mo/NaY | 1524a | 2437a | 1.6 |
Table 2 The peak areas of Pd0, Pd2+, and Pd2+/Pd0 area ratio of the used catalysts Pd/NaY and Pd-Mo/NaY determined by XPS a.
Catalyst | Area of Pd0 | Area of Pd2+ | Pd2/Pd0 ratio | ||
---|---|---|---|---|---|
Pd/NaY | 1367a | 1640a | 1.2 | ||
Pd-Mo/NaY | 1524a | 2437a | 1.6 |
Fig. 12. In situ DRIFTS spectra of CO and CH3ONO reactants on Pd/NaY (A) and Pd-Mo/NaY (B) catalysts, and the corresponding surface species on the Pd/NaY (C) and Pd-Mo/NaY (D) catalysts after parching with N2 recorded at different temperatures: 30, 50, 70, 90, 110 and 125 °C.
|
[1] | Zhi-Peng Bao, Nai-Xian Sun, Xiao-Feng Wu. A general palladium-catalyzed carbonylative synthesis of α-CF3-substituted ketones and carboxylic acid derivatives [J]. Chinese Journal of Catalysis, 2024, 60(5): 171-177. |
[2] | Huan Chen, Zhounan Yu, Bing Yang, Yafeng Zhang, Chunxia Che, Xiaoyan Liu, Feng Zhang, Wei Han, He Wen, Aiqin Wang, Tao Zhang. Fine tuning the dynamic PdCx formation for enhanced acetylene semi-hydrogenation: The role of gas environment and ZnO addition [J]. Chinese Journal of Catalysis, 2024, 60(5): 190-200. |
[3] | Yuanlong Tan, Yafeng Zhang, Ya Gao, Jingyuan Ma, Han Zhao, Qingqing Gu, Yang Su, Xiaoyan Xu, Aiqin Wang, Bing Yang, Guo-Xu Zhang, Xiao Yan Liu, Tao Zhang. Redox-driven surface generation of highly active Pd/PdO interface boosting low-temperature methane combustion [J]. Chinese Journal of Catalysis, 2024, 60(5): 242-252. |
[4] | Xingju Li, Zheng Li, Siquan Feng, Xiangen Song, Li Yan, Jiali Mu, Qiao Yuan, Lili Ning, Weimiao Chen, Zhongkang Han, Yunjie Ding. Promotional role of Ag1 on Pd1 in dual-site configurations from atomic dispersion of alloy nanoparticles for alkyne dialkoxycarbonylation [J]. Chinese Journal of Catalysis, 2024, 59(4): 282-292. |
[5] | Yu-Shuai Xu, Hong-Hui Wang, Qi-Yuan Li, Shi-Nan Zhang, Si-Yuan Xia, Dong Xu, Wei-Wei Lei, Jie-Sheng Chen, Xin-Hao Li. Functional ladder-like heterojunctions of Mo2C layers inside carbon sheaths for efficient CO2 fixation [J]. Chinese Journal of Catalysis, 2024, 58(3): 138-145. |
[6] | Dmitry Yu. Murzin. Synergy between heterogeneous catalysis and homogeneous radical reactions for pharmaceutical waste destruction: Perspective [J]. Chinese Journal of Catalysis, 2024, 58(3): 7-14. |
[7] | Jian Dang, Weijie Li, Bin Qin, Yuchao Chai, Guangjun Wu, Landong Li. Self-adjusted reaction pathway enables efficient oxidation of aromatic C-H bonds over zeolite-encaged single-site cobalt catalyst [J]. Chinese Journal of Catalysis, 2024, 57(2): 133-142. |
[8] | Changpo Ma, Ying Lai, Tiange Zhao, Xiaoxuan Zhang, Haichao Liu, Weiran Yang. Direct synthesis of α,ω-dicarboxylic acids via dicarbonylation of cyclic ethers [J]. Chinese Journal of Catalysis, 2024, 56(1): 122-129. |
[9] | Kai Fan, Qinming Wu, Shuo Liu, Haiyu Kong, Sen Wang, Eduard Kunkes, Trees De Baerdemaeker, Andrei-Nicolae Parvulescu, Nils Bottke, Toshiyuki Yokoi, Dirk E. De Vos, Xiangju Meng, Weiping Zhang, Feng-Shou Xiao. Adjusting Al location in the framework of ITH zeolites for catalytic conversion of methanol to olefins [J]. Chinese Journal of Catalysis, 2024, 56(1): 114-121. |
[10] | Lu Cheng, Xuning Chen, P. Hu, Xiao-Ming Cao. Advantages and limitations of hydrogen peroxide for direct oxidation of methane to methanol at mono-copper active sites in Cu-exchanged zeolites [J]. Chinese Journal of Catalysis, 2023, 51(8): 135-144. |
[11] | Xing-Wei Gu, Youcan Zhang, Fengqian Zhao, Han-Jun Ai, Xiao-Feng Wu. Phosphine-catalyzed photo-induced alkoxycarbonylation of alkyl iodides with phenols and 1,4-dioxane through charge-transfer complex [J]. Chinese Journal of Catalysis, 2023, 48(5): 214-223. |
[12] | Changcheng Wei, Wenna Zhang, Kuo Yang, Xiu Bai, Shutao Xu, Jinzhe Li, Zhongmin Liu. An efficient way to use CO2 as chemical feedstock by coupling with alkanes [J]. Chinese Journal of Catalysis, 2023, 47(4): 138-149. |
[13] | Duozheng Ma, Xiangcheng Li, Chuang Liu, Caroline Versluis, Yingchun Ye, Zhendong Wang, Eelco T. C. Vogt, Bert M. Weckhuysen, Weimin Yang. SCM-36 zeolite nanosheets applied in the production of renewable p-xylene from ethylene and 2,5-dimethylfuran [J]. Chinese Journal of Catalysis, 2023, 47(4): 200-213. |
[14] | Runze Liu, Xue Shao, Chang Wang, Weili Dai, Naijia Guan. Reaction mechanism of methanol-to-hydrocarbons conversion: Fundamental and application [J]. Chinese Journal of Catalysis, 2023, 47(4): 67-92. |
[15] | Qian Li, Qijun Tang, Peiyao Xiong, Dongzhi Chen, Jianmeng Chen, Zhongbiao Wu, Haiqiang Wang. Effect of palladium chemical states on CO2 photocatalytic reduction over g-C3N4: Distinct role of single-atomic state in boosting CH4 production [J]. Chinese Journal of Catalysis, 2023, 46(3): 177-190. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||