Chinese Journal of Catalysis ›› 2024, Vol. 60: 242-252.DOI: 10.1016/S1872-2067(24)60021-5
• Articles • Previous Articles Next Articles
Yuanlong Tana,b, Yafeng Zhanga, Ya Gaoc,1, Jingyuan Mad, Han Zhaoa, Qingqing Gua, Yang Sua, Xiaoyan Xue, Aiqin Wanga,f, Bing Yanga,*(), Guo-Xu Zhangc,*(
), Xiao Yan Liua,*(
), Tao Zhanga,b
Received:
2024-01-11
Accepted:
2024-03-22
Online:
2024-05-18
Published:
2024-05-20
Contact:
E-mail: About author:
First author contact:1Contributed equally to this work.
Supported by:
Yuanlong Tan, Yafeng Zhang, Ya Gao, Jingyuan Ma, Han Zhao, Qingqing Gu, Yang Su, Xiaoyan Xu, Aiqin Wang, Bing Yang, Guo-Xu Zhang, Xiao Yan Liu, Tao Zhang. Redox-driven surface generation of highly active Pd/PdO interface boosting low-temperature methane combustion[J]. Chinese Journal of Catalysis, 2024, 60: 242-252.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(24)60021-5
Fig. 1. HAADF-STEM images and size distribution of the Pd/Al2O3-He-800 (A), Pd/Al2O3-O-800 (B), and Pd/Al2O3-rea-800 (C) catalysts. High-resolution HAADF-STEM images of Pd/Al2O3-He-800 (D), Pd/Al2O3-O-800 (E), and Pd/Al2O3-rea-800 catalysts (F). (G) The magnified part marked with red box in (F).
Sample | Reaction rate (μmol gPd-1 s-1) | Temperature (°C) | Pd loading (wt%) | Size a (nm) | Reaction gas (vol %) | GHSV b (mL g-1 h-1) | Ref. | |
---|---|---|---|---|---|---|---|---|
CH4 | O2 | |||||||
Pd/Al2O3-rea-800 | 337.8 | 300 | 1.0 | 28.4 | 0.5 | 2 | 1200000 | This work |
Pd/Al2O3-He-800 | 28.7 | 300 | 1.0 | 16.7 | 0.5 | 2 | 1200000 | This work |
Pd/Al2O3-O-800 | 20.3 | 300 | 1.0 | 36.3 | 0.5 | 2 | 1200000 | This work |
Pd/Al2O3-air-500 | 151.8 | 300 | 1.0 | 3.7 | 0.5 | 2 | 1200000 | This work |
Pd/Al2O3-rich-800 | 689.2 | 300 | 1.0 | 12.3 | 0.5 | 2 | 1200000 | This work |
1.9 nm Pd/γ-Al2O3 | 27.3 | 300 | 1.0 | 1.9 | 0.4 | 10 | 300000 | [ |
Al-Pd/MA-A72 | 97.7 | 300 | 0.93 | 5.3 | 0.5 | 10 | 100000-200000 | [ |
Pd/Al2O3 | 13.5 | 250 | 0.33 | 7.0 | 0.5 | 2 | 40000-75000 | [ |
PdW1/Al2O3 | 18.9 | 260 | 1.02 | 7.8 | 0.5 | 20 | 40000 | [ |
Pd/Mg-Al2O3 | 139.0 | 290 | 1.6 | 2.9 | 1 | 20 | 120000 | [ |
Pd/MA-800-5 | 95.6 | 320 | 0.5 | 2.8 | 1 | 5 | 50000 | [ |
Pd(Au)/Al2O3-850 | 18.4 | 280 | 2.48 | — | 1 | 10 | 200000 | [ |
Table 1 Comparison with literatures about the reaction rate of Pd-based catalysts for methane combustion.
Sample | Reaction rate (μmol gPd-1 s-1) | Temperature (°C) | Pd loading (wt%) | Size a (nm) | Reaction gas (vol %) | GHSV b (mL g-1 h-1) | Ref. | |
---|---|---|---|---|---|---|---|---|
CH4 | O2 | |||||||
Pd/Al2O3-rea-800 | 337.8 | 300 | 1.0 | 28.4 | 0.5 | 2 | 1200000 | This work |
Pd/Al2O3-He-800 | 28.7 | 300 | 1.0 | 16.7 | 0.5 | 2 | 1200000 | This work |
Pd/Al2O3-O-800 | 20.3 | 300 | 1.0 | 36.3 | 0.5 | 2 | 1200000 | This work |
Pd/Al2O3-air-500 | 151.8 | 300 | 1.0 | 3.7 | 0.5 | 2 | 1200000 | This work |
Pd/Al2O3-rich-800 | 689.2 | 300 | 1.0 | 12.3 | 0.5 | 2 | 1200000 | This work |
1.9 nm Pd/γ-Al2O3 | 27.3 | 300 | 1.0 | 1.9 | 0.4 | 10 | 300000 | [ |
Al-Pd/MA-A72 | 97.7 | 300 | 0.93 | 5.3 | 0.5 | 10 | 100000-200000 | [ |
Pd/Al2O3 | 13.5 | 250 | 0.33 | 7.0 | 0.5 | 2 | 40000-75000 | [ |
PdW1/Al2O3 | 18.9 | 260 | 1.02 | 7.8 | 0.5 | 20 | 40000 | [ |
Pd/Mg-Al2O3 | 139.0 | 290 | 1.6 | 2.9 | 1 | 20 | 120000 | [ |
Pd/MA-800-5 | 95.6 | 320 | 0.5 | 2.8 | 1 | 5 | 50000 | [ |
Pd(Au)/Al2O3-850 | 18.4 | 280 | 2.48 | — | 1 | 10 | 200000 | [ |
Fig. 4. (A) The quasi in situ XPS results for the evolution of Pd 3d during alternative aging pretreatments. (B) Pd chemical states deconvoluted from XPS, and the corresponding reaction rate at 300 °C of various catalysts in (A).
Fig. 5. Fourier (A) and Wavelet (B) transformed k2-weighted EXAFS data (without phase correction) for the Pd/Al2O3 catalysts under different states during operando experiment. (C) The best-fitted results of the EXAFS data at Pd K-edge of different samples. CN, the coordination number. R, the average absorber-backscatterer distance. σ2, the Debye-Waller factor. ΔE0, the difference in zero kinetic energy values between the tested sample and the theoretical model. The accuracies of the above parameters were estimated as CN, ±20%; R, ±1%; σ2, ±20%. R-factor was used to quantify the mismatch of the fitting results. Data ranges: 3.0 ≤ k ≤ 12.0 ??1, 1.0 ≤ R ≤ 3.7 ?. (D) The XANES spectrum and linear combination fitting results of the activated Pd/Al2O3-rea-800 catalyst.
Fig. 6. DFT modeling of Pd active structures for methane C-H bond activation. Calculated energy profiles for the first C-H bond activation in methane on the Pd (111), Pd (100), PdO (101) and Pd6/PdO (101) catalysts. The big (blue) spheres represented Pd atoms, the red and gray spheres showed O and C atoms, and the smallest (white) spheres were H atoms.
Fig. 7. HAADF-STEM images of the Pd/Al2O3-air-500 (A), the Pd/Al2O3-H-300 (B), the spent Pd/Al2O3-air-500 (C), and the spent Pd/Al2O3-H-300 (D) catalysts.
Fig. 8. (A) Methane combustion stability tests of the Pd/Al2O3-air-500 and the Pd/Al2O3-H-300 catalysts at 400 °C under lean condition of 0.5% CH4/2% O2/97.5% He. (B) Arrhenius plots of methane combustion of the spent Pd/Al2O3-air-500 and the spent Pd/Al2O3-H-300 catalysts.
|
[1] | Huan Chen, Zhounan Yu, Bing Yang, Yafeng Zhang, Chunxia Che, Xiaoyan Liu, Feng Zhang, Wei Han, He Wen, Aiqin Wang, Tao Zhang. Fine tuning the dynamic PdCx formation for enhanced acetylene semi-hydrogenation: The role of gas environment and ZnO addition [J]. Chinese Journal of Catalysis, 2024, 60(5): 190-200. |
[2] | Ke Huang, Shicheng Yuan, Rongyan Mei, Ge Yang, Peng Bai, Hailing Guo, Chunzheng Wang, Svetlana Mintova. Mo-promoted Pd/NaY catalyst for indirect oxidative carbonylation of methanol to dimethyl carbonate [J]. Chinese Journal of Catalysis, 2024, 60(5): 327-336. |
[3] | Xingju Li, Zheng Li, Siquan Feng, Xiangen Song, Li Yan, Jiali Mu, Qiao Yuan, Lili Ning, Weimiao Chen, Zhongkang Han, Yunjie Ding. Promotional role of Ag1 on Pd1 in dual-site configurations from atomic dispersion of alloy nanoparticles for alkyne dialkoxycarbonylation [J]. Chinese Journal of Catalysis, 2024, 59(4): 282-292. |
[4] | Lili Chen, Yanheng Hao, Jianyi Chu, Song Liu, Fenghua Bai, Wenhao Luo. Electrocatalytic nitrate reduction to ammonia: A perspective on Fe/Cu-containing catalysts [J]. Chinese Journal of Catalysis, 2024, 58(3): 25-36. |
[5] | Xiaorui Du, Yike Huang, Xiaoli Pan, Xunzhu Jiang, Yang Su, Jingyi Yang, Yalin Guo, Bing Han, Chengyan Wen, Chenguang Wang, Botao Qiao. Top-down fabrication of active interface between TiO2 and Pt nanoclusters. Part 1: Redispersion process and mechanism [J]. Chinese Journal of Catalysis, 2024, 58(3): 237-246. |
[6] | Xiaorui Du, Yike Huang, Xiaoli Pan, Xunzhu Jiang, Yang Su, Jingyi Yang, Yalin Guo, Bing Han, Chengyan Wen, Chenguang Wang, Botao Qiao. Top-down fabrication of active interface between TiO2 and Pt nanoclusters. Part 2: Catalytic performance and reaction mechanism in CO oxidation [J]. Chinese Journal of Catalysis, 2024, 58(3): 247-254. |
[7] | Zhichao Wang, Mengfan Wang, Yunfei Huan, Tao Qian, Jie Xiong, Chengtao Yang, Chenglin Yan. Defect and interface engineering for promoting electrocatalytic N-integrated CO2 co-reduction [J]. Chinese Journal of Catalysis, 2024, 57(2): 1-17. |
[8] | Xin Kang, Qiangmin Yu, Tianhao Zhang, Shuqi Hu, Heming Liu, Zhiyuan Zhang, Bilu Liu. A perspective on interface engineering of transition metal dichalcogenides for high-current-density hydrogen evolution [J]. Chinese Journal of Catalysis, 2024, 56(1): 9-24. |
[9] | Yong Liu, Xiaoli Zhao, Chang Long, Xiaoyan Wang, Bangwei Deng, Kanglu Li, Yanjuan Sun, Fan Dong. In situ constructed dynamic Cu/Ce(OH)x interface for nitrate reduction to ammonia with high activity, selectivity and stability [J]. Chinese Journal of Catalysis, 2023, 52(9): 196-206. |
[10] | Wei Qiao, Lice Yu, Jinfa Chang, Fulin Yang, Ligang Feng. Efficient bi-functional catalysis of coupled MoSe2 nanosheet/Pt nanoparticles for methanol-assisted water splitting [J]. Chinese Journal of Catalysis, 2023, 51(8): 113-123. |
[11] | Xuan Li, Xingxing Jiang, Yan Kong, Jianju Sun, Qi Hu, Xiaoyan Chai, Hengpan Yang, Chuanxin He. Interface engineering of a GaN/In2O3 heterostructure for highly efficient electrocatalytic CO2 reduction to formate [J]. Chinese Journal of Catalysis, 2023, 50(7): 314-323. |
[12] | Si-Yuan Xia, Qi-Yuan Li, Shi-Nan Zhang, Dong Xu, Xiu Lin, Lu-Han Sun, Jingsan Xu, Jie-Sheng Chen, Guo-Dong Li, Xin-Hao Li. Size-dependent electronic interface effect of Pd nanocube-based heterojunctions on universally boosting phenol hydrogenation reactions [J]. Chinese Journal of Catalysis, 2023, 49(6): 180-187. |
[13] | Wenqian Yang, Ziqian Xue, Jun Yang, Jiahui Xian, Qinglin Liu, Yanan Fan, Kai Zheng, Peiqin Liao, Hui Su, Qinghua Liu, Guangqin Li, Cheng-Yong Su. Fe nanoparticles embedded in N-doped porous carbon for enhanced electrocatalytic CO2 reduction and Zn-CO2 battery [J]. Chinese Journal of Catalysis, 2023, 48(5): 185-194. |
[14] | Dan-Qing Liu, Bingxing Zhang, Guoqiang Zhao, Jian Chen, Hongge Pan, Wenping Sun. Advanced in-situ electrochemical scanning probe microscopies in electrocatalysis [J]. Chinese Journal of Catalysis, 2023, 47(4): 93-120. |
[15] | Qian Li, Qijun Tang, Peiyao Xiong, Dongzhi Chen, Jianmeng Chen, Zhongbiao Wu, Haiqiang Wang. Effect of palladium chemical states on CO2 photocatalytic reduction over g-C3N4: Distinct role of single-atomic state in boosting CH4 production [J]. Chinese Journal of Catalysis, 2023, 46(3): 177-190. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||