Chinese Journal of Catalysis ›› 2024, Vol. 61: 322-330.DOI: 10.1016/S1872-2067(24)60042-2
• Articles • Previous Articles
Kui Jina,b, Meiyun Zhangb,c, Penghua Cheb, Dongru Sund, Yong Wangd, Hong Mab,*(), Qiaohong Zhanga,*(
), Chen Chena, Jie Xub
Received:
2024-02-27
Accepted:
2024-04-15
Online:
2024-06-18
Published:
2024-06-20
Contact:
* E-mail: Supported by:
Kui Jin, Meiyun Zhang, Penghua Che, Dongru Sun, Yong Wang, Hong Ma, Qiaohong Zhang, Chen Chen, Jie Xu. Solvent-scissors overcoming inert hydrogen bonding enable efficient oxidation of aromatic hydrocarbons under atmospheric oxygen[J]. Chinese Journal of Catalysis, 2024, 61: 322-330.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(24)60042-2
Fig. 1. Red bars represent molePhCOOH/(molePhCHO + molePhCOOH) ratio; blue bars represent molePhCHO/(molePhCHO + molePhCOOH) ratio. (a) Toluene (0.5 mmol), NHPI (0.05mmol), Co(OAc)2·4H2O (0.01 mmol), O2 (0.1 MPa), HFIP:X = 1:1, 45 °C, 4 h. (b) PhCHO (0.5 mmol), NHPI (0.05 mmol), Co(OAc)2·4H2O (0.01 mmol), O2 (0.1 MPa), HFIP:X = 1:1, 25 °C, 1 h.
Entry | Solvent | Conv. (mol%) | Yield (mol%) | |
---|---|---|---|---|
PhCHO | PhCOOH | |||
1 | HFIP | 96.4 | 63.7 | 29.1 |
2 | HOAc | 71.8 | 1.8 | 69.9 |
3 | HFIP-HOAc | 96.8 | 1.4 | 95.5 |
Table 1 Comparison of effect of solvent on toluene oxidation under the optimized conditions.
Entry | Solvent | Conv. (mol%) | Yield (mol%) | |
---|---|---|---|---|
PhCHO | PhCOOH | |||
1 | HFIP | 96.4 | 63.7 | 29.1 |
2 | HOAc | 71.8 | 1.8 | 69.9 |
3 | HFIP-HOAc | 96.8 | 1.4 | 95.5 |
Fig. 2. (a) Concentration-dependence of 1H-NMR spectra of HFIP-X1 (acetic acid). (b) HFIP-X5 (dichloromethane). (c) HFIP-X2 (ethyl acetate); (d) HFIP-X3 (ethyl chloroacetate). (e) HFIP-X4 (methyl chloroacetate), respectively (700 MHz, CDCl3).
Fig. 3. (a) Plots of 1/C versus 1/Δδ with HFIP as donor and X as acceptor. (b) The time profile of PhCHO oxidation at room temperature using the NHPI/Co(OAc)2 catalytic system. Reaction conditions: PhCHO (0.5 mmol), NHPI (0.05 mmol), Co(OAc)2·4 H2O (0.01 mmol), O2 (0.1 MPa), 25 °C, HFIP + X = 1 ml, HFIP:X = 4:1. (c) TON values for PhCHO oxidation in different scissor solvents X and ?ΔG0 of HFIP-X.
X | A | b | KHB (L/mol) | ΔG0 (kJ/mol) |
---|---|---|---|---|
PhCHO | 0.0830 | 0.2526 | 3.041 | −2.757 |
X1 | 0.0190 | 0.1085 | 5.711 | −4.319 |
X2 | 0.0629 | 0.2505 | 3.984 | −3.426 |
X3 | 0.1487 | 0.3335 | 2.243 | −2.002 |
X4 | 0.1740 | 0.3340 | 1.9190 | −1.616 |
Table 2 Parameters of hydrogen bonds determined by 1H-NMR.
X | A | b | KHB (L/mol) | ΔG0 (kJ/mol) |
---|---|---|---|---|
PhCHO | 0.0830 | 0.2526 | 3.041 | −2.757 |
X1 | 0.0190 | 0.1085 | 5.711 | −4.319 |
X2 | 0.0629 | 0.2505 | 3.984 | −3.426 |
X3 | 0.1487 | 0.3335 | 2.243 | −2.002 |
X4 | 0.1740 | 0.3340 | 1.9190 | −1.616 |
Fig. 4. (a) In-situ FT-IR spectra of PhCHO with the sequential addition of HFIP and X3; red ?: 0.5 mL of HFIP was added; blue ?: 0.5 mL of X3 was added. (b) FT-IR spectra of A (PhCHO), B (PhCHO: HFIP = 1:2), and C (PhCHO:HFIP:X3 = 1:2:2.5). (c,d) Fitting results in C=O region after sequential addition of HFIP and X3 to PhCHO. The red dotted line indicates fitting results. Free PhCHO (Free-A) and hydrogen-bonded PhCHO (HB-A) are respectively represented by the red (1704 cm?1) and blue regions (1693 cm?1).
Substrate | Time (h) | HFIP:X1 ratio | Conv. (mol%) | Product | Select. (mol%) |
---|---|---|---|---|---|
![]() | 4 | 4:6 | 98 | ![]() | 96 |
![]() | 8 | 3:7 | 94 | ![]() | 90 |
![]() | 4 | 4:6 | 98 | ![]() | 90 |
![]() | 8 | 4:6 | 94 | ![]() | 93 |
![]() | 8 | 4:6 | 61 | ![]() | 84 |
![]() | 8 | 4:6 | 98 | ![]() | 54 |
Table 3 Catalytic oxidation of various methyl aromatics to aromatic acids using NHPI/Co2+/HFIP/X1.
Substrate | Time (h) | HFIP:X1 ratio | Conv. (mol%) | Product | Select. (mol%) |
---|---|---|---|---|---|
![]() | 4 | 4:6 | 98 | ![]() | 96 |
![]() | 8 | 3:7 | 94 | ![]() | 90 |
![]() | 4 | 4:6 | 98 | ![]() | 90 |
![]() | 8 | 4:6 | 94 | ![]() | 93 |
![]() | 8 | 4:6 | 61 | ![]() | 84 |
![]() | 8 | 4:6 | 98 | ![]() | 54 |
|
[1] | Zhentao Tu, Xiaoyang He, Xuan Liu, Dengke Xiong, Juan Zuo, Deli Wu, Jianying Wang, Zuofeng Chen. Electronic modification of Ni active sites by W for selective benzylamine oxidation and concurrent hydrogen production [J]. Chinese Journal of Catalysis, 2024, 58(3): 146-156. |
[2] | Bing Zeng, Fengwei Huang, Yuexin Wang, Kanghui Xiong, Xianjun Lang. TEMPO radically expedites the conversion of sulfides to sulfoxides by pyrene-based metal-organic framework photocatalysis [J]. Chinese Journal of Catalysis, 2024, 58(3): 226-236. |
[3] | Fulin Zhang, Xia Li, Xiaoyun Dong, Huimin Hao, Xianjun Lang. Thiazolo[5,4-d]thiazole-based covalent organic framework microspheres for blue light photocatalytic selective oxidation of amines with O2 [J]. Chinese Journal of Catalysis, 2022, 43(9): 2395-2404. |
[4] | Muhammad Tayyab, Yujie Liu, Shixiong Min, Rana Muhammad Irfan, Qiaohong Zhu, Liang Zhou, Juying Lei, Jinlong Zhang. Simultaneous hydrogen production with the selective oxidation of benzyl alcohol to benzaldehyde by a noble-metal-free photocatalyst VC/CdS nanowires [J]. Chinese Journal of Catalysis, 2022, 43(4): 1165-1175. |
[5] | Changshun Deng, Yun Cui, Junchao Chen, Teng Chen, Xuefeng Guo, Weijie Ji, Luming Peng, Weiping Ding. Enzyme-like mechanism of selective toluene oxidation to benzaldehyde over organophosphoric acid-bonded nano-oxides [J]. Chinese Journal of Catalysis, 2021, 42(9): 1509-1518. |
[6] | Xiaoxiao Zheng, Sihui Qi, Yanning Cao, Lijuan Shen, Chaktong Au, Lilong Jiang. Morphology evolution of acetic acid-modulated MIL-53(Fe) for efficient selective oxidation of H2S [J]. Chinese Journal of Catalysis, 2021, 42(2): 279-287. |
[7] | Ling-Ling Guo, Jing Yu, Wei-Wei Wang, Jia-Xu Liu, Hong-Chen Guo, Chao Ma, Chun-Jiang Jia, Jun-Xiang Chen, Rui Si. Small-sized cuprous oxide species on silica boost acrolein formation via selective oxidation of propylene [J]. Chinese Journal of Catalysis, 2021, 42(2): 320-333. |
[8] | Yang Yan, Bin Ye, Mingshu Chen, Linfang Lu, Jian Yu, Yuheng Zhou, Yong Wang, Juanjuan Liu, Liping Xiao, Shihui Zou, Jie Fan. Site-specific deposition creates electron-rich Pd atoms for unprecedented C-H activation in aerobic alcohol oxidation [J]. Chinese Journal of Catalysis, 2020, 41(8): 1240-1247. |
[9] | XU Hao, WU Peng. Recent Progress of Metallosilicate Catalysts in Environment-Friendly Selective Oxidation Reactions [J]. Chinese Journal of Catalysis, 2019, 40(s1): 51-56. |
[10] | XIE Shunji, WANG Ye. Recent Advances, Challenges and Perspectives in Selective Oxidation Catalysis [J]. Chinese Journal of Catalysis, 2019, 40(s1): 129-142. |
[11] | Di Ma, Shenglu Lu, Xiaohui Liu, Yong Guo, Yanqin Wang. Depolymerization and hydrodeoxygenation of lignin to aromatic hydrocarbons with a Ru catalyst on a variety of Nb-based supports [J]. Chinese Journal of Catalysis, 2019, 40(4): 609-617. |
[12] | Kang Kong, Difan Li, Wenbao Ma, Qingqing Zhou, Guoping Tang, Zhenshan Hou. Aluminum(III) triflate-catalyzed selective oxidation of glycerol to formic acid with hydrogen peroxide [J]. Chinese Journal of Catalysis, 2019, 40(4): 534-542. |
[13] | Juanjuan Liu, Shihui Zou, Jiachao Wu, Hisayoshi Kobayashi, Hongting Zhao, Jie Fan. Green catalytic oxidation of benzyl alcohol over Pt/ZnO in base-free aqueous medium at room temperature [J]. Chinese Journal of Catalysis, 2018, 39(6): 1081-1089. |
[14] | Hongen Cao, Boran Zhu, Yufan Yang, Lin Xu, Lei Yu, Qing Xu. Recent advances on controllable and selective catalytic oxidation of cyclohexene [J]. Chinese Journal of Catalysis, 2018, 39(5): 899-907. |
[15] | Zhun Xiao, Wangcheng Zhan, Yun Guo, Yanglong Guo, Xueqing Gong, Guanzhong Lu. The synthesis of Co-doped SAPO-5 molecular sieve and its performance in the oxidation of cyclohexane with molecular oxygen [J]. Chinese Journal of Catalysis, 2016, 37(2): 273-280. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||