Chinese Journal of Catalysis ›› 2024, Vol. 59: 334-345.DOI: 10.1016/S1872-2067(23)64633-9
• Articles • Previous Articles Next Articles
Baolong Zhanga,1, Fangxuan Liua,1, Bin Suna,b,*(), Tingting Gaoa,b, Guowei Zhoua,*(
)
Received:
2024-01-29
Accepted:
2024-02-21
Online:
2024-04-18
Published:
2024-04-15
Contact:
*E-mail: About author:
1Contributed equally to this work.
Supported by:
Baolong Zhang, Fangxuan Liu, Bin Sun, Tingting Gao, Guowei Zhou. Hierarchical S-scheme heterojunctions of ZnIn2S4-decorated TiO2 for enhancing photocatalytic H2 evolution[J]. Chinese Journal of Catalysis, 2024, 59: 334-345.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(23)64633-9
Fig. 1. Schematic diagram of synthesis process of TiO2/ZnIn2S4 (a), Zeta potentials (b) of TiO2 and ZnIn2S4, XRD patterns (c) of TiO2, ZnIn2S4, and heterojunctions with different ZnIn2S4 content, N2 adsorption-desorption isotherms (d) and pore size distribution curves (e) of TiO2, ZnIn2S4, and TZ-2.
Fig. 2. FESEM images of TiO2 (a,b) and TZ-2 (c,d). TEM images of TiO2 (e) and TZ-2 (f,g). HRTEM image (h) and elemental mappings (i-n) of Ti, O, Zn, In, and S of TZ-2. The inset shows the fast Fourier transform patterns in (h).
Fig. 3. (a) XPS survey spectra of TiO2, ZnIn2S4, and TZ-2. High-resolution XPS spectra of Ti 2p (b), O 1s (c), Zn 2p (d), In 3d (e), and S 2p (f) of TiO2, ZnIn2S4, and TZ-2 with and without light irradiation.
Fig. 4. UV-vis diffuse reflectance spectra (a), Tauc plots (b), Mott-Schottky plots (c), VB-XPS spectra (d), UPS (e), and band structure diagram (f) of as-prepared samples.
Fig. 5. Photocatalytic H2 evolution (a) and photocatalytic H2 evolution rate (b) of as-obtained samples. Photocatalytic H2 evolution rate (c) of TZ-2 with and without sacrificial agents. AQY and UV-vis absorption spectra (d) of TZ-2. Recycling H2 evolution tests (e) of TZ-2. XRD patterns (d) of TZ-2 before and after photocatalytic reaction.
Photocatalyst | Sacrificial agent | H2 evolution rate (mmol g-1 h-1) | Enhancement factor vs. TiO2 | Ref. |
---|---|---|---|---|
ZnIn2S4/TiO2-x | MeOH | 0.84 | 20.0 | [ |
TiO2@NC-A/ZnIn2S4 | TEOA | 2.80 | — | [ |
TiO2@ZnIn2S4 | Lactic acid | 1.24 | 24.2 | [ |
rGO/TiO2/ZnIn2S4 | Na2S/Na2SO3 | 0.46 | 71.1 | [ |
g-C3N4/TiO2/ZnIn2S4 (3 wt% Pt) | MeOH | 6.53 | 6.9 | [ |
TiO2/ZnIn2S4 | TEOA | 6.03 | 3.7 | [ |
Ti3C2@TiO2/ZnIn2S4 | Na2S/Na2SO3 | 1.19 | — | [ |
TiO2/ZnIn2S4 | TEOA | 6.85 | 171.2 | This work |
Table 1 Comparison of the photocatalytic H2 evolution rate of as-prepared TiO2/ZnIn2S4 heterojunction with other reported representative photocatalysts.
Photocatalyst | Sacrificial agent | H2 evolution rate (mmol g-1 h-1) | Enhancement factor vs. TiO2 | Ref. |
---|---|---|---|---|
ZnIn2S4/TiO2-x | MeOH | 0.84 | 20.0 | [ |
TiO2@NC-A/ZnIn2S4 | TEOA | 2.80 | — | [ |
TiO2@ZnIn2S4 | Lactic acid | 1.24 | 24.2 | [ |
rGO/TiO2/ZnIn2S4 | Na2S/Na2SO3 | 0.46 | 71.1 | [ |
g-C3N4/TiO2/ZnIn2S4 (3 wt% Pt) | MeOH | 6.53 | 6.9 | [ |
TiO2/ZnIn2S4 | TEOA | 6.03 | 3.7 | [ |
Ti3C2@TiO2/ZnIn2S4 | Na2S/Na2SO3 | 1.19 | — | [ |
TiO2/ZnIn2S4 | TEOA | 6.85 | 171.2 | This work |
Fig. 6. Transient photocurrent spectra (a), EIS Nyquist plots (b), SPV spectra (c), PL spectra (d), TRPL spectra (e), and LSV curves (f) of as-prepared samples.
Fig. 7. Linear relation between photocatalytic H2 evolution rate and temperature of TiO2 (a), ZnIn2S4 (b), and TZ-2 (c). (d) Corresponding comparison of apparent activation energy.
Fig. 8. EPR spectra of DMPO-?OH (a) and DMPO-?O2- (b) over TiO2, ZnIn2S4, and TZ-2 under light illumination. Schematic diagram of S-scheme mechanism over TiO2/ZnIn2S4 heterojunction: before contact (c), after contact (d), and light irradiation (e).
|
[1] | Yang Li, Xiong Wang, Xing-Sheng Hu, Biao Hu, Sheng Tian, Bing-Hao Wang, Lang Chen, Guang-Hui Chen, Chao Peng, Sheng Shen, Shuang-Feng Yin. Pd loaded TiO2 as recyclable catalyst for benzophenone synthesis by coupling benzaldehyde with iodobenzene under UV light [J]. Chinese Journal of Catalysis, 2024, 59(4): 159-168. |
[2] | Heng Zhou, Rui Zhang, Caiyan Yue, Xu Wu, Qiong Yan, Hao Wang, Heng Zhang, Tianyi Ma. Enhanced charge transfer over sustainable biochar decorated Bi2WO6 composite photocatalyst for highly efficient water decontamination [J]. Chinese Journal of Catalysis, 2024, 59(4): 169-184. |
[3] | Miaoli Gu, Yi Yang, Bei Cheng, Liuyang Zhang, Peng Xiao, Tao Chen. Unveiling product selectivity in S-scheme heterojunctions: Harnessing charge separation for tailored photocatalytic oxidation [J]. Chinese Journal of Catalysis, 2024, 59(4): 185-194. |
[4] | Yifei Nie, Hongping Yan, Suwei Lu, Hongwei Zhang, Tingting Qi, Shijing Liang, Lilong Jiang. Theory-guided construction of Cu-O-Ti-Ov active sites on Cu/TiO2 catalysts for efficient electrocatalytic nitrate reduction [J]. Chinese Journal of Catalysis, 2024, 59(4): 293-302. |
[5] | Linghui Meng, Chen Zhao, Hongyu Chu, Yu-Hang Li, Huifen Fu, Peng Wang, Chong-Chen Wang, Hongwei Huang. Synergetic piezo-photocatalysis of g-C3N4/PCN-224 core-shell heterojunctions for ultrahigh H2O2 generation [J]. Chinese Journal of Catalysis, 2024, 59(4): 346-359. |
[6] | Entian Cui, Yulian Lu, Jizhou Jiang, Arramel , Dingsheng Wang, Tianyou Zhai. Tailoring CuNi heteronuclear diatomic catalysts: Precision in structural design for exceptionally selective CO2 photoreduction to ethanol [J]. Chinese Journal of Catalysis, 2024, 59(4): 126-136. |
[7] | Tingting Yang, Bin Wang, Paul K. Chu, Jiexiang Xia, Huaming Li. Self-sacrificing MOF-derived hierarchical porous In2S3 nanostructures with enhanced photocatalytic performance [J]. Chinese Journal of Catalysis, 2024, 59(4): 204-213. |
[8] | Dae-Hwan Lim, Aadil Bathla, Hassan Anwer, Sherif A. Younis, Danil W. Boukhvalov, Ki-Hyun Kim. The effects of nitrogen-doping on photocatalytic mineralization of TiO2 nanocatalyst against formaldehyde in ambient air [J]. Chinese Journal of Catalysis, 2024, 59(4): 303-323. |
[9] | Bing Zeng, Fengwei Huang, Yuexin Wang, Kanghui Xiong, Xianjun Lang. TEMPO radically expedites the conversion of sulfides to sulfoxides by pyrene-based metal-organic framework photocatalysis [J]. Chinese Journal of Catalysis, 2024, 58(3): 226-236. |
[10] | Jinkang Pan, Aicaijun Zhang, Lihua Zhang, Pengyu Dong. Construction of S-scheme heterojunction from protonated D-A typed polymer and MoS2 for efficient photocatalytic H2 production [J]. Chinese Journal of Catalysis, 2024, 58(3): 180-193. |
[11] | Yuting Liu, Beili Nie, Ning Li, Huifang Liu, Feng Wang. Chlorine radical-mediated photocatalytic C(sp3)-H bond oxidation of aryl ethers to esters [J]. Chinese Journal of Catalysis, 2024, 58(3): 123-128. |
[12] | Yuanyong Huang, Hong Yang, Xinyu Lu, Min Chen, Weidong Shi. Near infrared-driven photocatalytic overall water splitting: Progress and perspective [J]. Chinese Journal of Catalysis, 2024, 58(3): 105-122. |
[13] | Yong Zhang, Junyi Qiu, Bicheng Zhu, Guotai Sun, Bei Cheng, Linxi Wang. Hollow spherical covalent organic framework supported gold nanoparticles for photocatalytic H2O2 production [J]. Chinese Journal of Catalysis, 2024, 57(2): 143-153. |
[14] | Min Li, Shixin Yu, Hongwei Huang. Emerging polynary bismuth-based photocatalysts: Structural classification, preparation, modification and applications [J]. Chinese Journal of Catalysis, 2024, 57(2): 18-50. |
[15] | Jiali Liu, Huicong Dai, Xin Liu, Yiqi Ren, Maodi Wang, Qihua Yang. Pickering emulsion stabilized with charge separation and transfer modulated photocatalyst for enzyme-photo-coupled catalysis [J]. Chinese Journal of Catalysis, 2024, 57(2): 114-122. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||