Chinese Journal of Catalysis ›› 2025, Vol. 69: 84-98.DOI: 10.1016/S1872-2067(24)60197-X
• Articles • Previous Articles Next Articles
Tan Ji Sianga,b, Peipei Zhangc, Binghui Chena,b,c, Wee-Jun Onga,b,c,d,e,f,*()
Received:
2024-08-17
Accepted:
2024-11-13
Online:
2025-02-18
Published:
2025-02-10
Contact:
E-mail: Supported by:
Tan Ji Siang, Peipei Zhang, Binghui Chen, Wee-Jun Ong. Surface defect engineering of ZnCoS in ZnCdS with twin crystal structure for visible-light-driven H2 production coupled with benzyl alcohol oxidation[J]. Chinese Journal of Catalysis, 2025, 69: 84-98.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(24)60197-X
Fig. 1. (A) XRD patterns of pristine ZnCdS, ZnCoS, VZn-ZnCoS, VS-ZnCoS, ZnCoS/ZnCdS, VZn-ZnCoS/ZnCdS and VS-ZnCoS/ZnCdS specimens. (B) EPR spectra of pristine ZnCdS and ZnCdS-based photocatalysts.
Fig. 2. HRTEM images of pristine ZnCdS (A) and representative ZnCoS/ZnCdS photocatalyst (B) with Insert of interfacial between ZnCdS and ZnCoS phases (C).
Fig. 4. (A) UV-vis absorption spectra of pristine ZnCdS, ZnCoS, VZn-ZnCoS, VS-ZnCoS, ZnCoS/ZnCdS, VZn-ZnCoS/ZnCdS and VS-ZnCoS/ZnCdS specimens. (B) Tauc plot of pristine ZnCdS photocatalyst.
Fig. 5. Mott-Schottky plot of pristine ZB-ZnCdS (A) and pure WZ-ZnCdS (B) photocatalysts. (C) Schematic diagram of estimated band structure of ZnCdS photocatalyst with ZB/WZ phase junctions.
Fig. 6. Photoredox dual reaction of benzyl alcohol oxidation and H2 evolution: (A) H2 evolution performance with 4 h-on-stream reaction run and (B) Production rates of H2 and benzaldehyde over pristine ZnCdS and ZnCdS-based photocatalysts under > 420 nm irradiation after 4 h-on-stream reaction run. (C) H2 evolution performance over VS-ZnCoS/ZnCdS photocatalysts under AM 1.5 simulated sunlight irradiation. (D) Wavelength-dependent AQE of VS-ZnCoS/ZnCdS photocatalyst. All reactions were conducted in a close-looped circulation system.
Fig. 7. LSV curves (A), EIS Nyquist plots (B) and transient photocurrent response (C) of ZnCdS-based photocatalysts. (D) Steady-state PL spectra of Pristine ZnCdS (a), ZnCoS/ZnCdS (b), VZn-ZnCoS/ZnCdS (c) and VS-ZnCoS/ZnCdS (d) photocatalysts.(图D中未标出b和c)
Photocatalyst | Light source wavelength (nm) | Reaction duration (h) | H2 evolution rate (μmol g−1 h−1) | BAD formation rate (μmol g−1 h−1) | Ref. |
---|---|---|---|---|---|
VS-ZnCoS/ZnCdS | > 420 | 4 | 14273 | 12296 | this study |
VZn-ZnCoS/ZnCdS | > 420 | 4 | 10539 | 12776 | this study |
Ru/g-C3N4 | simulated sunlight | 12 | 5610 | 4010 | [ |
ZnIn2S4 | > 420 | 5 | 206 | — | [ |
VC/CdS | > 420 | 9 | 9000 | 10300 | [ |
ZnIn2S4/Nix-B | > 400 | 2 | 8920 | 8192 | [ |
ZnIn2S4/NiS | > 400 | 2 | 2879 | 2714 | [ |
ZnIn2S4/Ni(OH)2 | > 400 | 2 | 3372 | 2832 | [ |
ZnIn2S4/Pt | > 400 | 2 | 1282 | 1304 | [ |
UiO-66-NH2@CdS | > 350 | 3 | 636.7 | 628.3 | [ |
K3PW12O40/CdS | > 420 | 3 | 18500 | 17300 | [ |
P-MoS2-ZnIn2S4 | > 420 | 5 | 3367 | 3223 | [ |
Co-ZnIn2S4 | > 420 | 8 | 2824 | 2769 | [ |
0.5%Pt/TiO2 | > 420 | 2 | 1840 | 1639 | [ |
1%Ru/TiO2 | simulated sunlight | 3 | 2833 | 1289 | [ |
Table 1 Comparison of recently reported photocatalysts for photoredox dual reaction of BA oxidation and H2 evolution.
Photocatalyst | Light source wavelength (nm) | Reaction duration (h) | H2 evolution rate (μmol g−1 h−1) | BAD formation rate (μmol g−1 h−1) | Ref. |
---|---|---|---|---|---|
VS-ZnCoS/ZnCdS | > 420 | 4 | 14273 | 12296 | this study |
VZn-ZnCoS/ZnCdS | > 420 | 4 | 10539 | 12776 | this study |
Ru/g-C3N4 | simulated sunlight | 12 | 5610 | 4010 | [ |
ZnIn2S4 | > 420 | 5 | 206 | — | [ |
VC/CdS | > 420 | 9 | 9000 | 10300 | [ |
ZnIn2S4/Nix-B | > 400 | 2 | 8920 | 8192 | [ |
ZnIn2S4/NiS | > 400 | 2 | 2879 | 2714 | [ |
ZnIn2S4/Ni(OH)2 | > 400 | 2 | 3372 | 2832 | [ |
ZnIn2S4/Pt | > 400 | 2 | 1282 | 1304 | [ |
UiO-66-NH2@CdS | > 350 | 3 | 636.7 | 628.3 | [ |
K3PW12O40/CdS | > 420 | 3 | 18500 | 17300 | [ |
P-MoS2-ZnIn2S4 | > 420 | 5 | 3367 | 3223 | [ |
Co-ZnIn2S4 | > 420 | 8 | 2824 | 2769 | [ |
0.5%Pt/TiO2 | > 420 | 2 | 1840 | 1639 | [ |
1%Ru/TiO2 | simulated sunlight | 3 | 2833 | 1289 | [ |
Fig. 8. Schematic illustration of the synergistic effect between ZnCdS with ZB/WZ phase junctions and VS-ZnCoS (or VZn-ZnCoS) on photogenerated carrier transfer.
Fig. 9. Scavenger tests for photoredox dual reaction of benzyl alcohol oxidation and H2 evolution over VZn-ZnCoS/ZnCdS (A) and VS-ZnCoS/ZnCdS (B) photocatalysts.
Fig. 10. In situ EPR profiles of ZnCdS-based photocatalysts under visible light irradiation for DMPO-Cα radical capture in 2 mL of BA solution (A) and DMPO-?OH radical capture in deionized water (B).
Fig. 11. Proposed mechanistic steps of photoredox dual reaction of benzyl alcohol oxidation and H2 evolution over VS-ZnCoS/ZnCdS photocatalyst: Carbon-centered radical route (A) and Oxygen-centered radical route (B).
|
[1] | Xianglin Xiang, Bei Cheng, Bicheng Zhu, Chuanjia Jiang, Guijie Liang. High-entropy alloy nanocrystals boosting photocatalytic hydrogen evolution coupled with selective oxidation of cinnamyl alcohol [J]. Chinese Journal of Catalysis, 2025, 68(1): 326-335. |
[2] | Yaqiang Wu, Jianuo Li, Wei-Kean Chong, Zhenhua Pan, Qian Wang. Novel materials and techniques for photocatalytic water splitting developed by Professor Kazunari Domen [J]. Chinese Journal of Catalysis, 2025, 68(1): 1-50. |
[3] | Fangxuan Liu, Bin Sun, Ziyan Liu, Yingqin Wei, Tingting Gao, Guowei Zhou. Vacancy engineering mediated hollow structured ZnO/ZnS S-scheme heterojunction for highly efficient photocatalytic H2 production [J]. Chinese Journal of Catalysis, 2024, 64(9): 152-165. |
[4] | Yuan Xiang, Jin Zhang, Fei Huang, Nantian Xiao, Yiyi Fan, Junhao Zhang, Heng Zheng, Jinwei Chen, Fan Zhang. One-pot photothermal upcycling of polylactic acid to hydrogen and pyruvic acid [J]. Chinese Journal of Catalysis, 2024, 59(4): 149-158. |
[5] | Defa Liu, Bin Sun, Shuojie Bai, Tingting Gao, Guowei Zhou. Dual co-catalysts Ag/Ti3C2/TiO2 hierarchical flower-like microspheres with enhanced photocatalytic H2-production activity [J]. Chinese Journal of Catalysis, 2023, 50(7): 273-283. |
[6] | Diab khalafallah, Yunxiang Zhang, Hao Wang, Jong-Min Lee, Qinfang Zhang. Energy-saving electrochemical hydrogen production via co-generative strategies in hybrid water electrolysis: Recent advances and perspectives [J]. Chinese Journal of Catalysis, 2023, 55(12): 44-115. |
[7] | Haijun Hu, Kailai Zhang, Ge Yan, Litong Shi, Baohua Jia, Hongwei Huang, Yu Zhang, Xiaodong Sun, Tianyi Ma. Precisely decorating CdS on Zr-MOFs through pore functionalization strategy: A highly efficient photocatalyst for H2 production [J]. Chinese Journal of Catalysis, 2022, 43(9): 2332-2341. |
[8] | Cong Peng, Lixiao Han, Jinming Huang, Shengyao Wang, Xiaohu Zhang, Hao Chen. Comprehensive investigation on robust photocatalytic hydrogen production over C3N5 [J]. Chinese Journal of Catalysis, 2022, 43(2): 410-420. |
[9] | Long Sun, Lingling Li, Juan Yang, Jiajie Fan, Quanlong Xu. Fabricating covalent organic framework/CdS S-scheme heterojunctions for improved solar hydrogen generation [J]. Chinese Journal of Catalysis, 2022, 43(2): 350-358. |
[10] | Jie Jiang, Guohong Wang, Yanchi Shao, Juan Wang, Shuang Zhou, Yaorong Su. Step-scheme ZnO@ZnS hollow microspheres for improved photocatalytic H2 production performance [J]. Chinese Journal of Catalysis, 2022, 43(2): 329-338. |
[11] | Ya-Jie Liu, Lin Geng, Yao Kang, Wei-Hui Fang, Jian Zhang. Odd-membered cyclic hetero-polyoxotitanate nanoclusters with high stability and photocatalytic H2 evolution activity [J]. Chinese Journal of Catalysis, 2021, 42(8): 1332-1337. |
[12] | Xiaoxue Zhao, Jinze Li, Xin Li, Pengwei Huo, Weidong Shi. Design of metal-organic frameworks (MOFs)-based photocatalyst for solar fuel production and photo-degradation of pollutants [J]. Chinese Journal of Catalysis, 2021, 42(6): 872-903. |
[13] | Kailin Wang, Tianqi Wang, Quazi Arif Islam, Yan Wu. Layered double hydroxide photocatalysts for solar fuel production [J]. Chinese Journal of Catalysis, 2021, 42(11): 1944-1975. |
[14] | Kai Zhu, Jie Ou-Yang, Qian Zeng, Sugang Meng, Wei Teng, Yanhua Song, Sheng Tang, Yanjuan Cui. Fabrication of hierarchical ZnIn2S4@CNO nanosheets for photocatalytic hydrogen production and CO2 photoreduction [J]. Chinese Journal of Catalysis, 2020, 41(3): 454-463. |
[15] | Kouhua Sun, Jun Shen, Qinqin Liu, Hua Tang, Mingyi Zhang, Syed Zulfiqar, Chunsheng Lei. Synergistic effect of Co(II)-hole and Pt-electron cocatalysts for enhanced photocatalytic hydrogen evolution performance of P-doped g-C3N4 [J]. Chinese Journal of Catalysis, 2020, 41(1): 72-81. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||