Chinese Journal of Catalysis ›› 2025, Vol. 69: 99-110.DOI: 10.1016/S1872-2067(24)60201-9
• Articles • Previous Articles Next Articles
Yimeng Suna,b,1, Jun Chena,b,1, Lin Liua,b, Haibo Chia,c, Hongxian Hana,b,*()
Received:
2024-08-18
Accepted:
2024-10-30
Online:
2025-02-18
Published:
2025-02-10
Contact:
E-mail: About author:
First author contact:1 Contributed equally to this work.
Supported by:
Yimeng Sun, Jun Chen, Lin Liu, Haibo Chi, Hongxian Han. The mechanism of OER activity and stability enhancement in acid by atomically doped iridium in γ-MnO2[J]. Chinese Journal of Catalysis, 2025, 69: 99-110.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(24)60201-9
Catalyst | C14H27Ir3O18 and Mn(NO3)2 Ir/Mn molar ratio | Final product | ||
---|---|---|---|---|
Composition formula | Ir/Mn molar ratio | Ir loading mg cm-2 | ||
0.1%Ir-MnO2 | 0.1% | Ir0.001Mn0.999O2 | 0.10% | 0.007 |
0.5%Ir-MnO2 | 0.5% | Ir0.005Mn0.995O2 | 0.50% | 0.033 |
1%Ir-MnO2 | 1% | Ir0.009Mn0.991O2 | 0.89% | 0.059 |
2%Ir-MnO2 | 2% | Ir0.014Mn0.986O2 | 1.37% | 0.091 |
3%Ir-MnO2 | 3% | Ir0.016Mn0.984O2 | 1.59% | 0.103 |
4%Ir-MnO2 | 4% | Ir0.020Mn0.980O2 | 2.05% | 0.128 |
Table 1 The Ir contents in precursors and the final working electrodes by ICP analysis.
Catalyst | C14H27Ir3O18 and Mn(NO3)2 Ir/Mn molar ratio | Final product | ||
---|---|---|---|---|
Composition formula | Ir/Mn molar ratio | Ir loading mg cm-2 | ||
0.1%Ir-MnO2 | 0.1% | Ir0.001Mn0.999O2 | 0.10% | 0.007 |
0.5%Ir-MnO2 | 0.5% | Ir0.005Mn0.995O2 | 0.50% | 0.033 |
1%Ir-MnO2 | 1% | Ir0.009Mn0.991O2 | 0.89% | 0.059 |
2%Ir-MnO2 | 2% | Ir0.014Mn0.986O2 | 1.37% | 0.091 |
3%Ir-MnO2 | 3% | Ir0.016Mn0.984O2 | 1.59% | 0.103 |
4%Ir-MnO2 | 4% | Ir0.020Mn0.980O2 | 2.05% | 0.128 |
Fig. 1. (a) Schematic crystal structure of γ-MnO2. (b) XRD patterns of γ-MnO2 and Ir-MnO2 with varying iridium contents (the orange squares represent characteristic peaks of Mn2O3).
Fig. 2. (a) TEM image and statistical particle size distribution of as-synthesized 2%Ir-MnO2. (b,c) Structural characteristic of the intergrowth of two phases as shown in the HR-TEM images. (d) Representative high-magnification HAADF-STEM image of 2%Ir-MnO2, with bright spots highlighted by red circles ascribed to Ir atoms. (e) The corresponding element mapping of O, Mn, and Ir in 2%Ir-MnO2. (f) Enlarged XRD patterns of γ-MnO2 and 2%Ir-MnO2.
Fig. 3. High-resolution XPS spectra. (a) Ir 4f of 2% Ir-MnO2 and commercial IrO2. (b) Fitting the valence state of Ir. Mn 2p (c) and O 1s (d) of γ-MnO2 and 2% Ir-MnO2.
Fig. 4. OER performance of catalysts in a three-electrode test with catalysts loaded on GC working electrodes. (a) Representative LSV curves of γ-MnO2, Ir-MnO2 with different Ir doping levels, and commercial IrO2 in 0.5 mol L-1 H2SO4. (b) The overpotential values of the catalysts at 1.70 VRHE. (c) Tafel slope derived from (a). (d) EIS curves and the fitting results of γ-MnO2, Ir-MnO2, and commercial IrO2 at 1.55 VRHE. The insert in (d) shows the equivalent circuit.
Fig. 5. Stability test by chronopotentiometry of γ-MnO2 and 2%Ir-MnO2 grown on FTO at 10 mA cm-2 (a) and 100 mA cm-2 (b). Ir 4f (c) and Mn 2p (d) XPS spectra of the pristine and utilized 2%Ir-MnO2 catalyst (in 0.5 mol L-1 H2SO4 solution for 24 h at 100 mA cm?2).
Fig. 6. DFT calculations. (a) Structures of Ir-MnO2 with Ir atoms doped in different Mn sites (β phase and R phase site) of γ-MnO2. The red, purple, and yellow spheres are O, Mn, and Ir atoms, respectively. The diagram below illustrates normal COHP and ICOHP value of O(2p)-Ir(4d) on different Ir-MnO2 models. (b) Mn 3d and Ir 5d pDOS spectra of 2%Ir-MnO2. The inset is a magnified view at the Fermi level. (c) Gibbs free energy diagrams for OER on Ir site and Mn site on Ir-γ-MnO2 surface and Mn site on γ-MnO2 (100) surface. (d) Structures of OER intermediates on Ir site on the Ir-γ-MnO2 (100) slab.
|
[1] | Zichao Huang, Tinghui Yang, Yingbing Zhang, Chaoqun Guan, Wenke Gui, Min Kuang, Jianping Yang. Enhancing selectivity in acidic CO2 electrolysis: Cation effects and catalyst innovation [J]. Chinese Journal of Catalysis, 2024, 63(8): 61-80. |
[2] | Zhipeng Li, Xiaobin Liu, Qingping Yu, Xinyue Qu, Jun Wan, Zhenyu Xiao, Jingqi Chi, Lei Wang. Recent advances in design of hydrogen evolution reaction electrocatalysts at high current density: A review [J]. Chinese Journal of Catalysis, 2024, 63(8): 33-60. |
[3] | Xuyu Luo, Ying Wang, Guang Yang, Lu Liu, Shiying Guo, Yi Cui, Xiaoyong Xu. Atomically tailoring synergistic active centers on molybdenum sulfide basal planes for alkaline hydrogen generation [J]. Chinese Journal of Catalysis, 2024, 61(6): 281-290. |
[4] | Long Song, Jingqi Chi, Junheng Tang, Xiaobin Liu, Zhenyu Xiao, Zexing Wu, Lei Wang. Anode design principles for efficient seawater electrolysis and inhibition of chloride oxidation [J]. Chinese Journal of Catalysis, 2024, 66(11): 53-75. |
[5] | Zhaoping Shi, Ziang Wang, Hongxiang Wu, Meiling Xiao, Changpeng Liu, Wei Xing. High-density Ir single sites from rapid ligand transformation for efficient water electrolysis [J]. Chinese Journal of Catalysis, 2024, 66(11): 223-232. |
[6] | Gongwei Wang, Li Xiao, Lin Zhuang. General definition of hydrogen energy and related electrochemical technologies [J]. Chinese Journal of Catalysis, 2024, 56(1): 1-8. |
[7] | Chun Yin, Fulin Yang, Shuli Wang, Ligang Feng. Heterostructured NiSe2/MoSe2 electronic modulation for efficient electrocatalysis in urea assisted water splitting reaction [J]. Chinese Journal of Catalysis, 2023, 51(8): 225-236. |
[8] | Diab khalafallah, Yunxiang Zhang, Hao Wang, Jong-Min Lee, Qinfang Zhang. Energy-saving electrochemical hydrogen production via co-generative strategies in hybrid water electrolysis: Recent advances and perspectives [J]. Chinese Journal of Catalysis, 2023, 55(12): 44-115. |
[9] | Ning Zhang, Jiayi Du, Na Zhou, Depeng Wang, Di Bao, Haixia Zhong, Xinbo Zhang. High-valence metal-doped amorphous IrOx as active and stable electrocatalyst for acidic oxygen evolution reaction [J]. Chinese Journal of Catalysis, 2023, 53(10): 134-142. |
[10] | Yingjie Zhou, Tianfu Liu, Yuefeng Song, Houfu Lv, Qingxue Liu, Na Ta, Xiaomin Zhang, Guoxiong Wang. Highly dispersed nickel species on iron-based perovskite for CO2 electrolysis in solid oxide electrolysis cell [J]. Chinese Journal of Catalysis, 2022, 43(7): 1710-1718. |
[11] | Yu Ding, Kai-Wen Cao, Jia-Wei He, Fu-Min Li, Hao Huang, Pei Chen, Yu Chen. Nitrogen-doped graphene aerogel-supported ruthenium nanocrystals for pH-universal hydrogen evolution reaction [J]. Chinese Journal of Catalysis, 2022, 43(6): 1535-1543. |
[12] | Chenxin Chen, Suqi He, Kamran Dastafkan, Zehua Zou, Qingxiang Wang, Chuan Zhao. Sea urchin-like NiMoO4 nanorod arrays as highly efficient bifunctional catalysts for electrocatalytic/photovoltage-driven urea electrolysis [J]. Chinese Journal of Catalysis, 2022, 43(5): 1267-1276. |
[13] | Ximeng Lv, Menghuan Chen, Zhaolong Xie, Linping Qian, Lijuan Zhang, Gengfeng Zheng. Electrochemical conversion of C1 molecules to sustainable fuels in solid oxide electrolysis cells [J]. Chinese Journal of Catalysis, 2022, 43(1): 92-103. |
[14] | Rui Huang, Yunzhou Wen, Huisheng Peng, Bo Zhang. Improved kinetics of OER on Ru-Pb binary electrocatalyst by decoupling proton-electron transfer [J]. Chinese Journal of Catalysis, 2022, 43(1): 130-138. |
[15] | Han Zhang, Guoqiang Shen, Xinying Liu, Bo Ning, Chengxiang Shi, Lun Pan, Xiangwen Zhang, Zhen-Feng Huang, Ji-Jun Zou. Self-supporting NiFe LDH-MoSx integrated electrode for highly efficient water splitting at the industrial electrolysis conditions [J]. Chinese Journal of Catalysis, 2021, 42(10): 1732-1741. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||