Chinese Journal of Catalysis ›› 2024, Vol. 63: 33-60.DOI: 10.1016/S1872-2067(24)60076-8
• Reviews • Previous Articles Next Articles
Zhipeng Lia, Xiaobin Liua,*(), Qingping Yua,b, Xinyue Qua, Jun Wana, Zhenyu Xiaoa,*(
), Jingqi Chia, Lei Wanga,b,*(
)
Received:
2024-05-04
Accepted:
2024-06-04
Online:
2024-08-18
Published:
2024-08-19
Contact:
*E-mail: inorchemwl@qust.edu.cn (L. Wang), liuxb@qust.edu.cn (X. Liu), inorgxiaozhenyu@163.com (Z. Xiao).
About author:
Xiaobin Liu received his PhD from University of Science and Technology Beijing in 2020. He is currently an associate professor at Qingdao University of Science and Technology. His research interests focus on the synthesis of nanomaterials and their application in the field of electrochemical energy storage and conversion.Supported by:
Zhipeng Li, Xiaobin Liu, Qingping Yu, Xinyue Qu, Jun Wan, Zhenyu Xiao, Jingqi Chi, Lei Wang. Recent advances in design of hydrogen evolution reaction electrocatalysts at high current density: A review[J]. Chinese Journal of Catalysis, 2024, 63: 33-60.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(24)60076-8
Fig. 2. Four effective strategies for designing electrocatalysts at HCD. Reprinted with permission from Ref. [24]. Copyright 2022, American Chemical Society. Reprinted with permission from Ref. [25]. Copyright 2021, Royal Society of Chemistry, Reprinted with permission from Ref. [26]. Copyright 2020, Elsevier, Reprinted with permission from Ref. [27]. Copyright 2023, Elsevier, Reprinted with permission from Ref. [28]. Copyright 2021, Elsevier.
Fig. 4. (a) The three most fundamental factors that affect catalytic performance. (b) Schematic of the catalytic cycle of H2 evolution over Ru/ac-CeO2?δ, Reprinted with permission from Ref. [54]. Copyright 2023, John Wiler and Sons. (c) Schematic illustration of Ni0.2Mo0.8N/Ni hierarchical arrays. Reprinted with permission from Ref. [55]. Copyright 2020, Royal Society of Chemistry. (d) Schematic illustration of OH functionality in promoting HER through forming strong non-covalent hydrogen bonding to the reactants. Reprinted with permission from Ref. [56]. Copyright 2020, Springer Nature, (e) DOS of Ni3S2-Pd4S and other samples. Reprinted with permission from Ref. [57]. Copyright 2022, American Chemical Society, (f) The calculated ΔGH* of NiMnFeMo. Reprinted with permission from Ref. [51]. Copyright 2021, Royal Society of Chemistry. (g) Schematic representation of Co-O-Mo active site changes. Reprinted with permission from Ref. [58]. Copyright 2022, Elsevier.
Fig. 5. (a) Schematic diagram of electrocatalyst dimension. (b) Schematic illustration for the synthesis of PtNP/p-GO, Reprinted with permission from Ref. [67]. Copyright 2023, Elsevier. (c) TEM image and particle size distribution statistics of RuNP-RuSA@CFN-800. (d,e) HRTEM images of RuNP-RuSA@CFN-800. Reprinted with permission from Ref. [68]. Copyright 2023, John Wiler and Sons.
Fig. 6. (a) Schematic diagram of nano, micro, and macro structures of electrocatalysts, (b) SEM image and (c) cross-sectional SEM image of Cr-CoxP. Reprinted with permission from Ref. [69]. Copyright 2023, John Wiler and Sons. Bubble releasing and surface wettability behavior of (d) NiFe LDHs/NF and (e) Ni3S2-NiFe LDHs/NF-2. Reprinted with permission from Ref. [70]. Copyright 2022, Elsevier.
Fig. 7. (a) Schematic diagram of surface chemistry of electrocatalysts. (b) The Pt L2-edge XANES spectra of Pt/N-CoWO3 and other samples. Reprinted with permission from Ref. [72]. Copyright 2024, John Wiler and Sons. (c) Schematic diagram of lattice strain of Bi2S3. (d) Schematic of the electron exchange for Bi2S3-9.7%. Reprinted with permission from Ref. [73]. Copyright 2022, John Wiler and Sons.
Fig. 8. The timeline illustrates the research on HCD electrocatalysts with excellent catalytic performance in recent years. Reprinted with permission from Ref. [83]. Copyright 2017, John Wiler and Sons. Reprinted with permission from Ref. [84]. Copyright 2018, American Chemical Society. Reprinted with permission from Ref. [85]. Copyright 2019, Elsevier. Reprinted with permission from Ref. [86]. Copyright 2020, Royal Society of Chemistry. Reprinted with permission from Ref. [87]. Copyright 2021, John Wiler and Sons. Reprinted with permission from Ref. [88]. Copyright 2022, Elsevier. Reprinted with permission from Ref. [40]. Copyright 2023, Elsevier.
Fig. 10. (a) XRD pattern of FeIr/NF, Reprinted with permission from Ref. [90]. Copyright 2021, Elsevier. (b) XPS spectra of FeIr/NF, Reprinted with permission from Ref. [91]. Copyright 2020, Elsevier. (c) LSV curves of H-FeCoNiMnW. Reprinted with permission from Ref. [92]. Copyright 2022, Elsevier. (d) XRD patterns of Ru-CoOx/NF and other samples. (e) XPS spectra of Co 2p of Ru-CoOx/NF and CoOx/NF. (f) Overpotential diagram of Ru-CoOx/NF and other samples. Reprinted with permission from Ref. [93]. Copyright 2021, Willey. (g) EIS impedance spectrum of Co-doped CeO2 nanosheets and other samples. Reprinted with permission from Ref. [94]. Copyright 2020, American Chemical Society. (h) Calculated ΔGH* on the surface of Fe3O4 and F,P-Fe3O4 for HER. Reprinted with permission from Ref. [25]. Copyright 2021, Royal Society of Chemistry.
Fig. 11. (a) Comparison of overpotential of NiCo/NiCo-OH. (b) Chronopotentiometric curves of NiCo/NiCo-OH and 20% Pt/C. Reprinted with permission from Ref. [100]. Copyright 2020, Elsevier. (c) LSV curves of NiFe-LDH/NF-x and other samples, Reprinted with permission from Ref. [101]. Copyright 2022, Elsevier. (d) Comparison of HER performance of A-NiCoLDH/NF and other electrocatalysts. (e) i-t curves of A-NiCo LDH/NF. Reprinted with permission from Ref. [26]. Copyright 2020, Elsevier. (f) Ti 2p and (g) Pt 4f for TiO2/Ni(OH)2/NF. Reprinted with permission from Ref. [88]. Copyright 2022, Elsevier. (h) Schematic diagram of the atomic model and sites of 1T-Co-MoS2@HMCS. Reprinted with permission from Ref. [102]. Copyright 2022, Royal Society of Chemistry. (i) EPR spectra of MoS2-P2. Reprinted with permission from Ref. [37]. Copyright 2022, Springer Nature.
Fig. 12. (a) DOS of CoS2-CoSe2, CoS2-Ni3Se2 and Ni3S2-Ni3Se2. Reprinted with permission from Ref. [106]. Copyright 2022, Elsevier. (b) Stability test of NC/Ni3Mo3N/NF. Reprinted with permission from Ref. [38]. Copyright 2022, Elsevier. (c) LSV curves of Co-Mo5N6 and other samples in 1.0 mol L?1 KOH and (d) in 1.0 mol L?1 buffer solution (pH = 7.0). Reprinted with permission from Ref. [107]. Copyright 2020, John Wiler and Sons. (e) Total density of states (TDOS) of Ni-Mn-FeP and Ni-FeP. Reprinted with permission from Ref. [108]. Copyright 2022, Royal Society of Chemistry. (f) over-potentials at different current densities of F-Co2P/Fe2P/IF. (g) Stability tests of F-Co2P/Fe2P/IF at different current densities in 1 mol L?1 KOH, Reprinted with permission from Ref. [109]. Copyright 2020, Elsevier.
Fig. 13. (a) In-situ Raman spectra and their 3D (b) and 2D (c) mapping images of CoP3-Nb2P/PCC. Reprinted with permission from Ref. [50]. Copyright 2022, Elsevier. (d) PDOS values of the d orbital and d-band center of NiCoSx@CoCH and other samples. Reprinted with permission from Ref. [118]. Copyright 2021, American Chemical Society. (e) LSV curves of Ni2P/WO2.83 and other samples. (f) Contact angle results on the surfaces of Ni2P/WO2.83 and other samples. Reprinted with permission from Ref. [24]. Copyright 2022, American Chemical Society. (g) In-situ FTIR spectra of PtNb-Nb2O5@CNT and Pt@CNT. (h) In-situ FTIR spectra of PtNb-Nb2O5@CNT after experiencing different times of HER Reprinted with permission from Ref. [119]. Copyright 2022, American Chemical Society
Electrocatalyst | Electrolyte | Overpotential (mV) | Electrocatalyst | Electrolyte | Overpotential (mV) | ||
---|---|---|---|---|---|---|---|
FeIr/NF [ | 1 mol L-1 KOH | 125 mV @500 mA cm-2 204 mV @1000 mA cm-2 336 mV @2000 mA cm-2 471 mV @3500 mA cm-2 | F-Co2P/Fe2P/IF [ | 1 mol L-1 KOH | 229.8 mV @500 mA cm-2 260.5 mV @1000 mA cm-2 292.2 mV @2000 mA cm-2 304.4 mV @3000 mA cm-2 | ||
IrFe/NC [ | 1 mol L-1 KOH | 850 mV @1000 mA cm-2 | Ni-Co-Fe-P NBs [ | 1 mol L-1 KOH | 190 mV @800 mA cm-2 | ||
FeIr/NF [ | 1 mol L-1 KOH | 246 mV @500 mA cm-2 327 mV @1000 mA cm-2 390 mV @1500 mA cm-2 461 mV @2000 mA cm-2 | CoP3-Nb2P/PCC [ | 1 mol L-1 KOH | 317 mV @500 mA cm-2 375 mV @1000 mA cm-2 | ||
PdNi-ECs/GS2 [ | 0.5 mol L-1 H2SO4 | 244 mV @1000 mA cm-2 | Ni12P5-Fe2P-NbP/PNF [ | 1 mol L-1 KOH | 331 mV @800 mA cm-2 | ||
hier-NiFe@sCNTs [ | 1 mol L-1 KOH | 159 mV @500 mA cm-2 | Ni5P4-Co2P/NCF [ | 1 mol L-1 KOH | 267 mV @1000 mA cm-2 | ||
FeCoPd [ | 1 mol L-1 KOH | 400 mV @1000 mA cm-2 | Co2P/Ni2P [ | 1 mol L-1 KOH 0.5 mol L-1 H2SO4 | 200 mV @1700 mA cm-2 200 mV @1000 mA cm-2 | ||
np-NiMnFeMo [ | 1 mol L-1 KOH | 178 mV @500 mA cm-2 | NiCoSx@CoCH NAs/NF [ | 1 mol L-1 KOH | 338.0 mV @500 mA cm-2 438.5 mV @1000 mA cm-2 | ||
H-FeCoNiMnW [ | 0.5 mol L-1 H2SO4 | 165 mV @500 mA cm-2 | Ni2P/WO2.83 [ | 1 mol L-1 KOH | 254.5 mV @1000 mA cm-2 | ||
NiCoFeMoMn [ | 1 mol L-1 KOH | 104 mV @500 mA cm-2 150 mV @1000 mA cm-2 | NiPS/NF [ | 1 mol L-1 KOH | 250 mV @500 mA cm-2 | ||
Co-doped CeO2 [ | 1 mol L-1 KOH | 215 mV @500 mA cm-2 | Ni-FeOx/FeNi3/NF [ | 1 mol L-1 KOH | 272 mV @500 mA cm-2 | ||
Ru-CoOx/NF [ | 1 mol L-1 KOH | 252 mV @1000 mA cm-2 | PtNb-Nb2O5@CC [ | seawater | 440 mV @500 mA cm-2 570 mV @1000 mA cm-2 | ||
NiO/RuO2/NF [ | 1 mol L-1 KOH | 178 mV @1000 mA cm-2 | (NixFeyCo6-x-y)Mo6C/NF [ | 1 mol L-1 KOH | 194 mV @500 mA cm-2 | ||
F,P-Fe3O4 [ | 1 mol L-1 KOH | 277.6 mV @500 mA cm-2 321.3 mV @1000 mA cm-2 350.1 mV @1500 mA cm-2 | 1T0.63-MoSe2@MoP [ | 1 mol L-1 KOH | 358 mV @1000 mA cm-2 | ||
NiFe-LDH/NF-x [ | 1 mol L-1 KOH | 330 mV @500 mA cm-2 | MoO2-MoP SE [ | 1 mol L-1 KOH | 362 mV @800 mA cm-2 | ||
NiCo/NiCo-OH [ | 1 mol L-1 KOH | 184 mV @500 mA cm-2 | NiMoFe NPs@MoO2 NPAs [ | 1 mol L-1 KOH | 130 mV @500 mA cm-2 | ||
NiCo2O4@NiCo(OH)2/ PNCF [ | 1 mol L-1 KOH | 691 mV @500 mA cm-2 | Cu NWs@NiFe-Pt3Ir [ | 1 mol L-1 KOH | 210 mV @500 mA cm-2 239 mV @1000 mA cm-2 | ||
Pt/TiO2/Ni(OH)2/NF [ | 1 mol L-1 KOH | 107 mV @500 mA cm-2 145 mV @1000 mA cm-2 184 mV @1500 mA cm-2 | TMP NiZn-Ni/NF [ | 1 mol L-1 KOH | 233 mV @600 mA cm-2 | ||
NiFe2O4/NiFe LDH [ | 1 mol L-1 KOH | 297 mV @500 mA cm-2 314 mV @750 mA cm-2 | NiCo@C-NiCoMoO/NF [ | 1 mol L-1 KOH | 266 mV @1000 mA cm-2 | ||
A-NiCo LDH/NF [ | 1 mol L-1 KOH | 286 mV @500 mA cm-2 381 mV @1000 mA cm-2 | CuAlNiMoFe [ | 1 mol L-1 KOH | 240 mV @1840 mA cm-2 | ||
MoS2-P2 [ | 1 mol L-1 KOH 0.5 mol L-1 H2SO4 1 mol L-1 PBS | 332 mV @500 mA cm-2 302 mV @500 mA cm-2 417 mV @500 mA cm-2 | c-CoNiPx/a-P-MnOy [ | 1 mol L-1 KOH | 321 mV @500 mA cm-2 | ||
N-NiMoS [ | 1 mol L-1 KOH | 250 mV @500 mA cm-2 322 mV @1000 mA cm-2 | Pt-CoFe(II)LDH [ | 1 mol L-1 KOH | 193 mV @500 mA cm-2 | ||
Pd4S-Ni3S2/HPNF [ | 1 mol L-1 KOH | 247 mV @500 mA cm-2 | NiFeLa-LDH/v-MXene/ NF [ | 1 mol L-1 KOH | 233 mV @500 mA cm-2 | ||
Fe-Co-Se/CC [ | 1 mol L-1 HClO4 | 215 mV @500 mA cm-2 | Co1Mn1CH [ | 1 mol L-1 KOH | 453 mV @500 mA cm-2 | ||
Fe7.4%-NiSe [ | 1 mol L-1 KOH | 296 mV @500 mA cm-2 | NiFe-LDH/MXene/NF [ | 1 mol L-1 KOH | 205 mV @500 mA cm-2 | ||
NiCoSxSey [ | 1 mol L-1 KOH | 256 mV @500 mA cm-2 345 mV @1000 mA cm-2 | Sn-Ni(OH)2 [ | 1 mol L-1 KOH | 550 mV @1000 mA cm-2 | ||
Co-Mo5N6 [ | 1 mol L-1 KOH | 280 mV @1000 mA cm-2 | MnCo/NiSe [ | 1 mol L-1 KOH seawater + 1 mol L-1 KOH | 182.8 mV @500 mA cm-2 211.6 mV @1000 mA cm-2 216.3 mV @500 mA cm-2 270.1 mV @1000 mA cm-2 | ||
Ni-W2N@NF [ | 1 mol L-1 KOH | 317 mV @2000 mA cm-2 | NC/Ni3Mo3N/NF [ | 1 mol L-1 KOH | 954 mV @1500 mA cm-2 | ||
MoN-Cu-NPC/CF [ | 1 mol L-1 KOH | 500 mV @668 mA cm-2 954 mV @1500 mA cm-2 | NiFe-P@NC [ | 1 mol L-1 KOH | 163 mV @500 mA cm-2 217 mV @1000 mA cm-2 | ||
Ni-Mn-FeP [ | 1 mol L-1 KOH | 243 mV @500 mA cm-2 | Ni3S2-NiMoO4/NF [ | 1 mol L-1 KOH | 257 mV @1000 mA cm-2 | ||
Macroporous CoFeP TPAs/Ni [ | 1 mol L-1 KOH | 263 mV @900 mA cm-2 | Fe2P@NixP/NF [ | 1 mol L-1 KOH with 0.5 mol L-1 urea | 276 mV @500 mA cm-2 | ||
Ni-Co2VO4/NF [ | 1 mol L-1 KOH with 0.5 mol L-1 urea | 267 mV @500 mA cm-2 329 mV @1000 mA cm-2 | NiFeCoCuTi [ | 1 mol L-1 KOH | 209 mV @2000 mA cm-2 | ||
Cr-CoP-NR/CC [ | 0.5 mol L-1 H2SO4 | 209 mV @500 mA cm-2 | NiCoP@FeNi LDH/NF [ | 1 mol L-1 KOH | 181 mV @500 mA cm-2 195 mV @1000 mA cm-2 | ||
Ni/W5N4/NF [ | 1 mol L-1 KOH | 291 mV @1000 mA cm-2 | MoWNiTe [ | 1 mol L-1 KOH | 182 mV @1000 mA cm-2 | ||
Ru&Fe-WOx [ | 1 mol L-1 KOH | 153 mV @500 mA cm-2 | Co-AlMO@NF [ | 1 mol L-1 KOH | 341 mV @600 mA cm-2 | ||
MFN-MOFs/NF [ | 1 mol L-1 KOH | 234 mV @500 mA cm-2 | Mo2N-Mo2C/N-CW [ | 0.5 mol L-1 H2SO4 | 311 mV @500 mA cm-2 | ||
NiCo(nf)-P [ | 1 mol L-1 KOH | 283 mV @500 mA cm-2 317 mV @1000 mA cm-2 | Pt-W18O49 [ | 0.5 mol L-1 H2SO4 | 743 mV @1000 mA cm-2 | ||
Co-NC-AF [ | 0.5 mol L-1 H2SO4 | 234 mV @500 mA cm-2 272 mV @1000 mA cm-2 | CoP/Ni3FeN [ | 1 mol L-1 KOH | 160 mV @1000 mA cm-2 | ||
In-situ F-Pt NCs [ | 1 mol L-1 KOH | 274 mV @500 mA cm-2 | P-Ni4Mo/CF [ | seawater + 1 mol L-1 KOH | 551 mV @1000 mA cm-2 | ||
3D Ni2(1-x)Mo2xP [ | 1 mol L-1 KOH | 240 mV @500 mA cm-2 294 mV @1000 mA cm-2 | WC/Ni(OH)2 [ | 1 mol L-1 KOH | 475 mV @1000 mA cm-2 | ||
NC@CrN/Ni [ | 1 mol L-1 KOH | 284 mV @1000 mA cm-2 | RuGa/N-rGO-2 [ | 1 mol L-1 KOH | 105 mV @500 mA cm-2 156 mV @1000 mA cm-2 | ||
Ni3S2@LiMoNiOx(OH)y [ | 1 mol L-1 KOH | 365 mV @1000 mA cm-2 | Co@NCNT/CW [ | 1 mol L-1 KOH | 263 mV @500 mA cm-2 | ||
Pt2/Ni(OH)2/NF [ | 1 mol L-1 KOH | 274 mV @1000 mA cm-2 | NiMoO4@NiFeP [ | 1 mol L-1 KOH | 353 mV @500 mA cm-2 | ||
NiMo [ | 1 mol L-1 KOH | 208 mV @500 mA cm-2 300 mV @1000 mA cm-2 | MnCo2S4@MoS2/NF [ | 6 mol L-1 KOH | 208 mV @1000 mA cm-2 | ||
Ni1Ru1/C [ | 1 mol L-1 KOH | 132 mV @500 mA cm-2 | Ru-Mo2C@CNT [ | 1 mol L-1 KOH | 56 mV @500 mA cm-2 78 mV @1000 mA cm-2 116 mV @2000 mA cm-2 | ||
Mo (NiFeCo)4/Ni [ | 1 mol L-1 KOH | 200 mV @2300 mA cm-2 | Ru-FeP4/IF [ | 1 mol L-1 KOH seawater + 1 mol L-1 KOH | 296 mV @1000 mA cm-2 318 mV @1000 mA cm-2 | ||
Fe-Co0.85Se/FeCo LDH [ | 1 mol L-1 KOH | 274 mV @2300 mA cm-2 | RuNi-Fe2O3/IF [ | 1 mol L-1 KOH seawater + 1 mol L-1 KOH | 298 mV @1000 mA cm-2 353 mV @1000 mA cm-2 | ||
FeCoNiCuMn [ | 1 mol L-1 KOH | 500 mV @921 mA cm-2 | MIL-(IrNiFe)@NF [ | 1 mol L-1 KOH seawater + 1 mol L-1 KOH | 156 mV @500 mA cm-2 198 mV @1000 mA cm-2 179 mV @500 mA cm-2 235 mV @1000 mA cm-2 | ||
Ir@Ni-NDC [ | 1 mol L-1 KOH | 205 mV @500 mA cm-2 | RuFe-Ni2P@NF [ | 1 mol L-1 KOH seawater + 1 mol L-1 KOH | 227 mV @500 mA cm-2 262 mV @1000 mA cm-2 274 mV @500 mA cm-2 310 mV @1000 mA cm-2 | ||
Ni3Sn2-NiSnOx [ | 1 mol L-1 KOH | 111 mV @500 mA cm-2 165 mV @1000 mA cm-2 | MoNi@NF [ | 1 mol L-1 KOH seawater + 1 mol L-1 KOH | 219 mV @1000 mA cm-2 238 mV @1000 mA cm-2 | ||
Ag@Pt icosahedral NCs [ | 0.5 mol L-1 H2SO4 | 145 mV @1000 mA cm-2 232 mV @4000 mA cm-2 | Ru/P-NiMoO4@NF [ | 1 mol L-1 KOH seawater + 1 mol L-1 KOH | 232 mV @3000 mA cm-2 299 mV @3000 mA cm-2 | ||
Co-Ni3N/NF [ | 1 mol L-1 KOH | 123 mV @500 mA cm-2 125 mV @1000 mA cm-2 | Fe/F-Ni2P@NC [ | seawater + 1 mol L-1 KOH | 323 mV @1000 mA cm-2 | ||
U-MoNiS [ | 1 mol L-1 KOH | 305 mV @2243 mA cm-2 | CoxPv@NC [ | seawater + 1 mol L-1 KOH | 206 mV @500 mA cm-2 232 mV @1000 mA cm-2 | ||
Fe-CoNiP@NC [ | seawater + 1 mol L-1 KOH | 280 mV @1000 mA cm-2 |
Table 1 Overview of advanced HCD electrocatalysts for HER.
Electrocatalyst | Electrolyte | Overpotential (mV) | Electrocatalyst | Electrolyte | Overpotential (mV) | ||
---|---|---|---|---|---|---|---|
FeIr/NF [ | 1 mol L-1 KOH | 125 mV @500 mA cm-2 204 mV @1000 mA cm-2 336 mV @2000 mA cm-2 471 mV @3500 mA cm-2 | F-Co2P/Fe2P/IF [ | 1 mol L-1 KOH | 229.8 mV @500 mA cm-2 260.5 mV @1000 mA cm-2 292.2 mV @2000 mA cm-2 304.4 mV @3000 mA cm-2 | ||
IrFe/NC [ | 1 mol L-1 KOH | 850 mV @1000 mA cm-2 | Ni-Co-Fe-P NBs [ | 1 mol L-1 KOH | 190 mV @800 mA cm-2 | ||
FeIr/NF [ | 1 mol L-1 KOH | 246 mV @500 mA cm-2 327 mV @1000 mA cm-2 390 mV @1500 mA cm-2 461 mV @2000 mA cm-2 | CoP3-Nb2P/PCC [ | 1 mol L-1 KOH | 317 mV @500 mA cm-2 375 mV @1000 mA cm-2 | ||
PdNi-ECs/GS2 [ | 0.5 mol L-1 H2SO4 | 244 mV @1000 mA cm-2 | Ni12P5-Fe2P-NbP/PNF [ | 1 mol L-1 KOH | 331 mV @800 mA cm-2 | ||
hier-NiFe@sCNTs [ | 1 mol L-1 KOH | 159 mV @500 mA cm-2 | Ni5P4-Co2P/NCF [ | 1 mol L-1 KOH | 267 mV @1000 mA cm-2 | ||
FeCoPd [ | 1 mol L-1 KOH | 400 mV @1000 mA cm-2 | Co2P/Ni2P [ | 1 mol L-1 KOH 0.5 mol L-1 H2SO4 | 200 mV @1700 mA cm-2 200 mV @1000 mA cm-2 | ||
np-NiMnFeMo [ | 1 mol L-1 KOH | 178 mV @500 mA cm-2 | NiCoSx@CoCH NAs/NF [ | 1 mol L-1 KOH | 338.0 mV @500 mA cm-2 438.5 mV @1000 mA cm-2 | ||
H-FeCoNiMnW [ | 0.5 mol L-1 H2SO4 | 165 mV @500 mA cm-2 | Ni2P/WO2.83 [ | 1 mol L-1 KOH | 254.5 mV @1000 mA cm-2 | ||
NiCoFeMoMn [ | 1 mol L-1 KOH | 104 mV @500 mA cm-2 150 mV @1000 mA cm-2 | NiPS/NF [ | 1 mol L-1 KOH | 250 mV @500 mA cm-2 | ||
Co-doped CeO2 [ | 1 mol L-1 KOH | 215 mV @500 mA cm-2 | Ni-FeOx/FeNi3/NF [ | 1 mol L-1 KOH | 272 mV @500 mA cm-2 | ||
Ru-CoOx/NF [ | 1 mol L-1 KOH | 252 mV @1000 mA cm-2 | PtNb-Nb2O5@CC [ | seawater | 440 mV @500 mA cm-2 570 mV @1000 mA cm-2 | ||
NiO/RuO2/NF [ | 1 mol L-1 KOH | 178 mV @1000 mA cm-2 | (NixFeyCo6-x-y)Mo6C/NF [ | 1 mol L-1 KOH | 194 mV @500 mA cm-2 | ||
F,P-Fe3O4 [ | 1 mol L-1 KOH | 277.6 mV @500 mA cm-2 321.3 mV @1000 mA cm-2 350.1 mV @1500 mA cm-2 | 1T0.63-MoSe2@MoP [ | 1 mol L-1 KOH | 358 mV @1000 mA cm-2 | ||
NiFe-LDH/NF-x [ | 1 mol L-1 KOH | 330 mV @500 mA cm-2 | MoO2-MoP SE [ | 1 mol L-1 KOH | 362 mV @800 mA cm-2 | ||
NiCo/NiCo-OH [ | 1 mol L-1 KOH | 184 mV @500 mA cm-2 | NiMoFe NPs@MoO2 NPAs [ | 1 mol L-1 KOH | 130 mV @500 mA cm-2 | ||
NiCo2O4@NiCo(OH)2/ PNCF [ | 1 mol L-1 KOH | 691 mV @500 mA cm-2 | Cu NWs@NiFe-Pt3Ir [ | 1 mol L-1 KOH | 210 mV @500 mA cm-2 239 mV @1000 mA cm-2 | ||
Pt/TiO2/Ni(OH)2/NF [ | 1 mol L-1 KOH | 107 mV @500 mA cm-2 145 mV @1000 mA cm-2 184 mV @1500 mA cm-2 | TMP NiZn-Ni/NF [ | 1 mol L-1 KOH | 233 mV @600 mA cm-2 | ||
NiFe2O4/NiFe LDH [ | 1 mol L-1 KOH | 297 mV @500 mA cm-2 314 mV @750 mA cm-2 | NiCo@C-NiCoMoO/NF [ | 1 mol L-1 KOH | 266 mV @1000 mA cm-2 | ||
A-NiCo LDH/NF [ | 1 mol L-1 KOH | 286 mV @500 mA cm-2 381 mV @1000 mA cm-2 | CuAlNiMoFe [ | 1 mol L-1 KOH | 240 mV @1840 mA cm-2 | ||
MoS2-P2 [ | 1 mol L-1 KOH 0.5 mol L-1 H2SO4 1 mol L-1 PBS | 332 mV @500 mA cm-2 302 mV @500 mA cm-2 417 mV @500 mA cm-2 | c-CoNiPx/a-P-MnOy [ | 1 mol L-1 KOH | 321 mV @500 mA cm-2 | ||
N-NiMoS [ | 1 mol L-1 KOH | 250 mV @500 mA cm-2 322 mV @1000 mA cm-2 | Pt-CoFe(II)LDH [ | 1 mol L-1 KOH | 193 mV @500 mA cm-2 | ||
Pd4S-Ni3S2/HPNF [ | 1 mol L-1 KOH | 247 mV @500 mA cm-2 | NiFeLa-LDH/v-MXene/ NF [ | 1 mol L-1 KOH | 233 mV @500 mA cm-2 | ||
Fe-Co-Se/CC [ | 1 mol L-1 HClO4 | 215 mV @500 mA cm-2 | Co1Mn1CH [ | 1 mol L-1 KOH | 453 mV @500 mA cm-2 | ||
Fe7.4%-NiSe [ | 1 mol L-1 KOH | 296 mV @500 mA cm-2 | NiFe-LDH/MXene/NF [ | 1 mol L-1 KOH | 205 mV @500 mA cm-2 | ||
NiCoSxSey [ | 1 mol L-1 KOH | 256 mV @500 mA cm-2 345 mV @1000 mA cm-2 | Sn-Ni(OH)2 [ | 1 mol L-1 KOH | 550 mV @1000 mA cm-2 | ||
Co-Mo5N6 [ | 1 mol L-1 KOH | 280 mV @1000 mA cm-2 | MnCo/NiSe [ | 1 mol L-1 KOH seawater + 1 mol L-1 KOH | 182.8 mV @500 mA cm-2 211.6 mV @1000 mA cm-2 216.3 mV @500 mA cm-2 270.1 mV @1000 mA cm-2 | ||
Ni-W2N@NF [ | 1 mol L-1 KOH | 317 mV @2000 mA cm-2 | NC/Ni3Mo3N/NF [ | 1 mol L-1 KOH | 954 mV @1500 mA cm-2 | ||
MoN-Cu-NPC/CF [ | 1 mol L-1 KOH | 500 mV @668 mA cm-2 954 mV @1500 mA cm-2 | NiFe-P@NC [ | 1 mol L-1 KOH | 163 mV @500 mA cm-2 217 mV @1000 mA cm-2 | ||
Ni-Mn-FeP [ | 1 mol L-1 KOH | 243 mV @500 mA cm-2 | Ni3S2-NiMoO4/NF [ | 1 mol L-1 KOH | 257 mV @1000 mA cm-2 | ||
Macroporous CoFeP TPAs/Ni [ | 1 mol L-1 KOH | 263 mV @900 mA cm-2 | Fe2P@NixP/NF [ | 1 mol L-1 KOH with 0.5 mol L-1 urea | 276 mV @500 mA cm-2 | ||
Ni-Co2VO4/NF [ | 1 mol L-1 KOH with 0.5 mol L-1 urea | 267 mV @500 mA cm-2 329 mV @1000 mA cm-2 | NiFeCoCuTi [ | 1 mol L-1 KOH | 209 mV @2000 mA cm-2 | ||
Cr-CoP-NR/CC [ | 0.5 mol L-1 H2SO4 | 209 mV @500 mA cm-2 | NiCoP@FeNi LDH/NF [ | 1 mol L-1 KOH | 181 mV @500 mA cm-2 195 mV @1000 mA cm-2 | ||
Ni/W5N4/NF [ | 1 mol L-1 KOH | 291 mV @1000 mA cm-2 | MoWNiTe [ | 1 mol L-1 KOH | 182 mV @1000 mA cm-2 | ||
Ru&Fe-WOx [ | 1 mol L-1 KOH | 153 mV @500 mA cm-2 | Co-AlMO@NF [ | 1 mol L-1 KOH | 341 mV @600 mA cm-2 | ||
MFN-MOFs/NF [ | 1 mol L-1 KOH | 234 mV @500 mA cm-2 | Mo2N-Mo2C/N-CW [ | 0.5 mol L-1 H2SO4 | 311 mV @500 mA cm-2 | ||
NiCo(nf)-P [ | 1 mol L-1 KOH | 283 mV @500 mA cm-2 317 mV @1000 mA cm-2 | Pt-W18O49 [ | 0.5 mol L-1 H2SO4 | 743 mV @1000 mA cm-2 | ||
Co-NC-AF [ | 0.5 mol L-1 H2SO4 | 234 mV @500 mA cm-2 272 mV @1000 mA cm-2 | CoP/Ni3FeN [ | 1 mol L-1 KOH | 160 mV @1000 mA cm-2 | ||
In-situ F-Pt NCs [ | 1 mol L-1 KOH | 274 mV @500 mA cm-2 | P-Ni4Mo/CF [ | seawater + 1 mol L-1 KOH | 551 mV @1000 mA cm-2 | ||
3D Ni2(1-x)Mo2xP [ | 1 mol L-1 KOH | 240 mV @500 mA cm-2 294 mV @1000 mA cm-2 | WC/Ni(OH)2 [ | 1 mol L-1 KOH | 475 mV @1000 mA cm-2 | ||
NC@CrN/Ni [ | 1 mol L-1 KOH | 284 mV @1000 mA cm-2 | RuGa/N-rGO-2 [ | 1 mol L-1 KOH | 105 mV @500 mA cm-2 156 mV @1000 mA cm-2 | ||
Ni3S2@LiMoNiOx(OH)y [ | 1 mol L-1 KOH | 365 mV @1000 mA cm-2 | Co@NCNT/CW [ | 1 mol L-1 KOH | 263 mV @500 mA cm-2 | ||
Pt2/Ni(OH)2/NF [ | 1 mol L-1 KOH | 274 mV @1000 mA cm-2 | NiMoO4@NiFeP [ | 1 mol L-1 KOH | 353 mV @500 mA cm-2 | ||
NiMo [ | 1 mol L-1 KOH | 208 mV @500 mA cm-2 300 mV @1000 mA cm-2 | MnCo2S4@MoS2/NF [ | 6 mol L-1 KOH | 208 mV @1000 mA cm-2 | ||
Ni1Ru1/C [ | 1 mol L-1 KOH | 132 mV @500 mA cm-2 | Ru-Mo2C@CNT [ | 1 mol L-1 KOH | 56 mV @500 mA cm-2 78 mV @1000 mA cm-2 116 mV @2000 mA cm-2 | ||
Mo (NiFeCo)4/Ni [ | 1 mol L-1 KOH | 200 mV @2300 mA cm-2 | Ru-FeP4/IF [ | 1 mol L-1 KOH seawater + 1 mol L-1 KOH | 296 mV @1000 mA cm-2 318 mV @1000 mA cm-2 | ||
Fe-Co0.85Se/FeCo LDH [ | 1 mol L-1 KOH | 274 mV @2300 mA cm-2 | RuNi-Fe2O3/IF [ | 1 mol L-1 KOH seawater + 1 mol L-1 KOH | 298 mV @1000 mA cm-2 353 mV @1000 mA cm-2 | ||
FeCoNiCuMn [ | 1 mol L-1 KOH | 500 mV @921 mA cm-2 | MIL-(IrNiFe)@NF [ | 1 mol L-1 KOH seawater + 1 mol L-1 KOH | 156 mV @500 mA cm-2 198 mV @1000 mA cm-2 179 mV @500 mA cm-2 235 mV @1000 mA cm-2 | ||
Ir@Ni-NDC [ | 1 mol L-1 KOH | 205 mV @500 mA cm-2 | RuFe-Ni2P@NF [ | 1 mol L-1 KOH seawater + 1 mol L-1 KOH | 227 mV @500 mA cm-2 262 mV @1000 mA cm-2 274 mV @500 mA cm-2 310 mV @1000 mA cm-2 | ||
Ni3Sn2-NiSnOx [ | 1 mol L-1 KOH | 111 mV @500 mA cm-2 165 mV @1000 mA cm-2 | MoNi@NF [ | 1 mol L-1 KOH seawater + 1 mol L-1 KOH | 219 mV @1000 mA cm-2 238 mV @1000 mA cm-2 | ||
Ag@Pt icosahedral NCs [ | 0.5 mol L-1 H2SO4 | 145 mV @1000 mA cm-2 232 mV @4000 mA cm-2 | Ru/P-NiMoO4@NF [ | 1 mol L-1 KOH seawater + 1 mol L-1 KOH | 232 mV @3000 mA cm-2 299 mV @3000 mA cm-2 | ||
Co-Ni3N/NF [ | 1 mol L-1 KOH | 123 mV @500 mA cm-2 125 mV @1000 mA cm-2 | Fe/F-Ni2P@NC [ | seawater + 1 mol L-1 KOH | 323 mV @1000 mA cm-2 | ||
U-MoNiS [ | 1 mol L-1 KOH | 305 mV @2243 mA cm-2 | CoxPv@NC [ | seawater + 1 mol L-1 KOH | 206 mV @500 mA cm-2 232 mV @1000 mA cm-2 | ||
Fe-CoNiP@NC [ | seawater + 1 mol L-1 KOH | 280 mV @1000 mA cm-2 |
Fig. 15. Design ideas for promising future HCD electrocatalysts. (a) Rare earth electrocatalysts; (b) Collaborative design of multiple strategies; (c) Lattice strain engineering; (d) Non metallic electronic bridge engineering.
|
[1] | Jiayong Xiao, Chao Jiang, Hui Zhang, Zhuo Xing, Ming Qiu, Ying Yu. Amorphous core-shell NiMoP@CuNWs rod-like structure with hydrophilicity feature for efficient hydrogen production in neutral media [J]. Chinese Journal of Catalysis, 2024, 63(8): 154-163. |
[2] | Xiao Chen, Yunmei Du, Yu Yang, Kang Liu, Jinling Zhao, Xiaodan Xia, Lei Wang. Quenching to optimize the crystalline/amorphous ratio of CoPS nanorods for hydrazine-assisted total water decomposition at ampere-level current density [J]. Chinese Journal of Catalysis, 2024, 62(7): 265-276. |
[3] | Wancheng Zhao, Jiapeng Ma, Dong Tian, Baotao Kang, Fangquan Xia, Jing Cheng, Yajun Wu, Mengyao Wang, Gang Wu. Self-supported film catalyst integrated with multifunctional carbon nanotubes and Ni-Ni(OH)2 heterostructure for promoted hydrogen evolution [J]. Chinese Journal of Catalysis, 2024, 62(7): 287-295. |
[4] | Gui Zhao, Kuan Lu, Yunan Li, Fagui Lu, Peng Gao, Bing Nan, Lina Li, Yixiao Zhang, Pengtao Xu, Xi Liu, Liwei Chen. An efficient and stable high-entropy alloy electrocatalyst for hydrogen evolution reaction [J]. Chinese Journal of Catalysis, 2024, 62(7): 156-165. |
[5] | Xianbiao Hou, Chen Yu, Tengjia Ni, Shucong Zhang, Jian Zhou, Shuixing Dai, Lei Chu, Minghua Huang. Constructing amorphous/crystalline NiFe-MOF@NiS heterojunction catalysts for enhanced water/seawater oxidation at large current density [J]. Chinese Journal of Catalysis, 2024, 61(6): 192-204. |
[6] | Xuyu Luo, Ying Wang, Guang Yang, Lu Liu, Shiying Guo, Yi Cui, Xiaoyong Xu. Atomically tailoring synergistic active centers on molybdenum sulfide basal planes for alkaline hydrogen generation [J]. Chinese Journal of Catalysis, 2024, 61(6): 281-290. |
[7] | Zehui Sun, Zhuangzhuang Lai, Yingying Zhao, Jianfu Chen, Wei Ma. Clarifying sequential electron-transfer steps in single-nanoparticle electrochemical process for identifying the intrinsic activity of electrocatalyst [J]. Chinese Journal of Catalysis, 2024, 60(5): 262-271. |
[8] | Adel Al-Salihy, Ce Liang, Abdulwahab Salah, Abdel-Basit Al-Odayni, Ziang Lu, Mengxin Chen, Qianqian Liu, Ping Xu. Ultralow Ru-doped NiMoO4@Ni3(PO4)2 core-shell nanostructures for improved overall water splitting [J]. Chinese Journal of Catalysis, 2024, 60(5): 360-375. |
[9] | Wei Liao, Qian Zhou, Jin Long, Chenzhong Wu, Bin Wang, Qiong Peng, Jianxin Cao, Qingmei Wang. Vacancy engineering of carbon support strengthens the interaction with in-situ synthesized Pt nanodendrites for boosted oxygen reduction electrocatalysis [J]. Chinese Journal of Catalysis, 2024, 59(4): 260-271. |
[10] | Jian Yiing Loh, Joel Jie Foo, Feng Ming Yap, Hanfeng Liang, Wee-Jun Ong. Unleashing the versatility of porous nanoarchitectures: A voyage for sustainable electrocatalytic water splitting [J]. Chinese Journal of Catalysis, 2024, 58(3): 37-85. |
[11] | Zhentao Tu, Xiaoyang He, Xuan Liu, Dengke Xiong, Juan Zuo, Deli Wu, Jianying Wang, Zuofeng Chen. Electronic modification of Ni active sites by W for selective benzylamine oxidation and concurrent hydrogen production [J]. Chinese Journal of Catalysis, 2024, 58(3): 146-156. |
[12] | Yibo Guo, Yuanyuan Xue, Zhen Zhou. Revolutionizing Zn-Air batteries with chainmail catalysts: Ultrathin carbon-encapsulated FeNi alloys on N-doped graphene for enhanced oxygen electrocatalysis [J]. Chinese Journal of Catalysis, 2024, 58(3): 206-215. |
[13] | Gongwei Wang, Li Xiao, Lin Zhuang. General definition of hydrogen energy and related electrochemical technologies [J]. Chinese Journal of Catalysis, 2024, 56(1): 1-8. |
[14] | Xiaohan Wang, Han Tian, Xu Yu, Lisong Chen, Xiangzhi Cui, Jianlin Shi. Advances and insights in amorphous electrocatalyst towards water splitting [J]. Chinese Journal of Catalysis, 2023, 51(8): 5-48. |
[15] | Chun Yin, Fulin Yang, Shuli Wang, Ligang Feng. Heterostructured NiSe2/MoSe2 electronic modulation for efficient electrocatalysis in urea assisted water splitting reaction [J]. Chinese Journal of Catalysis, 2023, 51(8): 225-236. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||