Chinese Journal of Catalysis ›› 2025, Vol. 71: 128-137.DOI: 10.1016/S1872-2067(24)60243-3
• Articles • Previous Articles Next Articles
Qingfeng Huaa,1, Hao Meia,1, Guang Fenga,1, Lina Sua, Yanan Yanga, Qichang Lia, Shaobo Lia, Xiaoxia Changb,*(), Zhiqi Huanga,*(
)
Received:
2024-12-31
Accepted:
2025-01-15
Online:
2025-04-18
Published:
2025-04-13
Contact:
* E-mail:changxx@pku.edu.cn(X. Chang),huangzhiqi@bit.edu.cn(Z. Huang).
About author:
1Contributed to this work equally.
Supported by:
Qingfeng Hua, Hao Mei, Guang Feng, Lina Su, Yanan Yang, Qichang Li, Shaobo Li, Xiaoxia Chang, Zhiqi Huang. Accelerating C-C coupling in alkaline electrochemical CO2 reduction by optimized local water dissociation kinetics[J]. Chinese Journal of Catalysis, 2025, 71: 128-137.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(24)60243-3
Fig. 1. Characterizations of the Fe1/CuNP-NC catalyst. HRTEM image (a), STEM and EDS mapping (b) of Fe1/CuNP-NC-2, cyan, Cu; yellow, Fe; blue, N. (c) XRD patterns of Fe1/CuNP-NC-1, Fe1/CuNP-NC-2, Fe1/CuNP-NC-3 and CuNP-NC samples. (d) Normalized intensity of Fe K-edge XANES spectra for Fe foil, M-Fe1/CuNP-NC-2, FeO, Fe2O3 and Fe3O4 samples. (e) Fourier-transform k3-weighted EXAFS spectra in R space for Fe foil, Fe1/CuNP-NC-2 and FePc samples. (f) Wavelet transforms of Fe1/CuNP-NC-2.
Fig. 2. CO2RR performance of the Fe1/CuNP-NC catalyst. (a) The FE of C2+ and H2 products on the catalysts with different Fe mass loading at the current density of 300 mA cm-1 (0: CuNP-NC, 0.23: Fe1/CuNP-NC-1, 0.35: Fe1/CuNP-NC-2 and 0.68: Fe1/CuNP-NC-3). (b) FE values of various products on the Fe1/CuNP-NC-2 at different current densities in a flow cell. (c) The C2+: C1 FE ratio of different catalysts. (d) The FEC2+ change of the Fe1/CuNP-NC-2 catalyst at a current density of 300 mA cm-2 in a flow cell.
Fig. 3. KIE(a) and C2+ product selectivity (b) of different catalysts with or without t-BuOH addition at the potential of -1.2 V vs. RHE. In-situ ATR-FTIRS spectra recorded at different potentials for CuNP-NC (c) and Fe1/CuNP-NC-2 (d) catalyst.
Fig. 4. Model structures of CuNP-NC (a) and Fe1/CuNP-NC-2 (b) catalysts. (c) Calculated reaction energy for the H2O dissociation process of Cu sites and Fe sites. (d) Free energy diagram for the CO2RR to *OCCOH intermediates on CuNP-NC surface and Fe1/CuNP-NC-2 surface.
|
[1] | Yanan Zhang, Wenna Zhang, Chengwei Zhang, Linhai He, Shanfan Lin, Shutao Xu, Yingxu Wei, Zhongmin Liu. The role of C1 species in the methanol-to-hydrocarbons reaction: Beyond merely being reactants [J]. Chinese Journal of Catalysis, 2025, 71(4): 169-178. |
[2] | Fanrong Chen, Jiaju Fu, Liang Ding, Xiaoying Lu, Zhe Jiang, Xiaoling Zhang, Jin-Song Hu. Promoting stability of sub-3 nm In2S3 nanoparticles via sulfur anchoring for CO2 electroreduction to formate [J]. Chinese Journal of Catalysis, 2025, 71(4): 138-145. |
[3] | Zihao Jiao, Chengyi Zhang, Ya Liu, Liejin Guo, Ziyun Wang. Graph neural network-driven prediction of high-performance CO2 reduction catalysts based on Cu-based high-entropy alloys [J]. Chinese Journal of Catalysis, 2025, 71(4): 197-207. |
[4] | Jun Wu, Liqian Liu, Xinyue Yan, Gang Pan, Jiahao Bai, Chengbing Wang, Fuwei Li, Yong Li. Microenvironment engineering of nitrogen-doped hollow carbon spheres encapsulated with Pd catalysts for highly selective hydrodeoxygenation of biomass-derived vanillin in water [J]. Chinese Journal of Catalysis, 2025, 71(4): 267-284. |
[5] | Dongxiao Wen, Nan Wang, Jiahe Peng, Tetsuro Majima, Jizhou Jiang. Collaborative photocatalytic C-C coupling with Cu and P dual sites to produce C2H4 over CuxP/g-C3N4 heterojunction [J]. Chinese Journal of Catalysis, 2025, 69(2): 58-74. |
[6] | Yimeng Sun, Jun Chen, Lin Liu, Haibo Chi, Hongxian Han. The mechanism of OER activity and stability enhancement in acid by atomically doped iridium in γ-MnO2 [J]. Chinese Journal of Catalysis, 2025, 69(2): 99-110. |
[7] | Mingzhi Wang, Wensheng Fang, Deyu Zhu, Chenfeng Xia, Wei Guo, BaoYu Xia. Tandem design on electrocatalysts and reactors for electrochemical CO2 reduction [J]. Chinese Journal of Catalysis, 2025, 69(2): 1-16. |
[8] | Lingxuan Hu, Yan Zhang, Qian Lin, Fengying Cao, Weihao Mo, Shuxian Zhong, Hongjun Lin, Liyan Xie, Leihong Zhao, Song Bai. Unraveling the Ni-Co synergy in bifunctional hydroxide cocatalysts for better cooperation of CO2 reduction and H2O oxidation in 2D S-scheme photosynthetic systems [J]. Chinese Journal of Catalysis, 2025, 68(1): 311-325. |
[9] | Zhiyuan Liu, Changan Wang, Ping Yang, Wei Wang, Hongyi Gao, Guoqing An, Siqi Liu, Juan Chen, Tingting Guo, Xinmeng Xu, Ge Wang. Microenvironment and electronic state modulation of Pd nanoparticles within MOFs for enhancing low-temperature activity towards DCPD hydrogenation [J]. Chinese Journal of Catalysis, 2024, 64(9): 112-122. |
[10] | Minfei Xie, Xing Ji, Huaying Meng, Nanbing Jiang, Zhenyu Luo, Qianqian Huang, Geng Sun, Yunhuai Zhang, Peng Xiao. The role of titanium at the interface of hematite photoanode in multisite mechanism: Reactive site or cocatalyst site? [J]. Chinese Journal of Catalysis, 2024, 64(9): 77-86. |
[11] | Jialin Wang, Kaini Zhang, Ta Thi Thuy Nga, Yiqing Wang, Yuchuan Shi, Daixing Wei, Chung-Li Dong, Shaohua Shen. Chalcogen heteroatoms doped nickel-nitrogen-carbon single-atom catalysts with asymmetric coordination for efficient electrochemical CO2 reduction [J]. Chinese Journal of Catalysis, 2024, 64(9): 54-65. |
[12] | Kaining Li, Yasutaka Kuwahara, Hiromi Yamashita. Poly(ethylenimine)-assisted synthesis of hollow carbon spheres comprising multi-sized Ni species for CO2 electroreduction [J]. Chinese Journal of Catalysis, 2024, 64(9): 66-76. |
[13] | Hui Fu, Jin Tian, Qianqian Zhang, Zhaoke Zheng, Hefeng Cheng, Yuanyuan Liu, Baibiao Huang, Peng Wang. Single-atom modified graphene cocatalyst for enhanced photocatalytic CO2 reduction on halide perovskite [J]. Chinese Journal of Catalysis, 2024, 64(9): 143-151. |
[14] | Shudong Shi, Zhihua Zhang, Yundao Jing, Wei Du, Xuezhi Duan, Xinggui Zhou. Tailoring the microenvironment of Ti sites in Ti-containing materials for synergizing with Au sites to boost propylene epoxidation [J]. Chinese Journal of Catalysis, 2024, 63(8): 133-143. |
[15] | Ziwen Mei, Kejun Chen, Yao Tan, Qiuwen Liu, Qin Chen, Qiyou Wang, Xiqing Wang, Chao Cai, Kang Liu, Junwei Fu, Min Liu. Proton feeding from defect-rich carbon support to cobalt phthalocyanine for efficient CO2 electroreduction [J]. Chinese Journal of Catalysis, 2024, 62(7): 190-197. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||