Chinese Journal of Catalysis ›› 2025, Vol. 71: 138-145.DOI: 10.1016/S1872-2067(24)60233-0
• Articles • Previous Articles Next Articles
Fanrong Chena,b,c, Jiaju Fub,*(), Liang Dingb,d, Xiaoying Lub, Zhe Jiangb,d, Xiaoling Zhanga,*(
), Jin-Song Hub,d,*(
)
Received:
2024-11-13
Accepted:
2024-12-17
Online:
2025-04-18
Published:
2025-04-13
Contact:
* E-mail: Supported by:
Fanrong Chen, Jiaju Fu, Liang Ding, Xiaoying Lu, Zhe Jiang, Xiaoling Zhang, Jin-Song Hu. Promoting stability of sub-3 nm In2S3 nanoparticles via sulfur anchoring for CO2 electroreduction to formate[J]. Chinese Journal of Catalysis, 2025, 71: 138-145.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(24)60233-0
Fig. 1. (a) Schematic synthesis process of the i-In2S3/S-C catalyst. (b) TEM image of S-C support. TEM image (c), corresponding size distribution (d), and the HRTEM image (e) of the i-In2S3/S-C catalyst. (f) XRD patterns of i-In2S3/S-C, l-In2S3/S-C, and i-In2S3/C catalysts. (g) EDS elemental mapping of i-In2S3/S-C.
Fig. 2. The In and S atomic contents (a) and high-resolution XPS spectra of In 3d (b) and S 2p (c) in i-In2S3/S-C, l-In2S3/S-C, and i-In2S3/C catalysts. The in-situ temperature-programmed XRD patterns of i-In2S3/S-C (d) and the corresponding temperature-dependent Normalized FWHM with derivatives for In2S3 (311) diffraction peak (e) and the UPS spectra (f) of i-In2S3/S-C, l-In2S3/S-C, i-In2S3/C.
Fig. 3. (a) LSV curves of i-In2S3/S-C, l-In2S3/S-C, i-In2S3/C, and S-C at a scan rate of 10 mV s?1. (b) The potential-dependent product distributions of i-In2S3/S-C catalyst. The potential-dependent FEformate (c), jformate (d), formate formation rates (e), and the Tafel plots (f) of the i-In2S3/S-C l-In2S3/S-C and i-In2S3/C.
Fig. 5. (a) XRD patterns of i-In2S3/S-C, l-In2S3/S-C and i-In2S3/C after long time ECR test at ? 0.95 V vs. RHE. (b) EDS mapping image of i- In2S3/S-C after 75 h ECR test at ? 0.95 V vs. RHE. S 2p (c) and In 3d (d) XPS spectra of i-In2S3/S-C before and after long time ECR test at ?0.95 V vs. RHE.
|
[1] | Jun Wu, Liqian Liu, Xinyue Yan, Gang Pan, Jiahao Bai, Chengbing Wang, Fuwei Li, Yong Li. Microenvironment engineering of nitrogen-doped hollow carbon spheres encapsulated with Pd catalysts for highly selective hydrodeoxygenation of biomass-derived vanillin in water [J]. Chinese Journal of Catalysis, 2025, 71(4): 267-284. |
[2] | Hao Liang, Shunan Zhang, Ruonan Zhang, Haozhi Zhou, Lin Xia, Yuhan Sun, Hui Wang. Strong interaction between Fe and Ti compositions for effective CO2 hydrogenation to light olefins [J]. Chinese Journal of Catalysis, 2025, 71(4): 146-157. |
[3] | Dezheng Li, Huimin Liu, Xuewen Xiao, Manqi Zhao, Dehua He, Yiming Lei. Carbon diffusion mechanism as an effective stability enhancement strategy: The case study of Ni-based catalyst for photothermal catalytic dry reforming of methane [J]. Chinese Journal of Catalysis, 2025, 70(3): 399-409. |
[4] | Huimei Duan, Xiaofei Li, Chuanhui Wang, Congyun Zhang, Kaiwen Yu, Lei Chen, Yunshang Zhang, Jiabin Ji, Xianfeng Yang, Dongjiang Yang. TiO2-facet-dependent effect on methane combustion over Ir/TiO2 catalysts [J]. Chinese Journal of Catalysis, 2025, 70(3): 378-387. |
[5] | Mingzhi Wang, Wensheng Fang, Deyu Zhu, Chenfeng Xia, Wei Guo, BaoYu Xia. Tandem design on electrocatalysts and reactors for electrochemical CO2 reduction [J]. Chinese Journal of Catalysis, 2025, 69(2): 1-16. |
[6] | Jiaxin Li, Yan Lv, Xueyan Wu, Xinyu Guo, Zhuojun Yang, Jixi Guo, Tianhua Zhou, Dianzeng Jia. Surface confinement of sub-1 nm Pt nanoclusters on 1D/2D NiO nanotubes/nanosheets as an effective electrocatalyst for urea-assisted energy-saving hydrogen production [J]. Chinese Journal of Catalysis, 2025, 69(2): 203-218. |
[7] | Yangyang Li, Jingyi Yang, Botao Qiao, Tao Zhang. Size-dependent strong metal-support interaction modulation of Pt/CoFe2O4 catalysts [J]. Chinese Journal of Catalysis, 2025, 69(2): 292-302. |
[8] | Wenjie Yu, Chao Feng, Ronghua Li, Beibei Zhang, Yanbo Li. Recent advances in tantalum nitride for photoelectrochemical water splitting [J]. Chinese Journal of Catalysis, 2025, 68(1): 51-82. |
[9] | Miao Zhang, Limin Zhang, Mingrui Wang, Guanghui Zhang, Chunshan Song, Xinwen Guo. The electronic interaction of encapsulating graphene layers with FeCo alloy promotes efficient CO2 Hydrogenation to light olefins [J]. Chinese Journal of Catalysis, 2025, 68(1): 366-375. |
[10] | Jialin Wang, Kaini Zhang, Ta Thi Thuy Nga, Yiqing Wang, Yuchuan Shi, Daixing Wei, Chung-Li Dong, Shaohua Shen. Chalcogen heteroatoms doped nickel-nitrogen-carbon single-atom catalysts with asymmetric coordination for efficient electrochemical CO2 reduction [J]. Chinese Journal of Catalysis, 2024, 64(9): 54-65. |
[11] | Chenyang Shen, Menghui Liu, Song He, Haibo Zhao, Chang-jun Liu. Advances in the studies of the supported ruthenium catalysts for CO2 methanation [J]. Chinese Journal of Catalysis, 2024, 63(8): 1-15. |
[12] | Haifang Mao, Yang Liu, Zhenmin Xu, Zhenfeng Bian. Defect-induced in situ electron-metal-support interactions on MOFs accelerating Fe(III) reduction for high-efficiency Fenton reactions [J]. Chinese Journal of Catalysis, 2024, 61(6): 247-258. |
[13] | Wangyan Gou, Yichen Wang, Mingkai Zhang, Xiaohe Tan, Yuanyuan Ma, Yongquan Qu. A review on fundamentals for designing stable ruthenium-based catalysts for the hydrogen and oxygen evolution reactions [J]. Chinese Journal of Catalysis, 2024, 60(5): 68-106. |
[14] | Tianhua Zhang, Haihui Hu, Jiaxin Li, Yinglong Gao, Lingling Li, Mingyuan Zhang, Xuanbei Peng, Yanliang Zhou, Jun Ni, Bingyu Lin, Jianxin Lin, Bing Zhu, Dongshuang Wu, Linjie Zhang, Lili Han, Lirong Zheng, Xiuyun Wang, Lilong Jiang. Tuning clusters-metal oxide promoters electronic interaction of Ru-based catalyst for ammonia synthesis under mild conditions [J]. Chinese Journal of Catalysis, 2024, 60(5): 209-218. |
[15] | Chao Feng, Yanbo Li. Self-healing mechanisms toward stable photoelectrochemical water splitting [J]. Chinese Journal of Catalysis, 2024, 60(5): 158-170. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||