Chinese Journal of Catalysis ›› 2024, Vol. 63: 1-15.DOI: 10.1016/S1872-2067(24)60090-2
• Reviews • Next Articles
Chenyang Shena,b, Menghui Liua, Song Hec, Haibo Zhaoc,*(), Chang-jun Liua,*(
)
Received:
2024-05-06
Accepted:
2024-06-22
Online:
2024-08-18
Published:
2024-08-19
Contact:
*E-mail: cjL@tju.edu.cn (C.-J. Liu), About author:
Haibo Zhao is a professor in the School of Energy and Power Engineering at Huazhong University of Science and Technology. Prof. Haibo Zhao is also a Fellow of the Combustion Institute. His research interests include the low-carbon combustion and high-value utilization of fossil fuels, as well as the flame synthesis of functional nanoparticles. He has been supported by the National Science Fund for Distinguished Young Scholars of China, Alexander von Humboldt Foundation, etc. His research work won the Distinguished Paper Award in the 38th International Symposium on Combustion, and the Best Paper Award in the 3rd International Conference on Chemical Looping, etc. He served as an editorial board member or associate editor of Energy & Fuels, Engineering, and Energy Environmental Focus.Supported by:
Chenyang Shen, Menghui Liu, Song He, Haibo Zhao, Chang-jun Liu. Advances in the studies of the supported ruthenium catalysts for CO2 methanation[J]. Chinese Journal of Catalysis, 2024, 63: 1-15.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(24)60090-2
Fig. 2. Thermodynamic analyses of CO2 methanation. (a) equilibrium CO2 conversion, CH4 and CO selectivity at 1 bar and 1/4 of CO2/H2; (b) the effect of the pressure on equilibrium CO2 conversion; (c) the effect of the pressure on CH4 selectivity; (d) the effect of CO2/H2 ratio on equilibrium CO2 conversion; (e) the effect of CO2/H2 ratio on CH4 selectivity. All thermodynamic analyses were conducted using the HSC Chemistry 9 software.
Fig. 3. (a-d) HAADF-STEM images and elemental mappings of Ru(SA)/CeO2 and Ru(NC)/CeO2. (e,f) HAADF-STEM and HR-TEM images of Ru(NP)/CeO2. Reprinted with permission from Ref. [54]. Copyright 2018, American Chemical Society. (g) Apparent activation energy as a function of ruthenium particle size for Ru/γ-Al2O3 catalysts. Reprinted with permission from Ref. [56]. Copyright 2019, Elsevier. (h) Configurations of CO2* and CO related species of Ru1/CeO2 and Ru4/CeO2 model catalysts. Reprinted with permission from Ref. [55]. Copyright 2021, American Chemical Society.
Intermediate | Ru1/Ru(0001) | Ru2/Ru(0001) | Ru3/Ru(0001) | Ru4/Ru(0001) |
---|---|---|---|---|
CO2* | -0.45 | -1.02 | -1.26 | -0.97 |
CO* | -1.67 | -2.07 | -2.03 | -1.95 |
O* | -5.51 | -6.36 | -6.39 | -6.03 |
H* | -2.62 | -2.87 | -2.87 | -2.79 |
CH4* | -0.31 | -0.23 | -0.14 | -0.10 |
CH3OH* | -0.96 | -0.82 | -0.79 | -0.54 |
H2O* | -0.87 | -0.73 | -0.59 | -0.81 |
CO2* configuration | | | | |
CO* + O* configuration | | | | |
Table 1 The adsorption energies (eV) of intermediates with configurations of CO2* and CO*+O* on Run/Ru(0001). Reprinted with permission from Ref. [46]. Copyright 2022, Elsevier.
Intermediate | Ru1/Ru(0001) | Ru2/Ru(0001) | Ru3/Ru(0001) | Ru4/Ru(0001) |
---|---|---|---|---|
CO2* | -0.45 | -1.02 | -1.26 | -0.97 |
CO* | -1.67 | -2.07 | -2.03 | -1.95 |
O* | -5.51 | -6.36 | -6.39 | -6.03 |
H* | -2.62 | -2.87 | -2.87 | -2.79 |
CH4* | -0.31 | -0.23 | -0.14 | -0.10 |
CH3OH* | -0.96 | -0.82 | -0.79 | -0.54 |
H2O* | -0.87 | -0.73 | -0.59 | -0.81 |
CO2* configuration | | | | |
CO* + O* configuration | | | | |
Fig. 5. Schematic illustration of the generation process for oxygen vacancy, Ce3+, and surface hydroxyl in Ru/CeO2 catalyst in the reduction process. Reprinted with permission from Ref. [59]. Copyright 2016, American Chemical Society.
Fig. 6. (a) Overview of the promoted formate pathway via hydroxyl groups. (b) Comparison on the formation of HCOO* species with and without surface OH* on Ru/CeO2. Reprinted with permission from Ref. [77]. Copyright 2021, American Chemical Society. (c) Schematic representation of the generation of hydroxyl groups and carbonate species in CO2 activation during the methanation process. Reprinted with permission from Ref. [79]. Copyright 2016, American Chemical Society.
Fig. 7. CO2 conversion and selectivity of the supported Ru catalysts for CO2 hydrogenation. (a) Ru/a-TiO2; (b) a-TiO2; (c) Ru/CeO2; (d) Ru/SiO2; (e) Ru/r-TiO2, (f) Ru/MoO3. Reaction conditions: 1.0 MPa, CO2/H2/Ar = 24/73/3, 3000 mL gcat-1 h-1. Reprinted with permission from Ref. [76]. Copyright 2024, American Chemical Society.
Catalyst | H2/CO2 (v/v%) | T (°C) | CO2 conversion (%) | CH4 selectivity (%) | TOF (h-1) | Ref. |
---|---|---|---|---|---|---|
Ru/TiO2 | 4/1 | 150 | 0 | 0 | 0 | [ |
Ru/TiO2 | 4/1 | 200 | 15 | 68 | 290 | [ |
Ru/TiO2 | 4/1 | 250 | 40 | 78 | 770 | [ |
Ru/TiO2 | 4/1 | 300 | 70 | 85 | 1350 | [ |
RuO2/TiO2 | 4/1 | 200 | 0 | 0 | 0 | [ |
RuO2/TiO2 | 4/1 | 250 | 25 | 75 | 450 | [ |
RuO2/TiO2 | 4/1 | 300 | 50 | 85 | 900 | [ |
Ru/TiO2 | 4/1 | 200 | 37 | >99 | 216 | [ |
Ru/γ-Al2O3 | 4/1 | 280 | <1 | >99 | 4720 | [ |
Ru/Ce0.9Cr0.1O2 | 4/1 | 225 | 5 | >99 | 223.9 | [ |
Ru/Ce0.9Cr0.1O2 | 4/1 | 250 | 70 | >99 | 540 | [ |
Ru/TiO2 | 3/1 | 200 | 1 | >99 | 15 | [ |
Ru/TiO2 | 3/1 | 250 | 3 | >99 | 45 | [ |
Ru/TiO2 | 3/1 | 300 | 8-21 | >99 | 119-298 | [ |
Ru/MnOx | 4/1 | 300 | 25 | 90 | 180 | [ |
Ru/Al2O3 | 4/1 | 300 | 32 | 94 | 1296 | [ |
Ru/CeO2 | 4/1 | 300 | 83 | 99 | 540 | [ |
Ru/ZnO | 4/1 | 300 | 1 | 6 | 14.4 | [ |
Ru/CeO2 | 4/1 | 450 | 55 | 99 | - | [ |
Ru/CeO2 | 4/1 | 150 | <10 | 99 | 2.2 ± 0.1 | [ |
Ru/CeO2 | 4/1 | 200 | 35 | >99 | - | [ |
Ru/CeO2 | 4/1 | 250 | 92.7 | >99 | - | [ |
Ru/CeO2 | 4/1 | 300 | 93 | - | - | [ |
Ru/α-Al2O3 | 4/1 | 200 | 0 | - | - | [ |
Ru/α-Al2O3 | 4/1 | 250 | 5 | >99 | 2.5 ± 0.2 | [ |
Ru/α-Al2O3 | 4/1 | 300 | 55 | - | - | [ |
Ru/TiO2 | 80.9/15.5 | 350 | 60 | >99 | 83 | [ |
0Al-Ru/SiC | 4/1 | 300 | 19.1 | - | 756 | [ |
10Al-Ru/SiC | 4/1 | 300 | 17.8 | - | 1188 | [ |
30Al-Ru/SiC | 4/1 | 300 | 17 | - | 1368 | [ |
70Al-Ru/SiC | 4/1 | 300 | 16 | - | 1584 | [ |
Ru@MIL-101 | 4/1 | 200 | 19 | - | 358 ± 46 | [ |
Ru@MIL-101@Silica nanofibrous veil + brushing treatment | 4/1 | 200 | 3.2 | - | 404 ± 6 | [ |
4/1 | 225 | 16 | - | 2064 ± 29 | [ | |
4/1 | 250 | 26 | - | 3257 ± 19 | [ | |
4/1 | 300 | 40 | - | 5134 ± 59 | [ |
Table 2 Overview of Ru-based CO2 methanation catalysts reported in literature.
Catalyst | H2/CO2 (v/v%) | T (°C) | CO2 conversion (%) | CH4 selectivity (%) | TOF (h-1) | Ref. |
---|---|---|---|---|---|---|
Ru/TiO2 | 4/1 | 150 | 0 | 0 | 0 | [ |
Ru/TiO2 | 4/1 | 200 | 15 | 68 | 290 | [ |
Ru/TiO2 | 4/1 | 250 | 40 | 78 | 770 | [ |
Ru/TiO2 | 4/1 | 300 | 70 | 85 | 1350 | [ |
RuO2/TiO2 | 4/1 | 200 | 0 | 0 | 0 | [ |
RuO2/TiO2 | 4/1 | 250 | 25 | 75 | 450 | [ |
RuO2/TiO2 | 4/1 | 300 | 50 | 85 | 900 | [ |
Ru/TiO2 | 4/1 | 200 | 37 | >99 | 216 | [ |
Ru/γ-Al2O3 | 4/1 | 280 | <1 | >99 | 4720 | [ |
Ru/Ce0.9Cr0.1O2 | 4/1 | 225 | 5 | >99 | 223.9 | [ |
Ru/Ce0.9Cr0.1O2 | 4/1 | 250 | 70 | >99 | 540 | [ |
Ru/TiO2 | 3/1 | 200 | 1 | >99 | 15 | [ |
Ru/TiO2 | 3/1 | 250 | 3 | >99 | 45 | [ |
Ru/TiO2 | 3/1 | 300 | 8-21 | >99 | 119-298 | [ |
Ru/MnOx | 4/1 | 300 | 25 | 90 | 180 | [ |
Ru/Al2O3 | 4/1 | 300 | 32 | 94 | 1296 | [ |
Ru/CeO2 | 4/1 | 300 | 83 | 99 | 540 | [ |
Ru/ZnO | 4/1 | 300 | 1 | 6 | 14.4 | [ |
Ru/CeO2 | 4/1 | 450 | 55 | 99 | - | [ |
Ru/CeO2 | 4/1 | 150 | <10 | 99 | 2.2 ± 0.1 | [ |
Ru/CeO2 | 4/1 | 200 | 35 | >99 | - | [ |
Ru/CeO2 | 4/1 | 250 | 92.7 | >99 | - | [ |
Ru/CeO2 | 4/1 | 300 | 93 | - | - | [ |
Ru/α-Al2O3 | 4/1 | 200 | 0 | - | - | [ |
Ru/α-Al2O3 | 4/1 | 250 | 5 | >99 | 2.5 ± 0.2 | [ |
Ru/α-Al2O3 | 4/1 | 300 | 55 | - | - | [ |
Ru/TiO2 | 80.9/15.5 | 350 | 60 | >99 | 83 | [ |
0Al-Ru/SiC | 4/1 | 300 | 19.1 | - | 756 | [ |
10Al-Ru/SiC | 4/1 | 300 | 17.8 | - | 1188 | [ |
30Al-Ru/SiC | 4/1 | 300 | 17 | - | 1368 | [ |
70Al-Ru/SiC | 4/1 | 300 | 16 | - | 1584 | [ |
Ru@MIL-101 | 4/1 | 200 | 19 | - | 358 ± 46 | [ |
Ru@MIL-101@Silica nanofibrous veil + brushing treatment | 4/1 | 200 | 3.2 | - | 404 ± 6 | [ |
4/1 | 225 | 16 | - | 2064 ± 29 | [ | |
4/1 | 250 | 26 | - | 3257 ± 19 | [ | |
4/1 | 300 | 40 | - | 5134 ± 59 | [ |
|
[1] | Xiaomin Ren, Huicong Dai, Xin Liu, Qihua Yang. Development of efficient catalysts for selective hydrogenation through multi-site division [J]. Chinese Journal of Catalysis, 2024, 62(7): 108-123. |
[2] | Shuyi Li, Changle Mu, Nianqiu He, Jie Xu, Yanping Zheng, Mingshu Chen. Surface dynamics of Rh/Al2O3 during propane dehydrogenation [J]. Chinese Journal of Catalysis, 2024, 62(7): 145-155. |
[3] | Jing Yan, Jiaqi Ni, Hongli Sun, Chenliang Su, Bin Liu. Progress in tracking electrochemical CO2 reduction intermediates over single-atom catalysts using operando ATR-SEIRAS [J]. Chinese Journal of Catalysis, 2024, 62(7): 32-52. |
[4] | Xin Deng, Caiyan Zheng, Weijie Li, Jiamin Wang, Di Yang, Zhenpeng Hu, Landong Li. Spontaneous dispersion of metallic nickel centers in inert metal substrate for the selective hydrogenation of carbon-carbon triple bonds [J]. Chinese Journal of Catalysis, 2024, 61(6): 259-268. |
[5] | Chongya Yang, Weijue Wang, Hongying Zhuo, Zheng Shen, Tianyu Zhang, Xiaofeng Yang, Yanqiang Huang. Phase engineering of Ru-based nanocatalysts for enhanced activity toward CO2 methanation [J]. Chinese Journal of Catalysis, 2024, 61(6): 226-236. |
[6] | Wangyan Gou, Yichen Wang, Mingkai Zhang, Xiaohe Tan, Yuanyuan Ma, Yongquan Qu. A review on fundamentals for designing stable ruthenium-based catalysts for the hydrogen and oxygen evolution reactions [J]. Chinese Journal of Catalysis, 2024, 60(5): 68-106. |
[7] | Zhibing Chen, Xintai Chen, Yali Lv, Xiaoling Mou, Jiahui Fan, Jingwei Li, Li Yan, Ronghe Lin, Yunjie Ding. Design of earth-abundant Ni3ZnC0.7@Ni@C catalyst for selective butadiene hydrogenation [J]. Chinese Journal of Catalysis, 2024, 60(5): 304-315. |
[8] | Huan Chen, Zhounan Yu, Bing Yang, Yafeng Zhang, Chunxia Che, Xiaoyan Liu, Feng Zhang, Wei Han, He Wen, Aiqin Wang, Tao Zhang. Fine tuning the dynamic PdCx formation for enhanced acetylene semi-hydrogenation: The role of gas environment and ZnO addition [J]. Chinese Journal of Catalysis, 2024, 60(5): 190-200. |
[9] | Yi Xie, Zhanyou Xu, Qian Lu, Ying Wang. Construction of efficient and stable low-temperature reverse-bias bipolar membrane electrolyser for CO2 reduction [J]. Chinese Journal of Catalysis, 2024, 59(4): 82-96. |
[10] | Zhentao Tu, Xiaoyang He, Xuan Liu, Dengke Xiong, Juan Zuo, Deli Wu, Jianying Wang, Zuofeng Chen. Electronic modification of Ni active sites by W for selective benzylamine oxidation and concurrent hydrogen production [J]. Chinese Journal of Catalysis, 2024, 58(3): 146-156. |
[11] | Nikolay Nesterov, Alexey Philippov, Vera Pakharukova, Evgeny Gerasimov, Stanislav Yakushkin, Oleg Martyanov. Primary alcohols as killers of Ni-based catalysts in transfer hydrogenation [J]. Chinese Journal of Catalysis, 2024, 58(3): 168-179. |
[12] | Qian Zhang, Xunzhu Jiang, Yang Su, Yang Zhao, Botao Qiao. Catalytic propane dehydrogenation by anatase supported Ni single-atom catalysts [J]. Chinese Journal of Catalysis, 2024, 57(2): 105-113. |
[13] | Bai-Chuan Zhou, Wen-Cui Li, Jia Wang, Dan-Hui Sun, Shi-Yu Xiang, Xin-Qian Gao, An-Hui Lu. PO43- coordinated Co2+ species on yttrium phosphate boosting the valorization of ethanol to butadiene [J]. Chinese Journal of Catalysis, 2024, 56(1): 166-175. |
[14] | Ke-Gong Cao, Tian-Yu Gao, Li-Li Liao, Chuan-Kun Ran, Yuan-Xu Jiang, Wei Zhang, Qi Zhou, Jian-Heng Ye, Yu Lan, Da-Gang Yu. Photocatalytic carboxylation of styrenes with CO2 via C=C double bond cleavage [J]. Chinese Journal of Catalysis, 2024, 56(1): 74-80. |
[15] | Zhe Wang, Chunpeng Wang, Bing Lu, Zhirong Chen, Yong Wang, Shanjun Mao. Electronic perturbation-promoted interfacial pathway for facile C-H dissociation [J]. Chinese Journal of Catalysis, 2024, 56(1): 130-138. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||