Chinese Journal of Catalysis ›› 2024, Vol. 61: 247-258.DOI: 10.1016/S1872-2067(24)60047-1
• Articles • Previous Articles Next Articles
Haifang Maoa, Yang Liua, Zhenmin Xua,*(), Zhenfeng Bianb,*(
)
Received:
2024-03-03
Accepted:
2024-04-20
Online:
2024-06-18
Published:
2024-06-20
Contact:
* E-mail: Supported by:
Haifang Mao, Yang Liu, Zhenmin Xu, Zhenfeng Bian. Defect-induced in situ electron-metal-support interactions on MOFs accelerating Fe(III) reduction for high-efficiency Fenton reactions[J]. Chinese Journal of Catalysis, 2024, 61: 247-258.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(24)60047-1
Fig. 1. (a) Schematic diagram of the synthesis process of d-NU. SEM images of NU (b), and d-NU (c). (d) TEM images of d-NU. (e) Elemental mapping images of d-NU.
Fig. 2. XPS spectra of O 1s (a), C 1s (b) and Zr 3d (c) for d-NU and NU. The XANES K-edge spectra (d) and the FT-EXAFS curves (e) of d-NU and NU with different references. (f) EXAFS fitting curve of d-NU. WT images for the k3-weighted Zr K-edge EXAFS signals of d-NU (g), NU (h) and ZrO2 (i).
Fig. 3. Different influencing factors of d-NU/Fe3+/H2O2 system: (a) dosage of d-NU; (b) dosage of Fe2(SO4)3; (c) dosage of H2O2; (d,e) 4-CP removal in different systems; (f) pH value influence.
Fig. 4. (a) The effect of different scavengers on 4-CP degradation. EPR spectra of DMPO-?OH (b) and TEMP-1O2 (c) for different systems. (d) Time-depended ?OH concentration test by HPLC used DMSO as indicator. The calculated concentration of ?OH (e) and 1O2 (f) in different systems.
Fig. 5. XPS spectra of Fe 2p (a), Zr 3d (b) and O 1s (c) of d-NU before and after reaction. (d) Schematic of the setup used for KPFM measurements. (e) Surface potential profiles of d-NU and NU under visible illumination. KPFM spectra of d-NU-Fe (f) and d-NU (g). (h) Reaction pathways of Fe(OH)2+ reduction on the d-NU and NU surface (inset: the corresponding intermediate structures).
Fig. 6. UV-visible absorbance spectra (a), the corresponding Tauc plots (b) and Mott-Schottky plots (c) of d-NU and NU. Photocurrent-time response profiles (d), electrochemical impedances (e) and Time-resolved PL spectra (f) of d-NU and NU.
Fig. 7. (a) The possible degradation pathway of 4-CP, (b) growth inhibition, (c) daphnia magna LC50, (d) mutagenicity and (e) bioaccumulation factor of 4-CP and intermediates. (f) Reusability tests of d-NU during successive ten-time runs. (g) Capability of the d-NU/Fe3+/H2O2 system for degrading various pollutants.
|
[1] | Wei Xu, Chao Zhen, Huaze Zhu, Tingting Yao, Jianhang Qiu, Yan Liang, Shuo Bai, Chunlin Chen, Hui-Ming Cheng, Gang Liu. A Ta3N5 photoanode with few deep-level defects derived from topologic transition of ammonium tantalum oxyfluoride for ultralow-bias photoelectrochemical water splitting [J]. Chinese Journal of Catalysis, 2024, 61(6): 144-153. |
[2] | Jieting Ding, Hao-Fan Wang, Kui Shen, Xiaoming Wei, Liyu Chen, Yingwei Li. Amorphization of MOFs with rich active sites and high electronic conductivity for hydrazine oxidation [J]. Chinese Journal of Catalysis, 2024, 60(5): 351-359. |
[3] | Zhichao Wang, Mengfan Wang, Yunfei Huan, Tao Qian, Jie Xiong, Chengtao Yang, Chenglin Yan. Defect and interface engineering for promoting electrocatalytic N-integrated CO2 co-reduction [J]. Chinese Journal of Catalysis, 2024, 57(2): 1-17. |
[4] | Jin-Nian Hu, Ling-Chan Tian, Haiyan Wang, Yang Meng, Jin-Xia Liang, Chun Zhu, Jun Li. Theoretical screening of single-atom electrocatalysts of MXene-supported 3d-metals for efficient nitrogen reduction [J]. Chinese Journal of Catalysis, 2023, 52(9): 252-262. |
[5] | Lei Zhao, Zhen Zhang, Zhaozhao Zhu, Pingbo Li, Jinxia Jiang, Tingting Yang, Pei Xiong, Xuguang An, Xiaobin Niu, Xueqiang Qi, Jun Song Chen, Rui Wu. Integration of atomic Co-N5 sites with defective N-doped carbon for efficient zinc-air batteries [J]. Chinese Journal of Catalysis, 2023, 51(8): 216-224. |
[6] | Xiaohan Wang, Han Tian, Xu Yu, Lisong Chen, Xiangzhi Cui, Jianlin Shi. Advances and insights in amorphous electrocatalyst towards water splitting [J]. Chinese Journal of Catalysis, 2023, 51(8): 5-48. |
[7] | Run Jiang, Zelong Qiao, Haoxiang Xu, Dapeng Cao. Defect engineering of Fe-N-C single-atom catalysts for oxygen reduction reaction [J]. Chinese Journal of Catalysis, 2023, 48(5): 224-234. |
[8] | Xiaoni Liu, Xiaobin Liu, Caixia Li, Bo Yang, Lei Wang. Defect engineering of electrocatalysts for metal-based battery [J]. Chinese Journal of Catalysis, 2023, 45(2): 27-87. |
[9] | Cheng Liu, Hurunqing Liu, Jimmy C. Yu, Ling Wu, Zhaohui Li. Strategies to engineer metal-organic frameworks for efficient photocatalysis [J]. Chinese Journal of Catalysis, 2023, 55(12): 1-19. |
[10] | Junhao Yang, Lulu An, Shuang Wang, Chenhao Zhang, Guanyu Luo, Yingquan Chen, Huiying Yang, Deli Wang. Defects engineering of layered double hydroxide-based electrocatalyst for water splitting [J]. Chinese Journal of Catalysis, 2023, 55(12): 116-136. |
[11] | Ning Zhang, Jiayi Du, Na Zhou, Depeng Wang, Di Bao, Haixia Zhong, Xinbo Zhang. High-valence metal-doped amorphous IrOx as active and stable electrocatalyst for acidic oxygen evolution reaction [J]. Chinese Journal of Catalysis, 2023, 53(10): 134-142. |
[12] | Menghui Chen, Yongting Chen, Zhili Yang, Jin Luo, Jialin Cai, Joey Chung-Yen Jung, Jiujun Zhang, Shengli Chen, Shiming Zhang. Synergy of staggered stacking confinement and microporous defect fixation for high-density atomic FeII-N4 oxygen reduction active sites [J]. Chinese Journal of Catalysis, 2022, 43(7): 1870-1878. |
[13] | Tianmi Tang, Zhenlu Wang, Jingqi Guan. A review of defect engineering in two-dimensional materials for electrocatalytic hydrogen evolution reaction [J]. Chinese Journal of Catalysis, 2022, 43(3): 636-678. |
[14] | Caiqin Wang, Danil Bukhvalov, M. Cynthia Goh, Yukou Du, Xiaofei Yang. Hierarchical AgAu alloy nanostructures for highly efficient electrocatalytic ethanol oxidation [J]. Chinese Journal of Catalysis, 2022, 43(3): 851-861. |
[15] | Wenxiu Yang, Weiyu Zhang, Rui Liu, Fan Lv, Yuguang Chao, Zichen Wang, Shaojun Guo. Amorphous Ru nanoclusters onto Co-doped 1D carbon nanocages enables efficient hydrogen evolution catalysis [J]. Chinese Journal of Catalysis, 2022, 43(1): 110-115. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||