Chinese Journal of Catalysis ›› 2022, Vol. 43 ›› Issue (7): 1870-1878.DOI: 10.1016/S1872-2067(21)63992-X
• Articles • Previous Articles Next Articles
Menghui Chena,†, Yongting Chenb,†, Zhili Yanga, Jin Luob, Jialin Caia, Joey Chung-Yen Junga, Jiujun Zhanga, Shengli Chenb,#(), Shiming Zhanga,*(
)
Received:
2021-10-29
Accepted:
2021-12-02
Online:
2022-07-18
Published:
2022-05-20
Contact:
Shengli Chen, Shiming Zhang
About author:
First author contact:†Contributed to this work equally.
Supported by:
Menghui Chen, Yongting Chen, Zhili Yang, Jin Luo, Jialin Cai, Joey Chung-Yen Jung, Jiujun Zhang, Shengli Chen, Shiming Zhang. Synergy of staggered stacking confinement and microporous defect fixation for high-density atomic FeII-N4 oxygen reduction active sites[J]. Chinese Journal of Catalysis, 2022, 43(7): 1870-1878.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(21)63992-X
Fig. 1. SEM (a), TEM (b), AC-HAADF-STEM (c) and corresponding elemental mapping of C (red), N (peacock blue), and Fe (yellow), and high-resolution AC-HAADF-STEM images (d) of the c-(FePc+Pc+ZnCl2) catalyst. Note that the white dots indicated by yellow circles in (d) are Fe atoms.
Fig. 2. DFT calculations. (a) Possible structures of MPc combined with Pc. (b) binding energies of Fe and average Fe-N bond length. (c) HOMO and LUMO isosurfaces for the calculated FePc molecule and FePc+Pc configuration.
Fig. 3. XRD patterns (a), pore-size distributions and N2 adsorption-desorption isotherms (inset) (b), XPS survey spectra (c) and deconvoluted N1s spectra (d) for the c-FePc, c-(FePc+Pc) and c-(FePc+Pc+ZnCl2) catalysts.
Sample | Total N | Pyridinic N | Metal-Nx | Pyrrolic N | Graphitic N | Oxidized N |
---|---|---|---|---|---|---|
c-FePc | 2.82 | 0.21 | 0.13 | 0.56 | 1.33 | 0.59 |
c-(FePc+Pc) | 3.06 | 0.30 | 0.17 | 0.57 | 1.50 | 0.52 |
c-(FePc+Pc+ZnCl2) | 3.14 | 0.37 | 0.25 | 0.61 | 1.68 | 0.23 |
Table 1 Surface N species contents ((at%)) in various catalysts, as determined by XPS analysis.
Sample | Total N | Pyridinic N | Metal-Nx | Pyrrolic N | Graphitic N | Oxidized N |
---|---|---|---|---|---|---|
c-FePc | 2.82 | 0.21 | 0.13 | 0.56 | 1.33 | 0.59 |
c-(FePc+Pc) | 3.06 | 0.30 | 0.17 | 0.57 | 1.50 | 0.52 |
c-(FePc+Pc+ZnCl2) | 3.14 | 0.37 | 0.25 | 0.61 | 1.68 | 0.23 |
Catalyst | Component | IS (mm s-1) | QS (mm s-1) | HF (T) | Real Area (%) | Assignment |
---|---|---|---|---|---|---|
c-FePc | Singlet 1 | 0.05 | — | — | 8.7 | γ-Fe |
Doublet 1 | 0.26 | 3.52 | — | 2.6 | FeIIN4/C, medium spin | |
Doublet 2 | 0.51 | 0.43 | — | 3.3 | FeIIN4/C, low spin | |
Sextet 1 | 0.46 | -0.12 | 49.692 | 9.3 | Fe3O4 | |
Sextet 2 | 0.59 | -0.32 | 45.319 | 2.3 | Fe3O4 | |
Sextet 3 | 0.13 | -0.05 | 33.061 | 7.0 | α-Fe | |
Sextet 4 | 0.34 | -0.02 | 20.414 | 66.8 | Fe3C | |
c-(FePc+Pc+ZnCl2) | Doublet 1 | 0.42 | 3.32 | — | 32.9 | FeIIN4/C, medium spin |
Doublet 2 | 0.35 | 0.89 | — | 52.3 | FeIIN4/C, low spin | |
Doublet 3 | 0.52 | 1.93 | — | 14.9 | FeIIN2+2/C, high spin |
Table 2 Mo?ssbauer parameters for the fitted components and their assignments for c-FePc and c-(FePc+Pc+ZnCl2).
Catalyst | Component | IS (mm s-1) | QS (mm s-1) | HF (T) | Real Area (%) | Assignment |
---|---|---|---|---|---|---|
c-FePc | Singlet 1 | 0.05 | — | — | 8.7 | γ-Fe |
Doublet 1 | 0.26 | 3.52 | — | 2.6 | FeIIN4/C, medium spin | |
Doublet 2 | 0.51 | 0.43 | — | 3.3 | FeIIN4/C, low spin | |
Sextet 1 | 0.46 | -0.12 | 49.692 | 9.3 | Fe3O4 | |
Sextet 2 | 0.59 | -0.32 | 45.319 | 2.3 | Fe3O4 | |
Sextet 3 | 0.13 | -0.05 | 33.061 | 7.0 | α-Fe | |
Sextet 4 | 0.34 | -0.02 | 20.414 | 66.8 | Fe3C | |
c-(FePc+Pc+ZnCl2) | Doublet 1 | 0.42 | 3.32 | — | 32.9 | FeIIN4/C, medium spin |
Doublet 2 | 0.35 | 0.89 | — | 52.3 | FeIIN4/C, low spin | |
Doublet 3 | 0.52 | 1.93 | — | 14.9 | FeIIN2+2/C, high spin |
Fig. 5. CV curves (a), ORR polarization curves (b) and half-wave potential (E1/2) and kinetic current density (jk) (c) at 0.9 V (vs. RHE) for c-FePc, c-(FePc+Pc), c-(FePc+Pc+ZnCl2) and Pt/C. Electron transfer number (n) and H2O2 yield (d), methanol tolerance (e) and durability test (f) at 0.70 V (vs. RHE) for c-(FePc+Pc+ZnCl2) and 20 wt% Pt/C.
|
[1] | Lei Zhao, Zhen Zhang, Zhaozhao Zhu, Pingbo Li, Jinxia Jiang, Tingting Yang, Pei Xiong, Xuguang An, Xiaobin Niu, Xueqiang Qi, Jun Song Chen, Rui Wu. Integration of atomic Co-N5 sites with defective N-doped carbon for efficient zinc-air batteries [J]. Chinese Journal of Catalysis, 2023, 51(8): 216-224. |
[2] | Liyuan Gong, Ying Wang, Jie Liu, Xian Wang, Yang Li, Shuai Hou, Zhijian Wu, Zhao Jin, Changpeng Liu, Wei Xing, Junjie Ge. Reshaping the coordination and electronic structure of single atom sites on the right branch of ORR volcano plot [J]. Chinese Journal of Catalysis, 2023, 50(7): 352-360. |
[3] | Guangying Zhang, Xu Liu, Xinxin Zhang, Zhijian Liang, Gengyu Xing, Bin Cai, Di Shen, Lei Wang, Honggang Fu. Phosphate-decorated Fe-N-C to promote electrocatalytic oxygen reaction activities for highly stable zinc-air batteries [J]. Chinese Journal of Catalysis, 2023, 49(6): 141-151. |
[4] | Run Jiang, Zelong Qiao, Haoxiang Xu, Dapeng Cao. Defect engineering of Fe-N-C single-atom catalysts for oxygen reduction reaction [J]. Chinese Journal of Catalysis, 2023, 48(5): 224-234. |
[5] | Wenjing Zhang, Jing Li, Zidong Wei. Carbon-based catalysts of the oxygen reduction reaction: Mechanistic understanding and porous structures [J]. Chinese Journal of Catalysis, 2023, 48(5): 15-31. |
[6] | Qi-Ni Zhan, Ting-Yu Shuai, Hui-Min Xu, Chen-Jin Huang, Zhi-Jie Zhang, Gao-Ren Li. Syntheses and applications of single-atom catalysts for electrochemical energy conversion reactions [J]. Chinese Journal of Catalysis, 2023, 47(4): 32-66. |
[7] | Tianmi Tang, Yin Wang, Jingyi Han, Qiaoqiao Zhang, Xue Bai, Xiaodi Niu, Zhenlu Wang, Jingqi Guan. Dual-atom Co-Fe catalysts for oxygen reduction reaction [J]. Chinese Journal of Catalysis, 2023, 46(3): 48-55. |
[8] | Zexing Wu, Yuxiao Gao, Zixuan Wang, Weiping Xiao, Xinping Wang, Bin Li, Zhenjiang Li, Xiaobin Liu, Tianyi Ma, Lei Wang. Surface-enriched ultrafine Pt nanoparticles coupled with defective CoP as efficient trifunctional electrocatalyst for overall water splitting and flexible Zn-air battery [J]. Chinese Journal of Catalysis, 2023, 46(3): 36-47. |
[9] | Xuan Liu, Jiashun Liang, Qing Li. Design principle and synthetic approach of intermetallic Pt-M alloy oxygen reduction catalysts for fuel cells [J]. Chinese Journal of Catalysis, 2023, 45(2): 17-26. |
[10] | Zhechen Fan, Hao Wan, Hao Yu, Junjie Ge. Rational design of Fe-M-N-C based dual-atom catalysts for oxygen reduction electrocatalysis [J]. Chinese Journal of Catalysis, 2023, 54(11): 56-87. |
[11] | Suwei Xia, Qixing Zhou, Ruoxu Sun, Lizhang Chen, Mingyi Zhang, Huan Pang, Lin Xu, Jun Yang, Yawen Tang. In-situ immobilization of CoNi nanoparticles into N-doped carbon nanotubes/nanowire-coupled superstructures as an efficient Mott-Schottky electrocatalyst toward electrocatalytic oxygen reduction [J]. Chinese Journal of Catalysis, 2023, 54(11): 278-289. |
[12] | Yaojia Cheng, Haoqiang Song, Jingkun Yu, Jiangwei Chang, Geoffrey I. N. Waterhouse, Zhiyong Tang, Bai Yang, Siyu Lu. Carbon dots-derived carbon nanoflowers decorated with cobalt single atoms and nanoparticles as efficient electrocatalysts for oxygen reduction [J]. Chinese Journal of Catalysis, 2022, 43(9): 2443-2452. |
[13] | Xue Bai, Jingqi Guan. MXenes for electrocatalysis applications: Modification and hybridization [J]. Chinese Journal of Catalysis, 2022, 43(8): 2057-2090. |
[14] | Syed Shoaib Ahmad Shah, Tayyaba Najam, Jiao Yang, Muhammad Sufyan Javed, Lishan Peng, Zidong Wei. Modulating the microenvironment structure of single Zn atom: ZnN4P/C active site for boosted oxygen reduction reaction [J]. Chinese Journal of Catalysis, 2022, 43(8): 2193-2201. |
[15] | Chun-Yu Qiu, Li-yang Wan, Yu-Cheng Wang, Muhammad Rauf, Yu-Hao Hong, Jia-yin Yuan, Zhi-You Zhou, Shi-Gang Sun. Revealing the concentration of hydrogen peroxide in fuel cell catalyst layers by an in-operando approach [J]. Chinese Journal of Catalysis, 2022, 43(7): 1918-1926. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||