Chinese Journal of Catalysis ›› 2023, Vol. 46: 36-47.DOI: 10.1016/S1872-2067(22)64198-6
• Articles • Previous Articles Next Articles
Zexing Wua, Yuxiao Gaoa, Zixuan Wanga, Weiping Xiaoc, Xinping Wanga, Bin Lid,*(), Zhenjiang Lid, Xiaobin Liub, Tianyi Mae, Lei Wanga,b,*()
Received:
2022-09-06
Accepted:
2022-11-23
Online:
2023-03-18
Published:
2023-02-21
Contact:
*E-mail: binli@qust.edu.cn (B. Li), inorchemwl@126.com (L. Wang)
Supported by:
Zexing Wu, Yuxiao Gao, Zixuan Wang, Weiping Xiao, Xinping Wang, Bin Li, Zhenjiang Li, Xiaobin Liu, Tianyi Ma, Lei Wang. Surface-enriched ultrafine Pt nanoparticles coupled with defective CoP as efficient trifunctional electrocatalyst for overall water splitting and flexible Zn-air battery[J]. Chinese Journal of Catalysis, 2023, 46: 36-47.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(22)64198-6
Fig. 1. (a) The synthesis of Pt/d-CoP/NPC. (b) XRD pattern of Pt/d-CoP/NPC. Low (c) and high (d) TEM images of Pt/d-CoP/NPC. (e) The electron paramagnetic resonance spectra of CoP/NPC and d-CoP/NPC. (f?j) EDX mappings of N, C, P, Pt and Co for Pt/d-CoP/NPC.
Fig. 2. (a) The XPS survey scan of Pt/d-CoP/NPC. (b) The P 2p spectrum of Pt/d-CoP/NPC. (c) The Co 2p spectrum of Pt/d-CoP/NPC and d-CoP/NPC. (d) The Pt 4f spectrum of Pt/d-CoP/NPC and Pt/C. (e) The Raman spectrum of Pt/d-CoP/NPC and d-CoP/NPC. (f) The FTIR spectrum of Pt/d-CoP/NPC.
Fig. 3. (a) The LSVs of CoP/NPC, d-CoP/NPC, Pt/d-CoP/NPC and Pt/C in 0.1 mol/L KOH. (b) The LSVs of Pt/d-CoP/NPC at different rotating rates and the K-L plots (inset). (c) The comparison of mass activity for Pt/d-CoP/NPC and Pt/C. (d) The electron transfer number and yield of H2O2 for Pt/d-CoP/NPC. (e) The current-time test of Pt/d-CoP/NPC at 0.82 V. (f) The comparison of half-wave potential of Pt/d-CoP/NPC and the recently reported electrocatalysts.
Fig. 4. (a) Reaction intermediates adsorption configurations on Pt/d-CoP/NPC (Pt site) for ORR. (b) The differential charge density distributions between adsorbed Pt and CoP. (c) Free energy diagrams of ORR for Pt/d-CoP/NPC and Pt (111). (d) The density of states (DOS) of Pt/d-CoP/NPC.
Fig. 5. (a) The LSVs of CoP/NPC, d-CoP/NPC, Pt/d-CoP/NPC and RuO2 in 1 mol/L KOH for OER and the overpotential in 10 and 100 mA/cm2 of CoP/NPC, d-CoP/NPC, Pt/d-CoP/NPC and RuO2 (inset). (b) The illustration of the Zn-air battery device. (c) The open-circuit voltage of liquid rechargeable Zn-air battery for Pt/d-CoP/NPC. (d) The charge and discharge polarization curves of Pt/d-CoP/NPC in liquid Zn-air battery. (e) The power density of Pt/d-CoP/NPC in liquid Zn-air battery. (f) The stability of charge and discharge in liquid Zn-air battery. (g) The stability of charge and discharge of Pt/d-CoP/NPC in flexible battery. (h) The small fans spin driven by flexible battery.
Fig. 6. (a) LSV curves of CoP/NPC, d-CoP/NPC, Pt/d-CoP/NPC and Pt/C for HER in 1 mol/L KOH. (b) Double layer capacitance of the samples. (c) In situ Raman spectroscopy analysis of HER for Pt/d-CoP/NPC. (d) LSVs in 0.5 mol/L H2SO4 of CoP/NPC, d-CoP/NPC, Pt/d-CoP/NPC and Pt/C for HER. (e) Tafel plots of researched samples in 0.5 mol/L H2SO4. (f) Comparison of Pt/d-CoP/NPC with related reported work. (g) LSVs in 1 mol/L PBS of CoP/NPC, d-CoP/NPC, Pt/d-CoP/NPC and Pt/C for HER. (h) Tafel plots in 1 mol/L PBS of CoP/NPC, d-CoP/NPC, Pt/d-CoP/NPC and Pt/C. (i) Stability test of Pt/d-CoP/NPC performed in 1 mol/L PBS for 24 h under a constant potential of -196 mV (no iR compensation).
Fig. 6. (a) LSV curves of CoP/NPC, d-CoP/NPC, Pt/d-CoP/NPC and Pt/C for HER in 1 mol/L KOH. (b) Double layer capacitance of the samples. (c) In situ Raman spectroscopy analysis of HER for Pt/d-CoP/NPC. (d) LSVs in 0.5 mol/L H2SO4 of CoP/NPC, d-CoP/NPC, Pt/d-CoP/NPC and Pt/C for HER. (e) Tafel plots of researched samples in 0.5 mol/L H2SO4. (f) Comparison of Pt/d-CoP/NPC with related reported work. (g) LSVs in 1 mol/L PBS of CoP/NPC, d-CoP/NPC, Pt/d-CoP/NPC and Pt/C for HER. (h) Tafel plots in 1 mol/L PBS of CoP/NPC, d-CoP/NPC, Pt/d-CoP/NPC and Pt/C. (i) Stability test of Pt/d-CoP/NPC performed in 1 mol/L PBS for 24 h under a constant potential of -196 mV (no iR compensation).
Fig. 7. (a) Single electrolytic cell in 1 mol/L KOH of the overall water-splitting. (b) The cell voltage of Pt/d-CoP/NPC and related reporting work. (c) Stability test of Pt/d-CoP/NPC || Pt/d-CoP/NPC at a cell voltage of 1.54 V. (d) The Stirling engine driven by overall water-splitting using Pt/d-CoP/NPC || Pt/d-CoP/NPC and the photo of bubbles. (e) The photo of bubbles for wind energy powering the overall water-splitting cell. (f) Self-assembled rechargeable flexible Zn-air battery connected to Pt/d-CoP/NPC || Pt/d-CoP/NPC.
|
[1] | Huan Chen, Zhounan Yu, Bing Yang, Yafeng Zhang, Chunxia Che, Xiaoyan Liu, Feng Zhang, Wei Han, He Wen, Aiqin Wang, Tao Zhang. Fine tuning the dynamic PdCx formation for enhanced acetylene semi-hydrogenation: The role of gas environment and ZnO addition [J]. Chinese Journal of Catalysis, 2024, 60(5): 190-200. |
[2] | Yongbiao Hua, Kumar Vikrant, Ki-Hyun Kim, Philippe M. Heynderickx, Danil W. Boukhvalov. Alkali-modified copper manganite spinel for room temperature catalytic oxidation of formaldehyde in air [J]. Chinese Journal of Catalysis, 2024, 60(5): 337-350. |
[3] | Wei Liao, Qian Zhou, Jin Long, Chenzhong Wu, Bin Wang, Qiong Peng, Jianxin Cao, Qingmei Wang. Vacancy engineering of carbon support strengthens the interaction with in-situ synthesized Pt nanodendrites for boosted oxygen reduction electrocatalysis [J]. Chinese Journal of Catalysis, 2024, 59(4): 260-271. |
[4] | Zhiyuan Yang, Yan Zhang, Juanding Xiao, Junying Wang, Junzhong Wang. Enhancing oxygen reduction of Fe-N-C active sites onto graphene via bismuth sacrifice for Zn-air batteries [J]. Chinese Journal of Catalysis, 2024, 59(4): 272-281. |
[5] | De-Gui Wu, Xiao-Gen Xiong, Zhong-Dong Zhao, Shu-Qin Song, Zhao-Bin Ding. Unravelling ligand topology effect on the binding of oxygen reduction reaction intermediates on Fe-Nx-C single-atom catalysts [J]. Chinese Journal of Catalysis, 2024, 59(4): 214-224. |
[6] | Qi Li, Jiehao Li, Huimin Bai, Fatang Li. Progress on facet engineering of catalysts for application in photo/electro-catalysis [J]. Chinese Journal of Catalysis, 2024, 58(3): 86-104. |
[7] | Xingxing Jiang, Yuxin Zhao, Yan Kong, Jianju Sun, Shangzhao Feng, Qi Hu, Hengpan Yang, Chuanxin He. Adequately stabilized and exposed copper heterostructure for CO2 electroreduction to ethanol with ultrahigh mass activity [J]. Chinese Journal of Catalysis, 2024, 58(3): 216-225. |
[8] | Nikolay Nesterov, Alexey Philippov, Vera Pakharukova, Evgeny Gerasimov, Stanislav Yakushkin, Oleg Martyanov. Primary alcohols as killers of Ni-based catalysts in transfer hydrogenation [J]. Chinese Journal of Catalysis, 2024, 58(3): 168-179. |
[9] | Xiangqi Zhou, Lili Li, Jun-Gang Wang, Zhanbo Li, Xiji Shao, Fupeng Cheng, Linjuan Zhang, Jian-Qiang Wang, Akhil Jain, Tao Lin, Chao Jing. Unraveling the electro-oxidation steps of methanol on a single nanoparticle by in situ nanoplasmonic scattering spectroscopy [J]. Chinese Journal of Catalysis, 2024, 57(2): 59-67. |
[10] | Giday Fisseha, Ya’nan Yu, Shaojie Lu, Yiping Hu, Yu Zhou, Qin Yue. A novel core-shell nanostructure of Ti-Au nanocrystal with PtNi alloy skin: Enhancing the durability for oxygen reduction reaction [J]. Chinese Journal of Catalysis, 2024, 56(1): 81-87. |
[11] | Kai Fan, Qinming Wu, Shuo Liu, Haiyu Kong, Sen Wang, Eduard Kunkes, Trees De Baerdemaeker, Andrei-Nicolae Parvulescu, Nils Bottke, Toshiyuki Yokoi, Dirk E. De Vos, Xiangju Meng, Weiping Zhang, Feng-Shou Xiao. Adjusting Al location in the framework of ITH zeolites for catalytic conversion of methanol to olefins [J]. Chinese Journal of Catalysis, 2024, 56(1): 114-121. |
[12] | Hui Gao, Gong Zhang, Dongfang Cheng, Yongtao Wang, Jing Zhao, Xiaozhi Li, Xiaowei Du, Zhi-Jian Zhao, Tuo Wang, Peng Zhang, Jinlong Gong. Steering electrochemical carbon dioxide reduction to alcohol production on Cu step sites [J]. Chinese Journal of Catalysis, 2023, 52(9): 187-195. |
[13] | Lei Zhao, Zhen Zhang, Zhaozhao Zhu, Pingbo Li, Jinxia Jiang, Tingting Yang, Pei Xiong, Xuguang An, Xiaobin Niu, Xueqiang Qi, Jun Song Chen, Rui Wu. Integration of atomic Co-N5 sites with defective N-doped carbon for efficient zinc-air batteries [J]. Chinese Journal of Catalysis, 2023, 51(8): 216-224. |
[14] | Bowen Liu, Jiajie Cai, Jianjun Zhang, Haiyan Tan, Bei Cheng, Jingsan Xu. Simultaneous benzyl alcohol oxidation and H2 generation over MOF/CdS S-scheme photocatalysts and mechanism study [J]. Chinese Journal of Catalysis, 2023, 51(8): 204-215. |
[15] | Liyuan Gong, Ying Wang, Jie Liu, Xian Wang, Yang Li, Shuai Hou, Zhijian Wu, Zhao Jin, Changpeng Liu, Wei Xing, Junjie Ge. Reshaping the coordination and electronic structure of single atom sites on the right branch of ORR volcano plot [J]. Chinese Journal of Catalysis, 2023, 50(7): 352-360. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||