Chinese Journal of Catalysis ›› 2023, Vol. 55: 1-19.DOI: 10.1016/S1872-2067(23)64556-5
• Reviews • Next Articles
Cheng Liua, Hurunqing Liua, Jimmy C. Yua,b, Ling Wua,*(), Zhaohui Lia,*(
)
Received:
2023-09-12
Accepted:
2023-10-31
Online:
2023-12-18
Published:
2023-12-07
Contact:
*E-mail: About author:
Ling Wu (State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University) received his Ph.D degree in 2004 from The Chinese University of Hong Kong. His research interests currently focus on photocatalysis and new materials based on MOFs and ultrathin inorganic metal oxide nanosheets, especially revealing the relationship of the surface structure and performances at molecular level. He has coauthored more than 260 peer-reviewed papers.Supported by:
Cheng Liu, Hurunqing Liu, Jimmy C. Yu, Ling Wu, Zhaohui Li. Strategies to engineer metal-organic frameworks for efficient photocatalysis[J]. Chinese Journal of Catalysis, 2023, 55: 1-19.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(23)64556-5
Fig. 1. Concept of MOFs by interconnecting metal ions/clusters with multi-dentated organic ligands to form a crystalline network via the coordination bonds.
Fig. 4. Mechanistic proposal to rationalize the photochemical behavior of mixed NH2-UiO-66(Zr/Ti). Reprinted with permission from Ref. [59]. Copyright 2017, American Chemical Society.
Fig. 5. (a) TEM image and corresponding EDS elemental mapping images of MIL-100(Fe0.63Al0.37). Reprinted with permission from Ref. [61]. Copyright 2022, Elsevier. (b) The mechanism of NNU-31-M CO2RR with H2O oxidation. The free-energy profile for the CO2RR pathway (c) and OER pathway (d). Reprinted with permission from Ref. [62]. Copyright 2019, Wiley-VCH. (e) Schematic illustration of synthetic of the PCN-250-Fe3 and PCN-250-Fe2M (Mn, Zn, Ni, Co) by Fe3 or Fe2M and H4abtc. (f) Comparison of photocatalytic activity of PCN-250-Fe3 and PCN-250-Fe2M for CO evolution. Reprinted with permission from Ref. [69]. Copyright 2020, Elsevier.
No. | MOFs | Method | Application | Ref. |
---|---|---|---|---|
1 | Cu-doped NH2-MIL-125(Ti) | Cu(NO3)2 + Ti(OC4H9)4 + NH2-BDC, 150 °C, 24 h | pollutant degradation | [ |
2 | Fe-doped NH2-MIL-68(In) | In(NO3)3 + Fe(NO3)3 + NH2-BDC, 125 °C, 5 h | pollutant degradation | [ |
3 | V-doped NH2-MIL-125(Ti) | VCl3 + Ti(OCH(CH3)2)4 + NH2-BDC, 120 °C, 72 h | none | [ |
4 | Nb-doped NH2-UiO-66(Zr) | NbCl5 + ZrCl4 + NH2-BDC, 120 °C, 48 h | none | [ |
5 | Ti-doped NH2-UiO-66(Zr) | NH2-UiO-66(Zr) + TiCl4(THF)2, 100 °C for 4 d | CO2 reduction, H2 evolution | [ |
6 | Hf-doped-SH-UiO-66(Zr) | ZrCl4 + HfCl4 + 2SH-BDC, 120 °C, 48 h | N2 fixation | [ |
7 | Ce/Ti-doped UiO-66(Zr) | UiO-66(Zr/Ce) + TiCl4(THF)2, 120 °C, 4 d | H2 evolution, O2 evolution | [ |
8 | Ni-doepd NH2-MIL-125(Ti) | Ni(NO3)2 + Ti(OC4H9)4 + NH2-BDC, 150 °C, 20 h | CO2 reduction | [ |
9 | Al-doped MIL-100(Fe) | AlCl3 + FeCl3 + 1,3,5-benzene tricarboxylate, 150 °C, 36 h | organic syntheses | [ |
10 | Co, Ni, Zn-doped NNU-31-M | Fe2M(Co, Ni, Zn) cluster + TCA, 150 °C, 32 h | CO2 reduction coupled with H2O oxidation | [ |
11 | Mn, Zn, Ni, Co-doped PCN-250-Fe3 | Fe2M (Mn, Zn, Ni, Co) + H4abtc, 140 °C, 2 h | CO2 reduction | [ |
12 | Co-doped Cu-MOF | Cu(NO3)2 + Co(NO3)2 + TCPP, 80 °C, 24 h | N2 fixation | [ |
Table 1 Summary of metal doped MOF-based photocatalytic systems.
No. | MOFs | Method | Application | Ref. |
---|---|---|---|---|
1 | Cu-doped NH2-MIL-125(Ti) | Cu(NO3)2 + Ti(OC4H9)4 + NH2-BDC, 150 °C, 24 h | pollutant degradation | [ |
2 | Fe-doped NH2-MIL-68(In) | In(NO3)3 + Fe(NO3)3 + NH2-BDC, 125 °C, 5 h | pollutant degradation | [ |
3 | V-doped NH2-MIL-125(Ti) | VCl3 + Ti(OCH(CH3)2)4 + NH2-BDC, 120 °C, 72 h | none | [ |
4 | Nb-doped NH2-UiO-66(Zr) | NbCl5 + ZrCl4 + NH2-BDC, 120 °C, 48 h | none | [ |
5 | Ti-doped NH2-UiO-66(Zr) | NH2-UiO-66(Zr) + TiCl4(THF)2, 100 °C for 4 d | CO2 reduction, H2 evolution | [ |
6 | Hf-doped-SH-UiO-66(Zr) | ZrCl4 + HfCl4 + 2SH-BDC, 120 °C, 48 h | N2 fixation | [ |
7 | Ce/Ti-doped UiO-66(Zr) | UiO-66(Zr/Ce) + TiCl4(THF)2, 120 °C, 4 d | H2 evolution, O2 evolution | [ |
8 | Ni-doepd NH2-MIL-125(Ti) | Ni(NO3)2 + Ti(OC4H9)4 + NH2-BDC, 150 °C, 20 h | CO2 reduction | [ |
9 | Al-doped MIL-100(Fe) | AlCl3 + FeCl3 + 1,3,5-benzene tricarboxylate, 150 °C, 36 h | organic syntheses | [ |
10 | Co, Ni, Zn-doped NNU-31-M | Fe2M(Co, Ni, Zn) cluster + TCA, 150 °C, 32 h | CO2 reduction coupled with H2O oxidation | [ |
11 | Mn, Zn, Ni, Co-doped PCN-250-Fe3 | Fe2M (Mn, Zn, Ni, Co) + H4abtc, 140 °C, 2 h | CO2 reduction | [ |
12 | Co-doped Cu-MOF | Cu(NO3)2 + Co(NO3)2 + TCPP, 80 °C, 24 h | N2 fixation | [ |
Fig. 6. (a) UV-vis spectra of MIL-125(Ti) (a) and NH2-MIL-125(Ti) (b). (b) Proposed mechanism for the photocatalytic CO2 reduction over NH2-MIL-125(Ti) under visible light irradiation. Reprinted with permission from Ref. [75]. Copyright 2012, Wiley-VCH. Frontier electron density of unsubstituted MIL-125: (c) the valence band is composed of the bdc C 2p orbitals, making these favorable for linker-based band gap modifications; (d) the conduction band is composed of O 2p orbitals and Ti 3d orbitals, suggesting that modifications of the aromatic bdc units are unlikely to affect the CB. Reprinted with permission from Ref. [73]. Copyright 2013, American Chemical Society.
Energy | H | NH2 | NO2 | F | Cl | Br | I | OH | SH | COOH | CH3 | CF3 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Eabs | 4.09 | 2.74 | 3.77 | 3.83 | 3.57 | 3.42 | 2.97 | 3.02 | 2.54 | 3.43 | 3.83 | 4.03 |
ELMCT | -1.43 | -1.57 | -1.33 | -1.38 | -1.39 | -1.42 | -1.44 | -1.61 | -1.59 | -1.65 | -1.47 | -1.35 |
Table 2 Absorption energies (Eabs, in eV) and ligand-to-metal charge-transfer energies (ELMCT, in eV) of UiO-66(Ce)-X. Reprinted with permission from Ref. [84]. Copyright 2018, American Chemical Society.
Energy | H | NH2 | NO2 | F | Cl | Br | I | OH | SH | COOH | CH3 | CF3 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Eabs | 4.09 | 2.74 | 3.77 | 3.83 | 3.57 | 3.42 | 2.97 | 3.02 | 2.54 | 3.43 | 3.83 | 4.03 |
ELMCT | -1.43 | -1.57 | -1.33 | -1.38 | -1.39 | -1.42 | -1.44 | -1.61 | -1.59 | -1.65 | -1.47 | -1.35 |
Fig. 7. (a) Illustration showing the dark photocatalysis over MIL-125 and MIL-125 with different functional groups, MIL-125-X (X = NH2, NO2, Br). (b) Overlapping percentage and distance between electrons and holes in MIL-125 and MIL-125-X (X = NH2, NO2). Reprinted with permission from Ref. [87]. Copyright 2022, Royal Society of Chemistry. (c) Photocatalytic reduction of aqueous Cr(VI) over UiO-66-X (X = H, NH2, NO2 and Br) under simulated sunlight (320-780 nm). Reprinted with permission from Ref. [88]. Copyright 2015, Royal Society of Chemistry. Transient photocurrent response (d) and EIS Nyquist plots (e) of MIL-68(In)-X (X = H, NH2, NO2, Br). Reprinted with permission from Ref. [89]. Copyright 2018, Elsevier.
Fig. 8. (a) TEM image (scale bar: 500 nm). (b) AFM image and corresponding height profile. Reprinted with permission from Ref. [97]. Copyright 2018, Wiley-VCH. (c) Illustration for the synthesis of 2D Ln-TCPP nanosheets and the thickness- and metal-node-dependent photocatalytic activity. Reprinted with permission from Ref. [98]. Copyright 2020, Wiley-VCH. (d) Schematic of the synthesis process of Mn-TBAPy-BK (bulk) and Mn-TBAPy-NS (nanosheets) MOFs. (e) Photocatalytic H2 evolution activities of Mn-TBAPy-BK and Mn-TBAPy-NS before (left) and after (right) normalized to Pt content. Reprinted with permission from Ref. [104]. Copyright 2022, American Chemical Society.
No. | MOFs | Method | Application | Ref. |
---|---|---|---|---|
1 | NH2-MIL-125(Ti) | Ti(OC4H9)4 + NH2-BDC, 150 °C, 72 h | CO2 reduction | [ |
2 | NH2-MIL-125(Ti) | Ti(OC3H7)4) + NH2-BDC, 150 °C, 48 h | H2 production | [ |
3 | NH2-MIL-125(Ti) | Ti(OC4H9)4 + NH2-BDC, 150 °C, 72 h | organic syntheses | [ |
4 | NH2-MIL-125(Ti) | Ti(OC4H9)4 + NH2-BDC, 150 °C, 72 h | N2 fixation | [ |
5 | OH/CH3-MIL-125(Ti) | MIL-125(Ti) + OH-BDC/CH3-BDC, 150 °C, 72 h | N2 fixation | [ |
6 | NH2-UiO-66(Zr) | ZrCl4 + NH2-BDC, 120 °C, 48 h | H2 production | [ |
7 | NH2-UiO-66(Zr) | ZrCl4 + NH2-BDC, 120 °C, 48 h | Organic syntheses | [ |
8 | NH2-UiO-66(Zr) | ZrCl4 + NH2-BDC, 120 °C, 48 h | Cr(VI) reduction | [ |
9 | NH2-UiO-66(Zr) | ZrCl4 + NH2-BDC, 120 °C, 48 h | CO2 reduction | [ |
10 | NH2-MIL-101(Fe) | FeCl3 + NH2-BDC, 110 °C, 24 h | CO2 reduction | [ |
11 | NH2-MIL-53(Fe) | FeCl3 + NH2-BDC, 150 °C, 72 h | CO2 reduction | [ |
12 | NH2-MIL-88B(Fe) | FeCl3 + NH2-BDC, 170 °C, 24 h | CO2 reduction | [ |
13 | NH2-MIL-88B(Fe) | FeCl3 + NH2-BDC, 150 °C, 15 min | Cr(VI) reduction | [ |
14 | NH2/(NH2)2-MIL-125(Ti) | Ti(OC3H7)4) + NH2BDC/(NH2)2-BDC, 150 °C, 48 h | none | [ |
15 | NH2-MIL-125(Ti) | Ti-(OC3H7)4) + NH2-BDC, 110 °C, 72 h | none | [ |
16 | NH2-125(Ti) | Ti(OC4H9)4 + NH2-BDC, 130 °C, 15 h | H2 production | [ |
17 | NO2/Br-MIL-125(Ti) | MIL-125(Ti) + OH-BDC/CH3-BDC, 130 °C, 15 h | H2 production | [ |
18 | NH2/NO2/Br-UiO-66(Zr) | ZrCl4 + NH2-BDC/NO2-BDC/Br-BDC, 120 °C, 48 h | Cr(VI) reduction | [ |
19 | NH2/NO2/Br-MIL-68(In) | In(NO3)3 + NH2-BDC/NO2-BDC/Br-BDC, 125 °C, 5 h | Cr(VI) reduction | [ |
20 | CH3/NO2/Br-UiO-66(Ce) | (NH4)2Ce(NO3)6 + CH3-BDC/NO2-BDC/Br-BDC, 100 °C, 15 min | organic syntheses | [ |
Table 3 Summary of MOF-based photocatalytic systems obtained via ligand functionalization.
No. | MOFs | Method | Application | Ref. |
---|---|---|---|---|
1 | NH2-MIL-125(Ti) | Ti(OC4H9)4 + NH2-BDC, 150 °C, 72 h | CO2 reduction | [ |
2 | NH2-MIL-125(Ti) | Ti(OC3H7)4) + NH2-BDC, 150 °C, 48 h | H2 production | [ |
3 | NH2-MIL-125(Ti) | Ti(OC4H9)4 + NH2-BDC, 150 °C, 72 h | organic syntheses | [ |
4 | NH2-MIL-125(Ti) | Ti(OC4H9)4 + NH2-BDC, 150 °C, 72 h | N2 fixation | [ |
5 | OH/CH3-MIL-125(Ti) | MIL-125(Ti) + OH-BDC/CH3-BDC, 150 °C, 72 h | N2 fixation | [ |
6 | NH2-UiO-66(Zr) | ZrCl4 + NH2-BDC, 120 °C, 48 h | H2 production | [ |
7 | NH2-UiO-66(Zr) | ZrCl4 + NH2-BDC, 120 °C, 48 h | Organic syntheses | [ |
8 | NH2-UiO-66(Zr) | ZrCl4 + NH2-BDC, 120 °C, 48 h | Cr(VI) reduction | [ |
9 | NH2-UiO-66(Zr) | ZrCl4 + NH2-BDC, 120 °C, 48 h | CO2 reduction | [ |
10 | NH2-MIL-101(Fe) | FeCl3 + NH2-BDC, 110 °C, 24 h | CO2 reduction | [ |
11 | NH2-MIL-53(Fe) | FeCl3 + NH2-BDC, 150 °C, 72 h | CO2 reduction | [ |
12 | NH2-MIL-88B(Fe) | FeCl3 + NH2-BDC, 170 °C, 24 h | CO2 reduction | [ |
13 | NH2-MIL-88B(Fe) | FeCl3 + NH2-BDC, 150 °C, 15 min | Cr(VI) reduction | [ |
14 | NH2/(NH2)2-MIL-125(Ti) | Ti(OC3H7)4) + NH2BDC/(NH2)2-BDC, 150 °C, 48 h | none | [ |
15 | NH2-MIL-125(Ti) | Ti-(OC3H7)4) + NH2-BDC, 110 °C, 72 h | none | [ |
16 | NH2-125(Ti) | Ti(OC4H9)4 + NH2-BDC, 130 °C, 15 h | H2 production | [ |
17 | NO2/Br-MIL-125(Ti) | MIL-125(Ti) + OH-BDC/CH3-BDC, 130 °C, 15 h | H2 production | [ |
18 | NH2/NO2/Br-UiO-66(Zr) | ZrCl4 + NH2-BDC/NO2-BDC/Br-BDC, 120 °C, 48 h | Cr(VI) reduction | [ |
19 | NH2/NO2/Br-MIL-68(In) | In(NO3)3 + NH2-BDC/NO2-BDC/Br-BDC, 125 °C, 5 h | Cr(VI) reduction | [ |
20 | CH3/NO2/Br-UiO-66(Ce) | (NH4)2Ce(NO3)6 + CH3-BDC/NO2-BDC/Br-BDC, 100 °C, 15 min | organic syntheses | [ |
Fig. 9. (a) Illustration of the synthetic route towards Pt single-atom coordinated ultrathin MOF nanosheets (PtSA-MNSs) through a surfactant-stabilized coordination strategy for photocatalytic hydrogen production. Reprinted with permission from Ref. [105]. Copyright 2019, Wiley-VCH. (b) Schematic representation showing the one-pot synthesis of PCN-134-3D and stepwise synthesis of PCN-134-2D nanosheets with accessible catalytic sites. Reprinted with permission from Ref. [106]. Copyright 2019, Wiley-VCH. (c) TEM image of g-CNQDs/PMOF. (d) Proposed mechanism of CO2 reduction over g-CNQDs/PMOF hybrids under visible-light irradiation. Reprinted with permission from Ref. [107]. Copyright 2019, American Chemical Society.
Fig. 10. (a) The fs-TA spectra (pump at 400 nm) taken at several representative probe delays for UiO-66-NH2-0 and UiO-66-NH2-100. (b) fs-TA kinetics and the global fitting results (probing in the range 580-650 nm using 8 traces with a 10-nm interval) for UiO-66-NH2-X (X = 0, 50, 100, 150, 200). (c) Comparison of photocatalytic H2 production rates and average relaxation lifetimes. Reprinted with permission from Ref. [120]. Copyright 2019, Wiley-VCH.
No. | MOF nanosheet | Method | Application | Ref |
---|---|---|---|---|
1 | Ni-BDC MOFs | Ni(NO3)2 + H2BDC, 140 °C, 12 h, exfoliation | CO2 reduction | [ |
2 | ZIF-67(Co) | Co(NO3)2 + 2-methylimidazole, room temperature, 30 min | CO2 reduction | [ |
3 | Ni3(HITP)2 MOFs | NiCl2 + HITP·HCl + NH3·H2O, 65 °C, 2 h, exfoliation | CO2 reduction | [ |
4 | Zr-porphyrinic (Ni-TCPP) MOF | ZrCl4 + Ni-TCPP, 120 °C, 24 h | organic syntheses | [ |
5 | Porphyrin-based Ln-MOF (Ln = Ce, Sm, Eu, Tb, Yb) | Ce(NO3)3/Sm(NO3)3/Sm(NO3)3/Yb(NO3)3 + HAc + H2TCPP, 10 min, microwave | organic syntheses | [ |
6 | Porphyrin-based Ti-MOF | Ti(OC4H9)4 + H2TCPP, 150 °C, 5 d | organic syntheses | [ |
7 | NH2-MIL-125(Ti) | Ti(OC4H9)4 + NH2-BDC, 120 °C, 12 h | CO2 reduction | [ |
8 | MOF-74(Ni) | Ni(CH3COO)2 + H4DOBDC, 120 °C, 12 h | organic syntheses | [ |
9 | [Co(Ni-H7TPPP)2]·8H2O MOFs | Co(CH3COO)2 + Ni-H8TPPP + HCl, exfoliation | CO2 reduction | [ |
10 | Co-MOF-Ru(tpyCOO)2 | Co(NO3)2 + [RuII(tpyCOOH)2](PF6)2, 120 °C, 24 h, exfoliation | H2 production | [ |
11 | Mn-MOF | MnCl2 + H4TBAPy, 130 °C, 72 h, exfoliation | H2 production | [ |
12 | Pt single atoms/porphyrin-based Cu-MOF | Cu(NO3)2 + PtTCPP, 80 °C, 4 h. | H2 production | [ |
13 | Photosensitizers-anchored Zr-BTB MOF | Zr-BTB nanosheets + H4TCPP, 100 °C for 12 h | organic syntheses | [ |
14 | g-CNQDs//porphyrin-based Co-MOF | Co(NO3)2 + TCPP, 150 °C, 4 h. | CO2 reduction | [ |
Table 4 Summary of ultrathin 2D MOF-based photocatalytic systems.
No. | MOF nanosheet | Method | Application | Ref |
---|---|---|---|---|
1 | Ni-BDC MOFs | Ni(NO3)2 + H2BDC, 140 °C, 12 h, exfoliation | CO2 reduction | [ |
2 | ZIF-67(Co) | Co(NO3)2 + 2-methylimidazole, room temperature, 30 min | CO2 reduction | [ |
3 | Ni3(HITP)2 MOFs | NiCl2 + HITP·HCl + NH3·H2O, 65 °C, 2 h, exfoliation | CO2 reduction | [ |
4 | Zr-porphyrinic (Ni-TCPP) MOF | ZrCl4 + Ni-TCPP, 120 °C, 24 h | organic syntheses | [ |
5 | Porphyrin-based Ln-MOF (Ln = Ce, Sm, Eu, Tb, Yb) | Ce(NO3)3/Sm(NO3)3/Sm(NO3)3/Yb(NO3)3 + HAc + H2TCPP, 10 min, microwave | organic syntheses | [ |
6 | Porphyrin-based Ti-MOF | Ti(OC4H9)4 + H2TCPP, 150 °C, 5 d | organic syntheses | [ |
7 | NH2-MIL-125(Ti) | Ti(OC4H9)4 + NH2-BDC, 120 °C, 12 h | CO2 reduction | [ |
8 | MOF-74(Ni) | Ni(CH3COO)2 + H4DOBDC, 120 °C, 12 h | organic syntheses | [ |
9 | [Co(Ni-H7TPPP)2]·8H2O MOFs | Co(CH3COO)2 + Ni-H8TPPP + HCl, exfoliation | CO2 reduction | [ |
10 | Co-MOF-Ru(tpyCOO)2 | Co(NO3)2 + [RuII(tpyCOOH)2](PF6)2, 120 °C, 24 h, exfoliation | H2 production | [ |
11 | Mn-MOF | MnCl2 + H4TBAPy, 130 °C, 72 h, exfoliation | H2 production | [ |
12 | Pt single atoms/porphyrin-based Cu-MOF | Cu(NO3)2 + PtTCPP, 80 °C, 4 h. | H2 production | [ |
13 | Photosensitizers-anchored Zr-BTB MOF | Zr-BTB nanosheets + H4TCPP, 100 °C for 12 h | organic syntheses | [ |
14 | g-CNQDs//porphyrin-based Co-MOF | Co(NO3)2 + TCPP, 150 °C, 4 h. | CO2 reduction | [ |
Fig. 11. Relationship between pKa value of defective linkers and the contents of defect and Cu1+/Cu2+ CUS in Cu-BTC framework. Reprinted with permission from Ref. [123]. Copyright 2021, Elsevier.
Fig. 12. (a) Illustration of the synthesis for defective NH2-MIL-125(Ti) via the thermal treatment. Reprinted with permission from Ref. [132]. Copyright 2021, Elsevier. (b) A plausible mechanism of linker elimination by the photothermal treatment in a water medium containing TEOA. Reprinted with permission from Ref. [133]. Copyright 2020, Elsevier. (c) Schematic illustration of the synthetic procedures for ZIF-67-MBI via SALE approach. Reprinted with permission from Ref. [135]. Copyright 2023, Elsevier.
Fig. 13. (a) Idealized process of generation of defects in UiO-66: missing linker defect and missing cluster defect. Reprinted with permission from Ref. [137]. Copyright 2017, Elsevier. (b) Illustration of the crystal structures of UiO-66-fresh, UiO-66-UV-vis, and UiO-66-PSE. Reprinted with permission from Ref. [138]. Copyright 2021, Royal Society of Chemistry. (c) Schematic illustration of varied defective structures. (d) Photoreduction CO2 to CO evolution rates over NH2-UiO-66(Zr) with different types of defects. Reprinted with permission from Ref. [139]. Copyright 2021, Elsevier.
No. | Defective MOFs | Method | Application | Ref. |
---|---|---|---|---|
1 | NH2-UiO-66(Zr) | modulation approach | H2 production | [ |
2 | Cu-BTC MOFs | mixed linker approach | H2 production, O2 production | [ |
3 | ZIF-67(Co) | mixed linker approach | H2 production | [ |
4 | NH2-MIL-125(Ti) | thermal treatment | Cr(VI) reduction | [ |
5 | NH2-MIL-125(Ti) | photo-thermal treatment | H2 production | [ |
6 | ZIF-67(Co) | SALE approach | H2 production, O2 production | [ |
7 | UiO-66(Zr) | photo treatment, SALE approach | N2 fixation | [ |
8 | NH2-MIL-125(Ti) | SALE approach | H2 production | [ |
9 | MIL-125(Ti) | SALE approach | H2O2 production | [ |
10 | NH2-UiO-66(Zr) | modulation approach, thermal treatment | CO2 reduction | [ |
11 | (SH)2-UiO-66(Zr) | thermal treatment | N2 fixation | [ |
Table 5 Summary of defect containing MOF-based photocatalytic systems.
No. | Defective MOFs | Method | Application | Ref. |
---|---|---|---|---|
1 | NH2-UiO-66(Zr) | modulation approach | H2 production | [ |
2 | Cu-BTC MOFs | mixed linker approach | H2 production, O2 production | [ |
3 | ZIF-67(Co) | mixed linker approach | H2 production | [ |
4 | NH2-MIL-125(Ti) | thermal treatment | Cr(VI) reduction | [ |
5 | NH2-MIL-125(Ti) | photo-thermal treatment | H2 production | [ |
6 | ZIF-67(Co) | SALE approach | H2 production, O2 production | [ |
7 | UiO-66(Zr) | photo treatment, SALE approach | N2 fixation | [ |
8 | NH2-MIL-125(Ti) | SALE approach | H2 production | [ |
9 | MIL-125(Ti) | SALE approach | H2O2 production | [ |
10 | NH2-UiO-66(Zr) | modulation approach, thermal treatment | CO2 reduction | [ |
11 | (SH)2-UiO-66(Zr) | thermal treatment | N2 fixation | [ |
|
[1] | Binbin Zhao, Wei Zhong, Feng Chen, Ping Wang, Chuanbiao Bie, Huogen Yu. High-crystalline g-C3N4 photocatalysts: Synthesis, structure modulation, and H2-evolution application [J]. Chinese Journal of Catalysis, 2023, 52(9): 127-143. |
[2] | Xiaolong Tang, Feng Li, Fang Li, Yanbin Jiang, Changlin Yu. Single-atom catalysts for the photocatalytic and electrocatalytic synthesis of hydrogen peroxide [J]. Chinese Journal of Catalysis, 2023, 52(9): 79-98. |
[3] | Zicong Jiang, Bei Cheng, Liuyang Zhang, Zhenyi Zhang, Chuanbiao Bie. A review on ZnO-based S-scheme heterojunction photocatalysts [J]. Chinese Journal of Catalysis, 2023, 52(9): 32-49. |
[4] | Xiaohan Wang, Han Tian, Xu Yu, Lisong Chen, Xiangzhi Cui, Jianlin Shi. Advances and insights in amorphous electrocatalyst towards water splitting [J]. Chinese Journal of Catalysis, 2023, 51(8): 5-48. |
[5] | Shijie Li, Chunchun Wang, Kexin Dong, Peng Zhang, Xiaobo Chen, Xin Li. MIL-101(Fe)/BiOBr S-scheme photocatalyst for promoting photocatalytic abatement of Cr(VI) and enrofloxacin antibiotic: Performance and mechanism [J]. Chinese Journal of Catalysis, 2023, 51(8): 101-112. |
[6] | Fei Yan, Youzi Zhang, Sibi Liu, Ruiqing Zou, Jahan B Ghasemi, Xuanhua Li. Efficient charge separation by a donor-acceptor system integrating dibenzothiophene into a porphyrin-based metal-organic framework for enhanced photocatalytic hydrogen evolution [J]. Chinese Journal of Catalysis, 2023, 51(8): 124-134. |
[7] | Defa Liu, Bin Sun, Shuojie Bai, Tingting Gao, Guowei Zhou. Dual co-catalysts Ag/Ti3C2/TiO2 hierarchical flower-like microspheres with enhanced photocatalytic H2-production activity [J]. Chinese Journal of Catalysis, 2023, 50(7): 273-283. |
[8] | Han-Zhi Xiao, Bo Yu, Si-Shun Yan, Wei Zhang, Xi-Xi Li, Ying Bao, Shu-Ping Luo, Jian-Heng Ye, Da-Gang Yu. Photocatalytic 1,3-dicarboxylation of unactivated alkenes with CO2 [J]. Chinese Journal of Catalysis, 2023, 50(7): 222-228. |
[9] | Jingxiang Low, Chao Zhang, Ferdi Karadas, Yujie Xiong. Photocatalytic CO2 conversion: Beyond the earth [J]. Chinese Journal of Catalysis, 2023, 50(7): 1-5. |
[10] | Huijie Li, Manzhou Chi, Xing Xin, Ruijie Wang, Tianfu Liu, Hongjin Lv, Guo-Yu Yang. Highly selective photoreduction of CO2 catalyzed by the encapsulated heterometallic-substituted polyoxometalate into a photo-responsive metal-organic framework [J]. Chinese Journal of Catalysis, 2023, 50(7): 343-351. |
[11] | Qing Niu, Linhua Mi, Wei Chen, Qiujun Li, Shenghong Zhong, Yan Yu, Liuyi Li. Review of covalent organic frameworks for single-site photocatalysis and electrocatalysis [J]. Chinese Journal of Catalysis, 2023, 50(7): 45-82. |
[12] | Huizhen Li, Yanlei Chen, Qing Niu, Xiaofeng Wang, Zheyuan Liu, Jinhong Bi, Yan Yu, Liuyi Li. The crystalline linear polyimide with oriented photogenerated electron delivery powering CO2 reduction [J]. Chinese Journal of Catalysis, 2023, 49(6): 152-159. |
[13] | Xiangxi Lou, Xuan Gao, Yu Liu, Mingyu Chu, Congyang Zhang, Yinghua Qiu, Wenxiu Yang, Muhan Cao, Guiling Wang, Qiao Zhang, Jinxing Chen. Highly efficient photothermal catalytic upcycling of polyethylene terephthalate via boosted localized heating [J]. Chinese Journal of Catalysis, 2023, 49(6): 113-122. |
[14] | Cheng Liu, Mengning Chen, Yingzhang Shi, Zhiwen Wang, Wei Guo, Sen Lin, Jinhong Bi, Ling Wu. Ultrathin ZnTi-LDH nanosheet: A bifunctional Lewis and Brönsted acid photocatalyst for synthesis of N-benzylideneanilline via a tandem reaction [J]. Chinese Journal of Catalysis, 2023, 49(6): 102-112. |
[15] | Haibo Zhang, Zhongliao Wang, Jinfeng Zhang, Kai Dai. Metal-sulfide-based heterojunction photocatalysts: Principles, impact, applications, and in-situ characterization [J]. Chinese Journal of Catalysis, 2023, 49(6): 42-67. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||