Chinese Journal of Catalysis ›› 2023, Vol. 49: 113-122.DOI: 10.1016/S1872-2067(23)64435-3
Previous Articles Next Articles
Xiangxi Loua,b,1, Xuan Gaob,1, Yu Liub, Mingyu Chub, Congyang Zhangb, Yinghua Qiub, Wenxiu Yangc,*(), Muhan Caob, Guiling Wanga,*(), Qiao Zhangb, Jinxing Chenb,*()
Received:
2023-02-01
Accepted:
2023-03-19
Online:
2023-06-18
Published:
2023-06-05
Contact:
*E-mail: About author:
First author contact:1Contributed equally to this work.
Supported by:
Xiangxi Lou, Xuan Gao, Yu Liu, Mingyu Chu, Congyang Zhang, Yinghua Qiu, Wenxiu Yang, Muhan Cao, Guiling Wang, Qiao Zhang, Jinxing Chen. Highly efficient photothermal catalytic upcycling of polyethylene terephthalate via boosted localized heating[J]. Chinese Journal of Catalysis, 2023, 49: 113-122.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(23)64435-3
Fig. 1. Structural characterization. TEM images of ZIF-8 (a), ZIF-8@mSiO2 (b), and c-ZIF-8@25SiO2 (c). HADDF image and EDX spectroscopy mappings of ZIF-8@25SiO2 (d) and c-ZIF-8@25SiO2 (Scale bar: 100 nm) (e). Temperature program (f) and corresponding TEM images (g) after in situ pyrolysis of ZIF-8@25SiO2.
Fig. 2. Photothermal performance of c-ZIF-8@SiO2. (a) Photothermal conversion curves of c-ZIF-8 and c-ZIF-8@25SiO2. (b) Theoretical spectra of the black-body radiation at different temperatures. (c) FTIR spectrum of porous silica shell obtained by removing Zn from c-ZIF-8@SiO2. (d) Schematic representation of the nanoscale insulation effect in c-ZIF-8@SiO2.
Fig. 3. Catalytic performance evaluation. (a) Thermal and photothermal catalysis conversion rate for the PET glycolysis. (b) Arrhenius plot of PET glycolysis for c-ZIF-8@25SiO2 for thermal and photothermal catalysis. (c) 1H NMR spectrum of generated BHET. (d) 13C NMR spectrum of generated BHET.
Fig. 4. Optimization of catalytic performance. (a) Effect of time on the PET conversion and BHET yield over c-ZIF-8@25SiO2. (b) Catalytic performance of recycled c-ZIF-8@25SiO2. (c) Integrated functionalities of c-ZIF-8@SiO2 and the photothermal catalytic mechanism of PET glycolysis over c-ZIF-8@SiO2.
Fig. 5. Practical demonstrations of photothermal catalysis. (a) Portable outdoor test. (b) Real-time reaction parameters of the outdoor experiment, including solar power (top row) and the surrounding (middle row) and system temperature (bottom row). (c) Image of the produced BHET; (d) Selective recycling of PET from PET-PE blends (Conditions: Solar power 0.78 W cm-2, 0.5 g of PE-PET blend, 2.5 g of EG, Cat/mixed plastics = 2%, 2 h). (e) Selective recycling of PET from colored PET waste (Conditions: Solar power 0.78 W cm-2, 0.5 g of color PET, 2.5 g of EG, Cat/mixed plastics = 2%, 1 h).
Fig. 6. Energy and environment impact analysis. (a) Simplified process flow diagram of the PET glycolysis for a typical photothermal/thermal catalysis. (b) Simplified estimation of energy consumption in different equipment for recycling 10000 tons of PET. (c) Impact of photothermal catalysis on reducing gaseous pollutant emission compared to that of thermal catalysis.
|
[1] | Shijie Li, Chunchun Wang, Kexin Dong, Peng Zhang, Xiaobo Chen, Xin Li. MIL-101(Fe)/BiOBr S-scheme photocatalyst for promoting photocatalytic abatement of Cr(VI) and enrofloxacin antibiotic: Performance and mechanism [J]. Chinese Journal of Catalysis, 2023, 51(8): 101-112. |
[2] | Fei Yan, Youzi Zhang, Sibi Liu, Ruiqing Zou, Jahan B Ghasemi, Xuanhua Li. Efficient charge separation by a donor-acceptor system integrating dibenzothiophene into a porphyrin-based metal-organic framework for enhanced photocatalytic hydrogen evolution [J]. Chinese Journal of Catalysis, 2023, 51(8): 124-134. |
[3] | Huijie Li, Manzhou Chi, Xing Xin, Ruijie Wang, Tianfu Liu, Hongjin Lv, Guo-Yu Yang. Highly selective photoreduction of CO2 catalyzed by the encapsulated heterometallic-substituted polyoxometalate into a photo-responsive metal-organic framework [J]. Chinese Journal of Catalysis, 2023, 50(7): 343-351. |
[4] | Zhuogen Li, Qadeer Ul Hassan, Weibin Zhang, Lujun Zhu, Jianzhi Gao, Xianjin Shi, Yu Huang, Peng Liu, Gangqiang Zhu. Promotion of dual-reaction pathway in CO2 reduction over Pt0/SrTiO3‒δ: Experimental and theoretical verification [J]. Chinese Journal of Catalysis, 2023, 46(3): 113-124. |
[5] | Long Jiao, Hai-Long Jiang. Metal-organic frameworks for catalysis: Fundamentals and future prospects [J]. Chinese Journal of Catalysis, 2023, 45(2): 1-5. |
[6] | Yujie Li, Yuanyuan Liu, Zeyan Wang, Peng Wang, Zhaoke Zheng, Hefeng Cheng, Ying Dai, Baibiao Huang. Enhanced photocatalytic H2O2 production over Pt(II) deposited boron containing metal-organic framework via suppressing the simultaneous decomposition [J]. Chinese Journal of Catalysis, 2023, 45(2): 132-140. |
[7] | Cheng Liu, Hurunqing Liu, Jimmy C. Yu, Ling Wu, Zhaohui Li. Strategies to engineer metal-organic frameworks for efficient photocatalysis [J]. Chinese Journal of Catalysis, 2023, 55(12): 1-19. |
[8] | Kai Wan, Jiangshui Luo, Wenbo Liu, Ting Zhang, Jordi Arbiol, Xuan Zhang, Palaniappan Subramanian, Zhiyong Fu, Jan Fransaer. Metal-organic framework-derived cation regulation of metal sulfides for enhanced oxygen evolution activity [J]. Chinese Journal of Catalysis, 2023, 54(11): 290-297. |
[9] | Huan Xue, Jia-Run Huang, Zhi-Shuo Wang, Zhen-Hua Zhao, Wen Shi, Pei-Qin Liao, Xiao-Ming Chen. Tailoring ligand fields of metal-azolate frameworks for highly selective electroreduction of CO2 to hydrocarbons at industrial current density [J]. Chinese Journal of Catalysis, 2023, 53(10): 102-108. |
[10] | Fenglei Lyu, Wei Hua, Huirong Wu, Hao Sun, Zhao Deng, Yang Peng. Structural and interfacial engineering of well-defined metal-organic ensembles for electrocatalytic carbon dioxide reduction [J]. Chinese Journal of Catalysis, 2022, 43(6): 1417-1432. |
[11] | Boyu Zhang, Jiafu Shi, Yang Zhao, Han Wang, Ziyi Chu, Yu Chen, Zhenhua Wu, Zhongyi Jiang. Pickering interfacial biocatalysis with enhanced diffusion processes for CO2 mineralization [J]. Chinese Journal of Catalysis, 2022, 43(4): 1184-1191. |
[12] | Linlin Wang, Xin Li, Leiduan Hao, Song Hong, Alex W. Robertson, Zhenyu Sun. Integration of ultrafine CuO nanoparticles with two-dimensional MOFs for enhanced electrochemical CO2 reduction to ethylene [J]. Chinese Journal of Catalysis, 2022, 43(4): 1049-1057. |
[13] | Junmin Huang, Jianmin Chen, Wangxi Liu, Jingwen Zhang, Junying Chen, Yingwei Li. Copper-doped zinc sulfide nanoframes with three-dimensional photocatalytic surfaces for enhanced solar driven H2 production [J]. Chinese Journal of Catalysis, 2022, 43(3): 782-792. |
[14] | Ling-Ling Zheng, Long-Shuai Zhang, Ying Chen, Lei Tian, Xun-Heng Jiang, Li-Sha Chen, Qiu-Ju Xing, Xiao-Zhen Liu, Dai-She Wu, Jian-Ping Zou. A new strategy for the fabrication of covalent organic framework-metal-organic framework hybrids via in-situ functionalization of ligands for improved hydrogen evolution reaction activity [J]. Chinese Journal of Catalysis, 2022, 43(3): 811-819. |
[15] | You Xu, Kaili Ren, Rong Xu. In situ formation of amorphous Fe-based bimetallic hydroxides from metal-organic frameworks as efficient oxygen evolution catalysts [J]. Chinese Journal of Catalysis, 2021, 42(8): 1370-1378. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||