Chinese Journal of Catalysis ›› 2025, Vol. 68: 51-82.DOI: 10.1016/S1872-2067(24)60165-8
• Reviews • Previous Articles Next Articles
Wenjie Yua,b, Chao Fenga,b, Ronghua Lia,b, Beibei Zhanga,b, Yanbo Lia,b,*()
Received:
2024-07-18
Accepted:
2024-09-25
Online:
2025-01-18
Published:
2025-01-02
Contact:
* E-mail: About author:
Yanbo Li (Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China) received his B.S. in 2005, M.S. degree in 2007 from Shanghai Jiao Tong University, Ph.D. degree in 2010 from The University of Tokyo (Japan). He carried out postdoctoral research at The University of Tokyo from 2010 to 2014, at Lawrence Berkeley National Laboratory (USA) from 2014 to 2016. Since 2016, he has been working at Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China. His research interests include semiconductor photophysics, photochemistry, photoelectrochemical water splitting for hydrogen production, self-healing catalysts. He has co-authored more than 80 peer-reviewed papers.
Supported by:
Wenjie Yu, Chao Feng, Ronghua Li, Beibei Zhang, Yanbo Li. Recent advances in tantalum nitride for photoelectrochemical water splitting[J]. Chinese Journal of Catalysis, 2025, 68: 51-82.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(24)60165-8
Fig. 1. (a) The principle of the PC water splitting system. (b) Illustration of Z-scheme overall water splitting on particulate photocatalysts. Reprinted with permission from Ref. [21]. Copyright 2019, Royal Society of Chemistry. (c) Schematic diagram of the PEC water splitting process.
Fig. 3. (a) The Crystal structure of Ta3N5. Color legend: Ta in gray and N in blue. The Tauc’s plots of Ta3N5 for direct bandgaps (b) and indirect bandgaps (c). (d) The theory of electronic density of states and k-space band structure diagrams for Ta3N5. Reprinted with permission from Ref. [61]. Copyright 2015, Academic Press Inc. (e) Schematic illustration of band structures of Ta3N5 semiconductor. Reprinted with permission from Ref. [47]. Copyright 2003, the American Chemical Society. (f) The absorption coefficient of Ta3N5. Reprinted with permission from Ref. [62]. Copyright 2016, SpringerOpen.
Fig. 4. (a) Schematic energy diagram of the Ta3N5 photoanode for PEC water splitting. (b) Illustration of the deactivation mechanism of the Ta3N5 photoanode.
Fig. 5. The factors limiting the PEC performance of Ta3N5 photoanodes and the corresponding strategies. (a) Morphology engineering. (b) Defect engineering. (c) Interface engineering. (d) Co-catalyst modification. (e) Surface protective layer.
Strategy | Photoanode | Method | Electrolyte | Vop (VRHE) | J (mA cm-2) at 1.23 VRHE | HC-STH | IPCE | Stability | Ref. | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Morphology engineering | Co(OH)x/ Ta3N5 NRs/Ta | hydrothermal & nitridation | 1 mol L-1 NaOH (pH 13.6) | ~0.25 | 2.8 | NR | 37.8%-480 nm-1.23 VRHE | 10 min decayed by 90% at 1.23 VRHE | [ | ||||||||||
Co3O4/Co(II)/Ta3N5 NRs/Ta | hydrothermal & nitridation | 1 mol L-1 NaOH (pH 13.6) | NR | 3.64 | NR | 39.5%-440 nm-1.23 VRHE | 2 h decayed by 8% at 1.23 VRHE | [ | |||||||||||
IrO2/Vertically aligned Ta3N5 NRs/Ta | anodization & nitridation | 0.5 mol L-1 Na2SO4 (pH 13) | ~0.75 | 3.8 | NR | 41.3%-440 nm-1.23 VRHE | 20 min decayed by 80% at 1 VRHE | [ | |||||||||||
CoPi/Ba-Ta3N5 NRs/Ta | anodization & nitridation | 0.5 mol L-1 K2HPO4 (pH 13) | 0.65 | 6.7 | 1.56% at 0.87 VRHE | 86%-400 nm-1.23 VRHE | 100 min decayed by 5% at 0.9 VRHE | [ | |||||||||||
CoPi/Ta3N5 NRs/Ta | anodization & nitridation | 0.5 mol L-1 K2HPO4 + KOH (pH 13) | 0.7 | 4.2 | 0.69% at 0.95 VRHE | NR | Stable at 1 VRHE | [ | |||||||||||
CoPi/Ta3N5 NRs/Ta | hydrothermal & nitridation | 1 mol L-1 KOH (pH 13.7) | ~0.8 | 3.6 | NR | NR | NR | [ | |||||||||||
Ni(Fe)Ox/Ta3N5/Si nanowire | atomic layer deposition | 0.1 mol L-1 KOH (pH 13) | 0.74 | 2.4 | NR | ~20%-500 nm-1.23 VRHE | 24 h decayed by 40-50% at 1 VRHE | [ | |||||||||||
FeNiOx/polycrystal lline Ta3N5 NRs/Ta | glancing angle deposition & nitridation | 0.5 mol L-1 K2HPO4 + KOH (pH 13) | 0.57 | 9.93 | 2.72% at 0.89 VRHE | 87%-380 nm-1.1 VRHE | 70 min decayed by 20% at 1.1 VRHE | [ | |||||||||||
FeNiCoOx/Ta3N5 NRs/Ta | glancing angle deposition & nitridation | 1 mol L-1 KOH (pH 13.6) | 0.59 | 10.96 | 2.1% at 0.91 VRHE | ~92%-400 nm-1.23 VRHE | 3 h decayed by 4% at 0.91 VRHE | [ | |||||||||||
NiCoFe-Bi/NbNx@Mg:Ta3N5 NRs | hydrothermal, atomic layer deposition & nitridation | 1 mol L-1 KOH (pH 13.6) | 0.46 | 7 | 2.24% at 0.78 VRHE | (50%-72%)-(400-550 nm)-1 VRHE | 150 min no obvious decayed at 1 VRHE | [ | |||||||||||
Co3O4/Ta3N5 NTs/Ta | anodization & nitridation | 1 mol L-1 NaOH (pH 13.6) | ~0.8 | 4.3 | 0.32% at 1.08 VRHE | 30%-400 nm-1.2 VRHE | NR | [ | |||||||||||
Ta3N5 NTs/Ta | anodization & nitridation | 0.1 mol L-1 K4[Fe (CN)6] + 0.1 mmol L-1 K3[Fe(CN)6] (pH 7.5) | ~0.29 | 7.4 | NR | NR | NR | [ | |||||||||||
Morphology engineering | Co(OH)x/Ta3N5 NTs/(Ta2N/TaN)/Ta | anodization, (Ar/H2) calcine & nitridation | 1 mol L-1 KOH (pH 13.6) | 0.6 | 6.3 | NR | 65%-400 nm-1.23 VRHE | NR | [ | ||||||||||
Co(OH)x(A)/Ta3N5 NTs(A)/Ta | anodization, nitridation & Ar plasma(A) | 1 mol L-1 KOH (pH 13.6) | ~0.6 | 7.2 | NR | 70.4%-400 nm-1.23 VRHE | NR | [ | |||||||||||
Co(OH)x/Ta3N5 NP/NT/Ta | anodization & nitridation | 1 mol L-1 KOH (pH 13.6) | NR | 8.73 | NR | 36.6%-400 nm-1 VRHE | NR | [ | |||||||||||
CoPi/Co(OH)x/Ta3N5 NTs/Ta | anodization & nitridation | 1 mol L-1 NaOH (pH 13.6) | NR | 6.3 | NR | NR | 20 min decayed by 52% at 1.1 VRHE | [ | |||||||||||
IrO2/Ta3N5 hollow sphere-nanofilms/Ta | impregnation & nitridation | 0.5 mol L-1 Na2SO4 (pH 13) | NR | ~5.4 | NR | 43.5%-470 nm-1.23 VRHE | 60 min decayed by 30% at 0.88 VRHE | [ | |||||||||||
Defects engineering | Co(OH)x/Ge:Ta3N5/ FTO | electrophoresis deposition | 1 mol L-1 NaOH (pH 13.6) | NR | 2.3 | NR | 20%-400 nm-1.23 VRHE | 3 h decayed by 75% at 1.23 VRHE | [ | ||||||||||
Mg-Zr:Ta3N5 | flux-assisted nitridation & particle transfer | 0.1 mol L-1 Na2SO4 (pH 13) | 0.55 | 2.3 | 0.59% at 0.82 VRHE | 18%-400 nm- 0.8 VRHE | NR | [ | |||||||||||
CoOOH/Mg:Ta3N5 NRs/FTO | flux-assisted nitriding & electrophoresis deposition | 1 mol L-1 NaOH (pH 13.6) | 0.6 | 6.5 | 0.78% at 1.02 VRHE | ~54%-400 nm-1.23 VRHE | 70 min decayed by 30% at 1 VRHE | [ | |||||||||||
CoPi/B:Ta3N5 nanocrystals/Ta | solgel & electrophoresis deposition | 1 mol L-1 NaOH (pH 13.6) | NR | 1.8 | 0.54% at 0.64 VRHE | ~10%-400 nm-0.97 VRHE | NR | [ | |||||||||||
Co(OH)x/Sc:Ta3N5 NRs/FTO | flux-assisted nitriding & electrophoresis deposition | 1 mol L-1 NaOH (pH 13.6) | 0.4 | 4.9 | 0.82% at 0.9 VRHE | ~55%-450 nm-1.23 VRHE | 2 h decayed by 40% at 0.9 VRHE | [ | |||||||||||
NiCoFe-Bi/gradient Mg:Ta3N5/Nb | dual-source electron beam evaporation & nitridation | 1 mol L-1 KOH (pH 13.6) | 0.4 | 8.5 | 3.25 ± 0.05% at 0.74 VRHE | 80%-400 nm- 1.0 VRHE | 5 h no obvious decayed at 1.0 VRHE | [ | |||||||||||
Co(OH)2/Mg/ Zr:Ta3N5/Ta | solution combustion route & nitridation | 1 mol L-1 KOH (pH 13.6) | 0.45 | 3.5 | 0.45% at 0.98 VRHE | 35%-400 nm-1.23 VRHE | Not good | [ | |||||||||||
Co(OH)x/ Zr:Ta3N5/Ta | CO2-assisted oxidation & nitridation | 1 mol L-1 KOH (pH 13.6) | 0.51 | 7.2 | NR | NR | Not very good | [ | |||||||||||
NiCoFe-Bi/La:Ta3N5/ Gradient-Mg:Ta3N5/Nb | dual-source electron beam evaporation & nitridation | 1 mol L-1 KOH (pH 13.6) | 0.39 | 10.06 | ~4.07% at 0.74 VRHE | 89.7%-480 nm-1.0 VRHE | 120 min no decayed at 1.0 VRHE | [ | |||||||||||
Co(OH)x/GaN/ Sn:Ta3N5 NTs/Ta | anodization & nitridation | 0.5 mol L-1 NaOH + HCl (pH 12.5) | 0.42 | 4.58 | NR | 39%-465 nm-1.23 VRHE | 20 h decayed by ~73% at 1.23 VRHE | [ | |||||||||||
Ti:Ta3N5/Si | magnetron sputtering & nitridation | 1 mol L-1 K2HPO4 (pH 12.3) | ~0.95 | 0.18 | NR | NR | 14 h decayed by ~20% at 1.23 VRHE | [ | |||||||||||
NiCoFe-Bi/ Cu-Zrg:Ta3N5/FTO | flux-assisted nitriding & electrophoresis deposition | 1 mol L-1 KOH (pH 13.6) | 0.38 | 8.9 | ~3.5% at 0.7 VRHE | 72%-400 nm-1.23 VRHE | 10 h decayed by 14% at 1 VRHE | [ |
Table 1 Bulk phase strategies for enhancing PEC performance of Ta3N5 photoanodes.
Strategy | Photoanode | Method | Electrolyte | Vop (VRHE) | J (mA cm-2) at 1.23 VRHE | HC-STH | IPCE | Stability | Ref. | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Morphology engineering | Co(OH)x/ Ta3N5 NRs/Ta | hydrothermal & nitridation | 1 mol L-1 NaOH (pH 13.6) | ~0.25 | 2.8 | NR | 37.8%-480 nm-1.23 VRHE | 10 min decayed by 90% at 1.23 VRHE | [ | ||||||||||
Co3O4/Co(II)/Ta3N5 NRs/Ta | hydrothermal & nitridation | 1 mol L-1 NaOH (pH 13.6) | NR | 3.64 | NR | 39.5%-440 nm-1.23 VRHE | 2 h decayed by 8% at 1.23 VRHE | [ | |||||||||||
IrO2/Vertically aligned Ta3N5 NRs/Ta | anodization & nitridation | 0.5 mol L-1 Na2SO4 (pH 13) | ~0.75 | 3.8 | NR | 41.3%-440 nm-1.23 VRHE | 20 min decayed by 80% at 1 VRHE | [ | |||||||||||
CoPi/Ba-Ta3N5 NRs/Ta | anodization & nitridation | 0.5 mol L-1 K2HPO4 (pH 13) | 0.65 | 6.7 | 1.56% at 0.87 VRHE | 86%-400 nm-1.23 VRHE | 100 min decayed by 5% at 0.9 VRHE | [ | |||||||||||
CoPi/Ta3N5 NRs/Ta | anodization & nitridation | 0.5 mol L-1 K2HPO4 + KOH (pH 13) | 0.7 | 4.2 | 0.69% at 0.95 VRHE | NR | Stable at 1 VRHE | [ | |||||||||||
CoPi/Ta3N5 NRs/Ta | hydrothermal & nitridation | 1 mol L-1 KOH (pH 13.7) | ~0.8 | 3.6 | NR | NR | NR | [ | |||||||||||
Ni(Fe)Ox/Ta3N5/Si nanowire | atomic layer deposition | 0.1 mol L-1 KOH (pH 13) | 0.74 | 2.4 | NR | ~20%-500 nm-1.23 VRHE | 24 h decayed by 40-50% at 1 VRHE | [ | |||||||||||
FeNiOx/polycrystal lline Ta3N5 NRs/Ta | glancing angle deposition & nitridation | 0.5 mol L-1 K2HPO4 + KOH (pH 13) | 0.57 | 9.93 | 2.72% at 0.89 VRHE | 87%-380 nm-1.1 VRHE | 70 min decayed by 20% at 1.1 VRHE | [ | |||||||||||
FeNiCoOx/Ta3N5 NRs/Ta | glancing angle deposition & nitridation | 1 mol L-1 KOH (pH 13.6) | 0.59 | 10.96 | 2.1% at 0.91 VRHE | ~92%-400 nm-1.23 VRHE | 3 h decayed by 4% at 0.91 VRHE | [ | |||||||||||
NiCoFe-Bi/NbNx@Mg:Ta3N5 NRs | hydrothermal, atomic layer deposition & nitridation | 1 mol L-1 KOH (pH 13.6) | 0.46 | 7 | 2.24% at 0.78 VRHE | (50%-72%)-(400-550 nm)-1 VRHE | 150 min no obvious decayed at 1 VRHE | [ | |||||||||||
Co3O4/Ta3N5 NTs/Ta | anodization & nitridation | 1 mol L-1 NaOH (pH 13.6) | ~0.8 | 4.3 | 0.32% at 1.08 VRHE | 30%-400 nm-1.2 VRHE | NR | [ | |||||||||||
Ta3N5 NTs/Ta | anodization & nitridation | 0.1 mol L-1 K4[Fe (CN)6] + 0.1 mmol L-1 K3[Fe(CN)6] (pH 7.5) | ~0.29 | 7.4 | NR | NR | NR | [ | |||||||||||
Morphology engineering | Co(OH)x/Ta3N5 NTs/(Ta2N/TaN)/Ta | anodization, (Ar/H2) calcine & nitridation | 1 mol L-1 KOH (pH 13.6) | 0.6 | 6.3 | NR | 65%-400 nm-1.23 VRHE | NR | [ | ||||||||||
Co(OH)x(A)/Ta3N5 NTs(A)/Ta | anodization, nitridation & Ar plasma(A) | 1 mol L-1 KOH (pH 13.6) | ~0.6 | 7.2 | NR | 70.4%-400 nm-1.23 VRHE | NR | [ | |||||||||||
Co(OH)x/Ta3N5 NP/NT/Ta | anodization & nitridation | 1 mol L-1 KOH (pH 13.6) | NR | 8.73 | NR | 36.6%-400 nm-1 VRHE | NR | [ | |||||||||||
CoPi/Co(OH)x/Ta3N5 NTs/Ta | anodization & nitridation | 1 mol L-1 NaOH (pH 13.6) | NR | 6.3 | NR | NR | 20 min decayed by 52% at 1.1 VRHE | [ | |||||||||||
IrO2/Ta3N5 hollow sphere-nanofilms/Ta | impregnation & nitridation | 0.5 mol L-1 Na2SO4 (pH 13) | NR | ~5.4 | NR | 43.5%-470 nm-1.23 VRHE | 60 min decayed by 30% at 0.88 VRHE | [ | |||||||||||
Defects engineering | Co(OH)x/Ge:Ta3N5/ FTO | electrophoresis deposition | 1 mol L-1 NaOH (pH 13.6) | NR | 2.3 | NR | 20%-400 nm-1.23 VRHE | 3 h decayed by 75% at 1.23 VRHE | [ | ||||||||||
Mg-Zr:Ta3N5 | flux-assisted nitridation & particle transfer | 0.1 mol L-1 Na2SO4 (pH 13) | 0.55 | 2.3 | 0.59% at 0.82 VRHE | 18%-400 nm- 0.8 VRHE | NR | [ | |||||||||||
CoOOH/Mg:Ta3N5 NRs/FTO | flux-assisted nitriding & electrophoresis deposition | 1 mol L-1 NaOH (pH 13.6) | 0.6 | 6.5 | 0.78% at 1.02 VRHE | ~54%-400 nm-1.23 VRHE | 70 min decayed by 30% at 1 VRHE | [ | |||||||||||
CoPi/B:Ta3N5 nanocrystals/Ta | solgel & electrophoresis deposition | 1 mol L-1 NaOH (pH 13.6) | NR | 1.8 | 0.54% at 0.64 VRHE | ~10%-400 nm-0.97 VRHE | NR | [ | |||||||||||
Co(OH)x/Sc:Ta3N5 NRs/FTO | flux-assisted nitriding & electrophoresis deposition | 1 mol L-1 NaOH (pH 13.6) | 0.4 | 4.9 | 0.82% at 0.9 VRHE | ~55%-450 nm-1.23 VRHE | 2 h decayed by 40% at 0.9 VRHE | [ | |||||||||||
NiCoFe-Bi/gradient Mg:Ta3N5/Nb | dual-source electron beam evaporation & nitridation | 1 mol L-1 KOH (pH 13.6) | 0.4 | 8.5 | 3.25 ± 0.05% at 0.74 VRHE | 80%-400 nm- 1.0 VRHE | 5 h no obvious decayed at 1.0 VRHE | [ | |||||||||||
Co(OH)2/Mg/ Zr:Ta3N5/Ta | solution combustion route & nitridation | 1 mol L-1 KOH (pH 13.6) | 0.45 | 3.5 | 0.45% at 0.98 VRHE | 35%-400 nm-1.23 VRHE | Not good | [ | |||||||||||
Co(OH)x/ Zr:Ta3N5/Ta | CO2-assisted oxidation & nitridation | 1 mol L-1 KOH (pH 13.6) | 0.51 | 7.2 | NR | NR | Not very good | [ | |||||||||||
NiCoFe-Bi/La:Ta3N5/ Gradient-Mg:Ta3N5/Nb | dual-source electron beam evaporation & nitridation | 1 mol L-1 KOH (pH 13.6) | 0.39 | 10.06 | ~4.07% at 0.74 VRHE | 89.7%-480 nm-1.0 VRHE | 120 min no decayed at 1.0 VRHE | [ | |||||||||||
Co(OH)x/GaN/ Sn:Ta3N5 NTs/Ta | anodization & nitridation | 0.5 mol L-1 NaOH + HCl (pH 12.5) | 0.42 | 4.58 | NR | 39%-465 nm-1.23 VRHE | 20 h decayed by ~73% at 1.23 VRHE | [ | |||||||||||
Ti:Ta3N5/Si | magnetron sputtering & nitridation | 1 mol L-1 K2HPO4 (pH 12.3) | ~0.95 | 0.18 | NR | NR | 14 h decayed by ~20% at 1.23 VRHE | [ | |||||||||||
NiCoFe-Bi/ Cu-Zrg:Ta3N5/FTO | flux-assisted nitriding & electrophoresis deposition | 1 mol L-1 KOH (pH 13.6) | 0.38 | 8.9 | ~3.5% at 0.7 VRHE | 72%-400 nm-1.23 VRHE | 10 h decayed by 14% at 1 VRHE | [ |
Strategy | Photoanode | Method | Electrolyte | Vop (VRHE) | J (mA cm-2) @ 1.23VRHE | HC-STH | IPCE | Stability | Ref | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Interface engineering | Co:Ta3N5/Ta | anodization, impregnation & nitridation | 0.5 mol L-1 KOH (pH 13.6) | NR | ~1.47 | NR | NR | 0.7 h decayed by ~0.4% at 1.39 VRHE | [ | |||||||
CoPi/Mg:GaN/ Ta3N5/Ta | sputtering, nitridation & N2 post annealed | 0.5 mol L-1 K2HPO4 + KOH (pH 13) | 0 | 0.2 | NR | ~3.51%-420 nm-1.23 VRHE | 1 h decayed by 50% at 1.23 VRHE | [ | ||||||||
Cu2O nanoparticles/Ta3N5 NRs/Ta | molten salt method | 0.1 mol L-1 Na2SO4 + 0.1 mol L-1 Na2SO3 (pH 10.2) | 0.326 | ~8.2 | NR | 60%-380 nm-1.23 VRHE | NR | [ | ||||||||
Co3O4/La:Ta3N5/Ta | oxidation & nitridation | 1 mol L-1 NaOH (pH 13.6) | ~0.8 | 8.2 | NR | 60%-500 nm-1.23 VRHE | 20 min decayed by 30% at 1.23 VRHE | [ | ||||||||
CoOOH/SrTaO2N/ Ta3N5 NRs/Ta | molten salt method | 1 mol L-1 NaOH (pH 13.6) | NR | ~1.65 | NR | NR | 1 h decayed by 60% at 1 VRHE | [ | ||||||||
FeNiOx/BaTaO2N/ Ta3N5 NRs/Ta | glancing angle deposition, dip-coating & nitridation | 0.5 mol L-1 K2HPO4 + KOH (pH 13) | NR | 4.5 | NR | 35%-450 nm-1.23 VRHE | NR | [ | ||||||||
Co3O4/Fh/Ta3N5/ GaN/Ta/Ti | particle-transfer method | 0.2 mol L-1 K2HPO4 + KOH (pH 13) | 0.8 | 4.2 | 0.43% at 1 VRHE | ~8.8%-550 nm-1 VRHE | NR | [ | ||||||||
NiCoFe-Bi/Mg:GaN/ Ta3N5/In:GaN/Nb | electron beam evaporation, atomic layer deposition & nitridation | 1 mol L-1 KOH (pH 13.6) | 0.38 | 9.3 | 3.46% at ~0.77 VRHE | 90%-400 nm-1.0 VRHE | 10 h decayed by 20% at 1.0 VRHE | [ | ||||||||
Co3O4/Fh/Cubic Ta3N5/Ta | anodization, impregnation & nitridation | 1 mol L-1 NaOH (pH 13.6) | NR | 5.2 | NR | NR | 6 h decayed by 6% at 1.23 VRHE | [ | ||||||||
Ni(OH)x/MoO3/ Ta3N5/Ta | anodization, hydrothermal & nitridation | 1 mol L-1 LiOH (pH 12) | 0.25 | 1.34 | NR | ~13%-400 nm-1.2 VRHE | 24 h decayed by ~5% at 1.23 VRHE | [ | ||||||||
Co complex and Ir complex/Ni(OH)x/ fh/TiOx/Ta3N5/Ta | anodization, hydrothermal & nitridation | 1 mol L-1 NaOH (pH 13.6) | NR | 12.1 | 2.5% at 0.9 VRHE | 97%-450 nm-1.23 VRHE | NR | [ | ||||||||
CoPi/Ni(OH)x/CoOx/ Ta3N5/Ta | anodization, hydrothermal & nitridation | 1 mol L-1 LiOH (pH 12.0) | NR | 4.8 | NR | NR | 30 h decayed by ~18% at 1.23 VRHE | [ | ||||||||
Co(OH)x/Ta3N5/ NbNx/Ta/Ti | magnetron sputtering, oxidation & nitridation | 0.5 mol L-1 K2HPO4 + KOH (pH 13) | 0.8 | 3.5 | NR | 45%-400 nm-1.23 VRHE | NR | [ | ||||||||
Ta3N5/TaON/FTO | flux-assisted nitriding & electrophoresis deposition | 1 mol L-1 NaOH (pH 13.6) | 0.65 | 1.6 | NR | ~15%-400 nm-1.23 VRHE | NR | [ | ||||||||
Ta3N5/FTO | atomic layer deposition | 0.1 mol L-1 K4[Fe(CN)6] (pH 7) | 0.3 | 2.4 | NR | 25%-450 nm-1.0 VRHE | NR | [ | ||||||||
Ta3N5/Ta | plasma-enhanced chemical vapor deposition | 0.5 mol L-1 K2HPO4 + KOH (pH 13) | 0.7 | 8.1 | NR | 67%-500 nm-1.23 VRHE | 10 min decayed by 44% at 1.23 VRHE | [ | ||||||||
NiFeOx/Ta3N5/SiO2 | magnetron sputtering & nitridation | 0.2 mol L-1 K2HPO4 + KOH (pH 13) | 0.65 | 6 | 1.0% at 0.92 VRHE | ~70%-420 nm-1.2 VRHE | NR | [ | ||||||||
NiFeOx/Ta3N5/SiO2 | magnetron sputtering, oxidation & nitridation | 1 mol L-1 KOH (pH 13.6) | 0.65 | 5.1 | 6.3% at 1.23 VRHE | NR | 3 h decayed by 19% at 1.23 VRHE | [ | ||||||||
NiFeOx/Ta3N5/SiO2 | magnetron sputtering & nitridation | 0.2 mol L-1 K2HPO4 + KOH (pH 13) | 0.65 | 5.9 | 1% at 0.95 VRHE | 65%-420 nm -1.23 VRHE | NR | [ | ||||||||
Co-catalyst modification | IrO2/Ta3N5/FTO | nitridation & electrophoresis deposition | 0.1 mol L-1 Na2SO4 (pH 6) | -0.15 | ~3.9 | NR | 31%-500 nm -1.15 VRHE | 1 h decayed by 65% at 1.15 VRHE | [ | |||||||
Co3O4/Ta3N5/FTO | nitridation & electrophoresis deposition | 1 mol L-1 NaOH (pH 13.6) | NR | 3.46 | NR | 26%-400 nm -1.2 VRHE | 2 h decayed by 25% at 1.2 VRHE | [ | ||||||||
Co(OH)x/Ta3N5/Ta | thermal oxidation & nitridation | 1 mol L-1 NaOH (pH13.6) | 0.82 | 5.5 | 0.51% at 1.06 VRHE | 50%-400-470 nm-1.23 VRHE | 2 h decayed by 55% at 1.23 VRHE | [ | ||||||||
CoPi/Co(OH)x/NiFe- LDH/Ta3N5 NRs/Ta | anodization & nitridation | 1 mol L-1 KOH (pH 13.6) | NR | 6.3 | NR | NR | 2 h decayed by 10% at 1.23 VRHE | [ | ||||||||
CoPi/Co(OH)2/Ta3N5 NT/Ta | anodization & nitridation | 1 mol L-1 NaOH (pH 13.6) | ~0.88 | 6 | NR | NR | NR | [ | ||||||||
Fe-Ni-Co/Ta3N5/Ta | electrodeposition & nitridation | 1 mol L-1 NaOH (pH 13.6) | 0.77 | 4 | NR | 45%-400 nm -1.23 VRHE | 2 h decayed by 4% at 1.23 VRHE | [ | ||||||||
CoGeO2(OH)2/ Ta3N5/Ta | thermal oxidation & nitridation | 1 mol L-1 NaOH (pH 13.6) | 0.7 | 3.5 | NR | NR | NR | [ | ||||||||
NiFe-LDH/Ta3N5/Ta | carbonate-assisted nitridation | 1 mol L-1 NaOH (pH 13.6) | ~0.7 | 6 | NR | ~58%-550 nm-1.23 VRHE | 1 h decayed by 18% at 1.23 VRHE | [ | ||||||||
Ni0.9Fe0.1OOH/Ta3N5 NRs/Ta | molten salt method | 1 mol L-1 NaOH (pH 13.6) | 0.65 | 4.65 | NR | NR | Not good | [ | ||||||||
Ni0.9Fe0.1OOH/ Ta3N5/Ta | molten salt method | 1 mol L-1 NaOH (pH 13.6) | 0.6 | 5.6 | NR | NR | Not good | [ | ||||||||
Co(OH)2/CoPi/ Ta3N5 NRs/Ti | hydrothermal & nitridation | 1 mol L-1 NaOH (pH 13.6) | 0.72 | 3.8 | NR | 51%-400 nm-1.23 VRHE | 20 min decayed by 10% at 1.23 VRHE | [ | ||||||||
CoPi/Co(OH)x/ Ta3N5 NTs/Ta | anodization & nitridation | 1 mol L-1 NaOH (pH 13.6) | NR | ~2.3 | NR | ~90%-350 nm-1.23 VRHE | 20 min decayed by 30% at 1.15 VRHE | [ | ||||||||
Co(OH)x/ Ta3N5-X-Y/Ta | two-step-flame-heating & nitridation | 1 mol L-1 NaOH (pH 13.6) | NR | 6.8 | NR | NR | NR | [ | ||||||||
CoNiFe-LDHs/ Ta3N5 NTs/Ta | anodization & nitridation | 1 mol L-1 NaOH (pH 13.6) | ~0.45 | 3.59 | 0.56% at 0.9 VRHE | NR | all stable after 0.5 h at 1.23 VRHE | [ | ||||||||
IrOx/Ta3N5/GaN/Al2O3 | magnetron sputtering & nitridation | 1 mol L-1 HClO4 (pH 0.7) | 0.7 | 3 | 0.5% at 0.78 VRHE | NR | 4 h decayed by 22% at 1.23 VRHE | [ | ||||||||
NiyFe1−yOx/Cubic Ta3N5/Ta | anodization, hydrothermal & nitridation | 1 mol L-1 NaOH (pH 13.6) | 0.35 | 9.8 | 1.66 % at ~0.95 VRHE | NR | 3 h keep above 6.3 mA cm−2 at 1.23 VRHE | [ | ||||||||
NiFe/Ta3N5 NTs/Ta | chemical vapor deposition | 1 mol L-1 KOH (pH 13.6) | 0.3 | 11.2 | 1.46% at 0.94VRHE | ~58%-400 nm-1 VRHE | 30 min decayed by 21% at 1.23 VRHE | [ | ||||||||
Surface protection layer | Co(OH)x/MgO/Ta3N5 NTs/Ta | anodization & nitridation | 1 mol L-1 NaOH (pH 13.6) | NR | ~6 | NR | NR | NR | [ | |||||||
TiO2/Ta3N5/Ta | oxidation & nitridation | 1 mol L-1 NaOH (pH 13.6) | 0.95 | 2.46 | NR | NR | NR | [ | ||||||||
Ni(OH)x/FeOOH/TiO2/Ta3N5/Ta | oxidation & nitridation | 1 mol L-1 NaOH (pH 13.6) | ~0.7 | 6.4 | 0.72% at 1.02 VRHE | ~50%-400 nm-1.23 VRHE | NR | [ | ||||||||
CoPi/GaN/Ta3N5/Ta | sputtering & nitridation | 0.5 mol L-1 K2HPO4 + KOH (pH 13) | 0.65 | ~8.3 | ~1.5% at 0.9 VRHE | NR | over 10 h at 1.0 VRHE | [ | ||||||||
pyridine/Ta3N5/Ta | oxidation & nitridation | 0.1 mol L-1 NaOH (pH 13) | ~0.65 | 4.4 | 0.45% at 1.02 VRHE | 72%-500 nm-1.23 VRHE | 5 h no obvious decayed at 1.23 VRHE | [ | ||||||||
g-C3N4/Ta3N5 NTs/Si | magnetron sputtering, anodization & nitridation | 0.5 mol L-1 NaOH (pH 12.5) | ~0.45 | 0.59 | NR | 22.29%-442 nm-1.23 VRHE | 2 h decayed by 16% at 1.23 VRHE | [ | ||||||||
CeOx/NiFeOx/Fh/ AlOx/Ta3N5/Ta | anodization, hydrothermal & nitridation | 1 mol L-1 KOH (pH 13.6) | NR | 11.8 | NR | (90-100%)-(450-490 nm)-1.23 VRHE | 120 h decayed by 0% at 1.23 VRHE | [ | ||||||||
Co3O4/Fh/AlOx/Ta3N5/Ta | anodization, hydrothermal & nitridation | 1 mol L-1 NaOH (pH 13.6) | NR | 12.5 | 1.8% at 0.9 VRHE | (90%-100%)-(510-550 nm)-1.23 VRHE | 24 h decayed by 10% at 1.23 VRHE | [ |
Table 2 Interfacial strategies for enhancing PEC performance of Ta3N5 photoanodes.
Strategy | Photoanode | Method | Electrolyte | Vop (VRHE) | J (mA cm-2) @ 1.23VRHE | HC-STH | IPCE | Stability | Ref | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Interface engineering | Co:Ta3N5/Ta | anodization, impregnation & nitridation | 0.5 mol L-1 KOH (pH 13.6) | NR | ~1.47 | NR | NR | 0.7 h decayed by ~0.4% at 1.39 VRHE | [ | |||||||
CoPi/Mg:GaN/ Ta3N5/Ta | sputtering, nitridation & N2 post annealed | 0.5 mol L-1 K2HPO4 + KOH (pH 13) | 0 | 0.2 | NR | ~3.51%-420 nm-1.23 VRHE | 1 h decayed by 50% at 1.23 VRHE | [ | ||||||||
Cu2O nanoparticles/Ta3N5 NRs/Ta | molten salt method | 0.1 mol L-1 Na2SO4 + 0.1 mol L-1 Na2SO3 (pH 10.2) | 0.326 | ~8.2 | NR | 60%-380 nm-1.23 VRHE | NR | [ | ||||||||
Co3O4/La:Ta3N5/Ta | oxidation & nitridation | 1 mol L-1 NaOH (pH 13.6) | ~0.8 | 8.2 | NR | 60%-500 nm-1.23 VRHE | 20 min decayed by 30% at 1.23 VRHE | [ | ||||||||
CoOOH/SrTaO2N/ Ta3N5 NRs/Ta | molten salt method | 1 mol L-1 NaOH (pH 13.6) | NR | ~1.65 | NR | NR | 1 h decayed by 60% at 1 VRHE | [ | ||||||||
FeNiOx/BaTaO2N/ Ta3N5 NRs/Ta | glancing angle deposition, dip-coating & nitridation | 0.5 mol L-1 K2HPO4 + KOH (pH 13) | NR | 4.5 | NR | 35%-450 nm-1.23 VRHE | NR | [ | ||||||||
Co3O4/Fh/Ta3N5/ GaN/Ta/Ti | particle-transfer method | 0.2 mol L-1 K2HPO4 + KOH (pH 13) | 0.8 | 4.2 | 0.43% at 1 VRHE | ~8.8%-550 nm-1 VRHE | NR | [ | ||||||||
NiCoFe-Bi/Mg:GaN/ Ta3N5/In:GaN/Nb | electron beam evaporation, atomic layer deposition & nitridation | 1 mol L-1 KOH (pH 13.6) | 0.38 | 9.3 | 3.46% at ~0.77 VRHE | 90%-400 nm-1.0 VRHE | 10 h decayed by 20% at 1.0 VRHE | [ | ||||||||
Co3O4/Fh/Cubic Ta3N5/Ta | anodization, impregnation & nitridation | 1 mol L-1 NaOH (pH 13.6) | NR | 5.2 | NR | NR | 6 h decayed by 6% at 1.23 VRHE | [ | ||||||||
Ni(OH)x/MoO3/ Ta3N5/Ta | anodization, hydrothermal & nitridation | 1 mol L-1 LiOH (pH 12) | 0.25 | 1.34 | NR | ~13%-400 nm-1.2 VRHE | 24 h decayed by ~5% at 1.23 VRHE | [ | ||||||||
Co complex and Ir complex/Ni(OH)x/ fh/TiOx/Ta3N5/Ta | anodization, hydrothermal & nitridation | 1 mol L-1 NaOH (pH 13.6) | NR | 12.1 | 2.5% at 0.9 VRHE | 97%-450 nm-1.23 VRHE | NR | [ | ||||||||
CoPi/Ni(OH)x/CoOx/ Ta3N5/Ta | anodization, hydrothermal & nitridation | 1 mol L-1 LiOH (pH 12.0) | NR | 4.8 | NR | NR | 30 h decayed by ~18% at 1.23 VRHE | [ | ||||||||
Co(OH)x/Ta3N5/ NbNx/Ta/Ti | magnetron sputtering, oxidation & nitridation | 0.5 mol L-1 K2HPO4 + KOH (pH 13) | 0.8 | 3.5 | NR | 45%-400 nm-1.23 VRHE | NR | [ | ||||||||
Ta3N5/TaON/FTO | flux-assisted nitriding & electrophoresis deposition | 1 mol L-1 NaOH (pH 13.6) | 0.65 | 1.6 | NR | ~15%-400 nm-1.23 VRHE | NR | [ | ||||||||
Ta3N5/FTO | atomic layer deposition | 0.1 mol L-1 K4[Fe(CN)6] (pH 7) | 0.3 | 2.4 | NR | 25%-450 nm-1.0 VRHE | NR | [ | ||||||||
Ta3N5/Ta | plasma-enhanced chemical vapor deposition | 0.5 mol L-1 K2HPO4 + KOH (pH 13) | 0.7 | 8.1 | NR | 67%-500 nm-1.23 VRHE | 10 min decayed by 44% at 1.23 VRHE | [ | ||||||||
NiFeOx/Ta3N5/SiO2 | magnetron sputtering & nitridation | 0.2 mol L-1 K2HPO4 + KOH (pH 13) | 0.65 | 6 | 1.0% at 0.92 VRHE | ~70%-420 nm-1.2 VRHE | NR | [ | ||||||||
NiFeOx/Ta3N5/SiO2 | magnetron sputtering, oxidation & nitridation | 1 mol L-1 KOH (pH 13.6) | 0.65 | 5.1 | 6.3% at 1.23 VRHE | NR | 3 h decayed by 19% at 1.23 VRHE | [ | ||||||||
NiFeOx/Ta3N5/SiO2 | magnetron sputtering & nitridation | 0.2 mol L-1 K2HPO4 + KOH (pH 13) | 0.65 | 5.9 | 1% at 0.95 VRHE | 65%-420 nm -1.23 VRHE | NR | [ | ||||||||
Co-catalyst modification | IrO2/Ta3N5/FTO | nitridation & electrophoresis deposition | 0.1 mol L-1 Na2SO4 (pH 6) | -0.15 | ~3.9 | NR | 31%-500 nm -1.15 VRHE | 1 h decayed by 65% at 1.15 VRHE | [ | |||||||
Co3O4/Ta3N5/FTO | nitridation & electrophoresis deposition | 1 mol L-1 NaOH (pH 13.6) | NR | 3.46 | NR | 26%-400 nm -1.2 VRHE | 2 h decayed by 25% at 1.2 VRHE | [ | ||||||||
Co(OH)x/Ta3N5/Ta | thermal oxidation & nitridation | 1 mol L-1 NaOH (pH13.6) | 0.82 | 5.5 | 0.51% at 1.06 VRHE | 50%-400-470 nm-1.23 VRHE | 2 h decayed by 55% at 1.23 VRHE | [ | ||||||||
CoPi/Co(OH)x/NiFe- LDH/Ta3N5 NRs/Ta | anodization & nitridation | 1 mol L-1 KOH (pH 13.6) | NR | 6.3 | NR | NR | 2 h decayed by 10% at 1.23 VRHE | [ | ||||||||
CoPi/Co(OH)2/Ta3N5 NT/Ta | anodization & nitridation | 1 mol L-1 NaOH (pH 13.6) | ~0.88 | 6 | NR | NR | NR | [ | ||||||||
Fe-Ni-Co/Ta3N5/Ta | electrodeposition & nitridation | 1 mol L-1 NaOH (pH 13.6) | 0.77 | 4 | NR | 45%-400 nm -1.23 VRHE | 2 h decayed by 4% at 1.23 VRHE | [ | ||||||||
CoGeO2(OH)2/ Ta3N5/Ta | thermal oxidation & nitridation | 1 mol L-1 NaOH (pH 13.6) | 0.7 | 3.5 | NR | NR | NR | [ | ||||||||
NiFe-LDH/Ta3N5/Ta | carbonate-assisted nitridation | 1 mol L-1 NaOH (pH 13.6) | ~0.7 | 6 | NR | ~58%-550 nm-1.23 VRHE | 1 h decayed by 18% at 1.23 VRHE | [ | ||||||||
Ni0.9Fe0.1OOH/Ta3N5 NRs/Ta | molten salt method | 1 mol L-1 NaOH (pH 13.6) | 0.65 | 4.65 | NR | NR | Not good | [ | ||||||||
Ni0.9Fe0.1OOH/ Ta3N5/Ta | molten salt method | 1 mol L-1 NaOH (pH 13.6) | 0.6 | 5.6 | NR | NR | Not good | [ | ||||||||
Co(OH)2/CoPi/ Ta3N5 NRs/Ti | hydrothermal & nitridation | 1 mol L-1 NaOH (pH 13.6) | 0.72 | 3.8 | NR | 51%-400 nm-1.23 VRHE | 20 min decayed by 10% at 1.23 VRHE | [ | ||||||||
CoPi/Co(OH)x/ Ta3N5 NTs/Ta | anodization & nitridation | 1 mol L-1 NaOH (pH 13.6) | NR | ~2.3 | NR | ~90%-350 nm-1.23 VRHE | 20 min decayed by 30% at 1.15 VRHE | [ | ||||||||
Co(OH)x/ Ta3N5-X-Y/Ta | two-step-flame-heating & nitridation | 1 mol L-1 NaOH (pH 13.6) | NR | 6.8 | NR | NR | NR | [ | ||||||||
CoNiFe-LDHs/ Ta3N5 NTs/Ta | anodization & nitridation | 1 mol L-1 NaOH (pH 13.6) | ~0.45 | 3.59 | 0.56% at 0.9 VRHE | NR | all stable after 0.5 h at 1.23 VRHE | [ | ||||||||
IrOx/Ta3N5/GaN/Al2O3 | magnetron sputtering & nitridation | 1 mol L-1 HClO4 (pH 0.7) | 0.7 | 3 | 0.5% at 0.78 VRHE | NR | 4 h decayed by 22% at 1.23 VRHE | [ | ||||||||
NiyFe1−yOx/Cubic Ta3N5/Ta | anodization, hydrothermal & nitridation | 1 mol L-1 NaOH (pH 13.6) | 0.35 | 9.8 | 1.66 % at ~0.95 VRHE | NR | 3 h keep above 6.3 mA cm−2 at 1.23 VRHE | [ | ||||||||
NiFe/Ta3N5 NTs/Ta | chemical vapor deposition | 1 mol L-1 KOH (pH 13.6) | 0.3 | 11.2 | 1.46% at 0.94VRHE | ~58%-400 nm-1 VRHE | 30 min decayed by 21% at 1.23 VRHE | [ | ||||||||
Surface protection layer | Co(OH)x/MgO/Ta3N5 NTs/Ta | anodization & nitridation | 1 mol L-1 NaOH (pH 13.6) | NR | ~6 | NR | NR | NR | [ | |||||||
TiO2/Ta3N5/Ta | oxidation & nitridation | 1 mol L-1 NaOH (pH 13.6) | 0.95 | 2.46 | NR | NR | NR | [ | ||||||||
Ni(OH)x/FeOOH/TiO2/Ta3N5/Ta | oxidation & nitridation | 1 mol L-1 NaOH (pH 13.6) | ~0.7 | 6.4 | 0.72% at 1.02 VRHE | ~50%-400 nm-1.23 VRHE | NR | [ | ||||||||
CoPi/GaN/Ta3N5/Ta | sputtering & nitridation | 0.5 mol L-1 K2HPO4 + KOH (pH 13) | 0.65 | ~8.3 | ~1.5% at 0.9 VRHE | NR | over 10 h at 1.0 VRHE | [ | ||||||||
pyridine/Ta3N5/Ta | oxidation & nitridation | 0.1 mol L-1 NaOH (pH 13) | ~0.65 | 4.4 | 0.45% at 1.02 VRHE | 72%-500 nm-1.23 VRHE | 5 h no obvious decayed at 1.23 VRHE | [ | ||||||||
g-C3N4/Ta3N5 NTs/Si | magnetron sputtering, anodization & nitridation | 0.5 mol L-1 NaOH (pH 12.5) | ~0.45 | 0.59 | NR | 22.29%-442 nm-1.23 VRHE | 2 h decayed by 16% at 1.23 VRHE | [ | ||||||||
CeOx/NiFeOx/Fh/ AlOx/Ta3N5/Ta | anodization, hydrothermal & nitridation | 1 mol L-1 KOH (pH 13.6) | NR | 11.8 | NR | (90-100%)-(450-490 nm)-1.23 VRHE | 120 h decayed by 0% at 1.23 VRHE | [ | ||||||||
Co3O4/Fh/AlOx/Ta3N5/Ta | anodization, hydrothermal & nitridation | 1 mol L-1 NaOH (pH 13.6) | NR | 12.5 | 1.8% at 0.9 VRHE | (90%-100%)-(510-550 nm)-1.23 VRHE | 24 h decayed by 10% at 1.23 VRHE | [ |
Fig. 6. Top view scanning electron microscope (SEM) images of Ta3N5 nanorod arrays synthesized with a hydrothermal process (a) and a through-mask anodization process (b). Reprinted with permission from Ref. [84]. Copyright 2013, Royal Society of Chemistry. (c) Schematic process for the fabrication of vertically aligned Ta3N5 nanorod arrays. Reprinted with permission from Ref. [45]. Copyright 2013, Wiley. (d) Cross-sectional SEM images of Ta3N5 nanorod arrays. Reprinted with permission from Ref. [46]. Copyright 2013, Springer Nature. Top (e) and Cross-sectional (f) SEM images of Ta3N5 nanorod arrays synthesized with a glazing-angle deposition process. Reprinted with permission from Ref. [83]. Copyright 2020, Royal Society of Chemistry.
Fig. 7. (a) Schematic diagram of Si-Ta3N5 core-shell photoanode. (b) The J-V curves of Ta3N5 on flat Si and nanostructured Si. Reprinted with permission from Ref. [88]. Copyright 2016, American Chemical Society. (c) Top-view SEM image of the NbNx@Mg:Ta3N5-NR sample. (d) The photocurrent densities of different samples. (e) Illustration of the charge-transfer/separation process in the core-shell NbNx@Mg: Ta3N5-NR photoanode. Reprinted with permission from Ref. [89]. Copyright 2023, John Wiley and Sons Ltd.
Fig. 8. (a) The SEM images of Ta3N5 nanotubes. Reprinted with permission from Ref. [60]. Copyright 2010, American Chemical Society. (b) The cross-sectional SEM images of Ta3N5 nanotubes with a second anodization treatment. (c) Schematic illustration of the synthetic process of Ta3N5 nanotube arrays. Reprinted with permission from Ref. [90]. Copyright 2015, Royal Society of Chemistry. (d) Cross-sectional SEM images of the porous Ta3N5 nanotubes. Reprinted with permission from Ref. [93]. Copyright 2015, American Chemical Society. The top (e) and cross-sectional (f) SEM images of Ta3N5 nanotubes. Reprinted with permission from Ref. [94]. Copyright 2015, Elsevier Inc.
Fig. 9. Cross-sectional SEM images of Ta3N5 nanotubes with (a) and without (b) Ar/H2 treatment. Reprinted with permission from Ref. [95]. Copyright 2016, Wiley. Top-view SEM images of Ta3N5 nanotubes before (c) and after (d) Ar-plasma treatment. Reprinted with permission from Ref. [78]. Copyright 2018, American Chemical Society. The SEM (e) and TEM (f) images of Ta3N5 NT/NP. Reprinted with permission from Ref. [96]. Copyright 2020, Elsevier.
Fig. 10. (a) Energy band positions calculated by DFT for Ta3N5 with ON and VN defects: Ta3N5 with ON defect, pure Ta3N5, and Ta3N5 with VN defect. Reprinted with permission from Ref. [99]. Copyright 2015, Royal Society of Chemistry. (b) PL spectra of Ta3N5 showing VN, and Ta3+ defects-related emissions. (c) Schematic diagram of the energetic structure of Ta3N5 with ON, VN, and Ta3+ defects. Reprinted with permission from Ref. [77]. Copyright 2020, American Chemical Society.
Fig. 11. (a) The J-V curves of different Ta3N5 photoanodes. (b) Band structure diagram of Ta3N5 and Ta3N5:Mg + Zr. Reprinted with permission from Ref. [107]. Copyright 2015, American Chemical Society. (c) Energy band diagrams of pristine Ta3N5, Mg(L):Ta3N5, and Mg(H):Ta3N5 films (I), and the corresponding band bending schematics of homogeneous Mg:Ta3N5 (II) and gradient Mg:Ta3N5 photoanodes(III). (d) Room temperature PL spectra for pristine and Mg:Ta3N5 films measured under 420 nm laser excitation. (e) Low-temperature PL spectra measured at 10 K under 510 nm laser excitation. (f) Steady-state photocurrent for pristine Ta3N5 and gradient Mg:Ta3N5 photoanodes. Reprinted with permission from Ref. [31]. Copyright 2020, Springer Nature. (g) Deconvolution of the PL spectra for pristine Ta3N5 and La:Ta3N5. (h) Energy band diagrams of gradient-Mg:Ta3N5 and La:Ta3N5 films. (i) The HC-STH conversion efficiency of the photoanodes calculated from J-V curves. Reprinted with permission from Ref. [112]. Copyright 2022, Springer Nature.
Fig. 12. (a) The J-V curves of N2 post-annealed Mg:GaN/Ta3N5. Reprinted with permission from Ref. [119]. Copyright 2018, Royal Society of Chemistry. (b) The stability measurements of the obtained photoanodes. Reprinted with permission from Ref. [120]. Copyright 2014, John Wiley and Sons Ltd. (c) The stability measurements of different Ta3N5 photoanodes. Reprinted with permission from Ref. [121]. Copyright 2015, Wiley. (d) The schematic presentation of the integrated Ta3N5 photoanode system. (e) Current-potential curves of the complex 2/complex 1/Ni(OH)x/Fh/TiOx/Ta3N5(P) photoanode. Reprinted with permission from Ref. [44]. Copyright 2016, Royal Society of Chemistry. (f) Brief schematic diagram of interfacial energetics for the Ta3N5/CoOx/Ni(OH)x photoanode in terms of PEC water oxidation. (g) Charge-storage quantity of the studied photoanodes versus potential. Reprinted with permission from Ref. [122]. Copyright 2021, American Chemical Society.
Fig. 13. (a) Schematic depicting the thin film transfer method. (b) The J-V curves were obtained from Ta3N5 photoanodes with different back contact layers. Reprinted with permission from Ref. [124]. Copyright 2016, Royal Society of Chemistry. (c) The Schematic illustration of the separation and transport of photo-generated electrons and holes in Ta3N5/Ta (i) and Ta3N5/NbNx/Ta (ii) films. Reprinted with permission from Ref. [125]. Copyright 2016, Royal Society of Chemistry. (d) Dark-field cross-sectional TEM image of Ta3N5/Ta after nitridation. (e) Current-potential curves for Ta3N5/Ta specimen in positive and negative directions. Reprinted with permission from Ref. [126]. Copyright 2020, Royal Society of Chemistry.
Fig. 14. (a) Energy band diagram of Ta3N5/Ta (i) and Fh/Ta3N5/GaN/Ta (ii). Reprinted with permission from Ref. [127]. Copyright 2018, Royal Society of Chemistry. (b) Bright-field TEM image of the In:GaN/Ta3N5/Mg:GaN heterostructure thin film. (c) PL spectra of four Ta3N5-based films measured at 10 K under 510 nm laser excitation. (d) Schematic diagram of band structure for In:GaN/Ta3N5/Mg:GaN film. Reprinted with permission from Ref. [128]. Copyright 2022, Springer Nature.
Fig. 15. (a) Schematic energy level diagrams of the n-type and p-type domains in Ta3N5:Co in comparison with the potentials for water reduction and oxidation. (b) The J-V curves of the Ta3N5 and Ta3N5:Co photoanodes. Reprinted with permission from Ref. [130]. Copyright 2014, Royal Society of Chemistry. (c) The charge separation and transfer diagram for Ta3N5-NRs/BaTaO2N photoanodes. (d) Conceptual model and corresponding energy band alignment. (e) Optoelectrical simulations energy band diagram of Ta3N5-NRs and core-shell Ta3N5-NRs/BaTaO2N photoanodes at different biasing. (f) IPCE curves of the Ta3N5-NRs/FeNiOx and Ta3N5-NRs/BaTaO2N/FeNiOx photoanodes. Reprinted with permission from Ref. [87]. Copyright 2020, American Chemical Society. (g) The J-V curves of Ta3N5 and Ta3N5-Cu2O photoanode in sacrificial Na2SO3 electrolyte. (h) Schematic band diagrams for Ta3N5 and the Ta3N5-Cu2O heterojunction. (i) The charge separation and transport in a core-shell Ta3N5-Cu2O nanorod heterojunction. Reprinted with permission from Ref. [131]. Copyright 2019, American Institute of Physics.
Fig. 16. (a) The possible mechanism for the formation of the Ta1-O-Co Bond under PEC Conditions. Reprinted with permission from Ref. [91]. Copyright 2017, Elsevier. (b) The stability curves of different Ta3N5 photoanodes. Reprinted with permission from Ref. [132]. Copyright 2012, Wiley. (c) The equivalent circuit used for water oxidation at Ta3N5 nanorod array photoelectrodes. Reprinted with permission from Ref. [82]. Copyright 2013, Royal Society of Chemistry. (d) The J-V curves of different Ta3N5 photoanodes. Reprinted with permission from Ref. [141]. Copyright 2023, Wiley-VCH Verlag. (e) Schematic illustrations of the charge transfer process and PEC water oxidation reaction for NiyFe1?yOx/Ta3N5 photoanodes. Reprinted with permission from Ref. [148]. Copyright 2023, American Chemical Society. (f) Schematic structure of the NiCoFe-Bi catalyst. (g) The proposed Co-catalyzed self-healing mechanism of the NiCoFe-Bi catalyst. (h) Chronopotentiometry tests of the NiCoFe-Bi catalysts on FTO substrate at 10 mA cm-2. Reprinted with permission from Ref. [149]. Copyright 2021, Springer Nature.
Fig. 17. (a) The evolution of Ta3N5 surface energetics. The current-potential (b) and stability (c) curves of Ta3N5 with and without MgO as a protection layer. Reprinted with permission from Ref. [102]. Copyright 2016, Elsevier Inc. (d) The J-V curves of different Ta3N5 photoanodes. (e) Chronoamperometry measurement of the Ta3N5/AlOx/Fh/NiFeOx/CeOx photoanode Reprinted with permission from Ref. [166]. Copyright 2021, Royal Society of Chemistry. (f) The stability measurement for the CoPi/GaN/Ta3N5(black) and CoPi/Ta3N5(pink) photoanodes. Reprinted with permission from Ref. [165]. Copyright 2017, John Wiley and Sons Ltd. (g) Schematic illustration of the working principles of Ta3N5/Ta and pyridine/Ta3N5/Ta for PEC water splitting. Reprinted with permission from Ref. [168]. Copyright 2020, American Institute of Physics.
Photoanodes || Photocathode/PV-cell | Method | Electrolyte | J (mA cm-2) at 1.23VRHE | Stability (Tandem cell) | STH (%) | Ref. |
---|---|---|---|---|---|---|
Ta3N5 NTs/Ta || GaN NWs/n+-p Si | anodization & nitridation | 0.4 mol L-1 K4[Fe(CN)6] + KOH (pH 12) | ~12 | NR | 3.0 | [ |
NiFeOx/Mg:Ta3N5/CNTs || ZnSe:CIGS | magnetron sputtering & nitridation | 0.5 mol L-1 K2HPO4 + KOH (pH 13) | ~1.65 | STH 1 h decayed by ~79.5% | 0.06 | [ |
NiFeOx/Ta3N5/GaN/Al2O3 || Pt/Ni/dual-CuInSe2 | magnetron sputtering & nitridation | 0.2 mol L-1 K2HPO4 + KOH (pH 13) | 6.3 | STH 15 min decayed by 28.5% | 7.7 | [ |
NiFeOx/Ta3N5/SiO2 || Pt/TiO2/CdS/LTCA:Al | magnetron sputtering & nitridation | 0.1 mol L-1 K2HPO4 + KOH (pH 13) | 4.4 | STH 10 min decayed by ~44.4% | 0.04 | [ |
NiFeOx/Ta3N5/GaN/Al2O3 || Pt/Ni/dual-CuInSe2 | magnetron sputtering & nitridation | 1 mol L-1 KOH (pH 13.8) | 7.4 | STH 2 h decayed by ~55.5% | 9 | [ |
FeNiCoOx/Ta3N5 NRs/TF/GaN/ Al2O3 || Pt/Ni/dual-CuInSe2 | glancing angle deposition & nitridation | 1 mol L-1 KOH (pH 13.6) | 10.8 | STH 6.7 h decayed by ~17.3% | 12.1 | [ |
NiFeOx-CH3CN/Ta3N5 NRs/GaN/ Al2O3 || Pt/Ni/dual-CuInSe2 | glancing angle deposition & nitridation | 1 mol L-1 KOH (pH 14) | ~6.8 | STH 30 min decayed by ~6% | 8.2 | [ |
Table 3 The performances of Ta3N5-based tandem devices.
Photoanodes || Photocathode/PV-cell | Method | Electrolyte | J (mA cm-2) at 1.23VRHE | Stability (Tandem cell) | STH (%) | Ref. |
---|---|---|---|---|---|---|
Ta3N5 NTs/Ta || GaN NWs/n+-p Si | anodization & nitridation | 0.4 mol L-1 K4[Fe(CN)6] + KOH (pH 12) | ~12 | NR | 3.0 | [ |
NiFeOx/Mg:Ta3N5/CNTs || ZnSe:CIGS | magnetron sputtering & nitridation | 0.5 mol L-1 K2HPO4 + KOH (pH 13) | ~1.65 | STH 1 h decayed by ~79.5% | 0.06 | [ |
NiFeOx/Ta3N5/GaN/Al2O3 || Pt/Ni/dual-CuInSe2 | magnetron sputtering & nitridation | 0.2 mol L-1 K2HPO4 + KOH (pH 13) | 6.3 | STH 15 min decayed by 28.5% | 7.7 | [ |
NiFeOx/Ta3N5/SiO2 || Pt/TiO2/CdS/LTCA:Al | magnetron sputtering & nitridation | 0.1 mol L-1 K2HPO4 + KOH (pH 13) | 4.4 | STH 10 min decayed by ~44.4% | 0.04 | [ |
NiFeOx/Ta3N5/GaN/Al2O3 || Pt/Ni/dual-CuInSe2 | magnetron sputtering & nitridation | 1 mol L-1 KOH (pH 13.8) | 7.4 | STH 2 h decayed by ~55.5% | 9 | [ |
FeNiCoOx/Ta3N5 NRs/TF/GaN/ Al2O3 || Pt/Ni/dual-CuInSe2 | glancing angle deposition & nitridation | 1 mol L-1 KOH (pH 13.6) | 10.8 | STH 6.7 h decayed by ~17.3% | 12.1 | [ |
NiFeOx-CH3CN/Ta3N5 NRs/GaN/ Al2O3 || Pt/Ni/dual-CuInSe2 | glancing angle deposition & nitridation | 1 mol L-1 KOH (pH 14) | ~6.8 | STH 30 min decayed by ~6% | 8.2 | [ |
Fig. 19. (a) The working principle of a PEC tandem cell with Ohmic contact. The schematic of the wired PEC tandem cell under parallel illumination (b) and tandem illumination (c). Reprinted with permission from Ref. [175]. Copyright 2016, Wiley. (d) PEC-PV tandem cell for unbiased overall water splitting. Reprinted with permission from Ref. [48]. Copyright 2019, Royal Society of Chemistry.
Fig. 20. (a) Schematic illustration of the tandem PEC cell. (b) The energy band diagram under illumination shows the charge separation and flow charts of the system. (c) The overlay of the reduction and oxidation curves of tandem PEC cells. Reprinted with permission from Ref. [176]. Copyright 2017, Wiley. (d) A tandem-type PEC cell consisting of the Mg:Ta3N5 photoanode and a ZnSe:CIGS-based photocathode behind the semi-transparent photoanode. (e) The J-V curves for a Mg:Ta3N5/CNT photoanode as a top cell and a ZnSe:CIGS photocathode with and without the top cell. (f) The corresponding enlarged graph shows the overlap of the respective current-potential curves. Reprinted with permission from Ref. [177]. Copyright 2019, Wiley. (g) Photograph of parallel PEC cell consisting of Ta3N5 photoanode and LTCA:Al photocathode. (h) Photograph of tandem PEC cell composed of NiFeOx/Ta3N5/SiO2 transparent photoanode and Pt/TiO2/CdS/LTCA:Al photocathode. (i) Current-potential curves for a NiFeOx/Ta3N5/Ta photoanode and a Pt/TiO2/CdS/LTCA:Al photocathode. (j) The stability curve for a parallel PEC cell composed of a NiFeOx/Ta3N5/Ta photoanode and a Pt/TiO2/CdS/LTCA:Al photocathode. (k) The J-V curves for a NiFeOx/Ta3N5/SiO2 transparent photoanode and a Pt/TiO2/CdS/LTCA:Al photocathode, with and without the Ta3N5/SiO2 photoanode. Reprinted with permission from Ref. [178]. Copyright 2021, MDPI.
Fig. 21. (a) Schematic illustration of overall water splitting by tandem PEC cell composed of a transparent Ta3N5 photoanode on the front side and a Pt/Ni/dual-CuInSe2 electrode on the backside. (b) Current-potential curves for NiFeOx/Ta3N5/GaN/Al2O3 transparent photoanode and series-connected dual-CuInSe2 due to light transmitted from Ta3N5 transparent photoanode. (c) STH values as a function of reaction time for tandem PEC cells. Reprinted with permission from Ref. [181]. Copyright 2019, John Wiley and Sons Ltd. (d) Schematic diagram of Ta3N5-CuInSe2-based tandem device. (e) Current-potential curves of Ta3N5 photoanode (in front) and dual-CuInSe2 PV cells (behind photoanode). (f) Time evolution of STH conversion efficiency and current density of the tandem cell. Reprinted with permission from Ref. [182]. Copyright 2022, Royal Society of Chemistry. (g) Schematic diagram and working principle of tandem device comprised of serially connected semi-transparent Ta3N5 photoanode with dual-CuInSe2 photovoltaic cells and Pt/Ni electrode. (h) The J-V curves of dual-CuInSe2 cells (dashed line: standalone; solid line: behind photoanode) and Ta3N5-NR photoanode. (i) Evolution of current with time of the tandem device (two-electrode configuration). Reprinted with permission from Ref. [183]. Copyright 2023, Wiley.
|
[1] | Wei Xu, Chao Zhen, Huaze Zhu, Tingting Yao, Jianhang Qiu, Yan Liang, Shuo Bai, Chunlin Chen, Hui-Ming Cheng, Gang Liu. A Ta3N5 photoanode with few deep-level defects derived from topologic transition of ammonium tantalum oxyfluoride for ultralow-bias photoelectrochemical water splitting [J]. Chinese Journal of Catalysis, 2024, 61(6): 144-153. |
[2] | Chao Feng, Yanbo Li. Self-healing mechanisms toward stable photoelectrochemical water splitting [J]. Chinese Journal of Catalysis, 2024, 60(5): 158-170. |
[3] | Zhibing Chen, Xintai Chen, Yali Lv, Xiaoling Mou, Jiahui Fan, Jingwei Li, Li Yan, Ronghe Lin, Yunjie Ding. Design of earth-abundant Ni3ZnC0.7@Ni@C catalyst for selective butadiene hydrogenation [J]. Chinese Journal of Catalysis, 2024, 60(5): 304-315. |
[4] | Wangyan Gou, Yichen Wang, Mingkai Zhang, Xiaohe Tan, Yuanyuan Ma, Yongquan Qu. A review on fundamentals for designing stable ruthenium-based catalysts for the hydrogen and oxygen evolution reactions [J]. Chinese Journal of Catalysis, 2024, 60(5): 68-106. |
[5] | Zidong Wei, Xun Huang, Haohong Duan, Mingfei Shao, Rengui Li, Jinli Zhang, Can Li, Xue Duan. Electrochemical synthesis in company with hydrogen production via renewable energy: Opportunities and challenges [J]. Chinese Journal of Catalysis, 2024, 58(3): 1-6. |
[6] | Qian Zhang, Xunzhu Jiang, Yang Su, Yang Zhao, Botao Qiao. Catalytic propane dehydrogenation by anatase supported Ni single-atom catalysts [J]. Chinese Journal of Catalysis, 2024, 57(2): 105-113. |
[7] | Guoqing An, Xiaowei Zhang, Canyang Zhang, Hongyi Gao, Siqi Liu, Geng Qin, Hui Qi, Jitti Kasemchainan, Jianwei Zhang, Ge Wang. Metal-organic-framework-based materials as green catalysts for alcohol oxidation [J]. Chinese Journal of Catalysis, 2023, 50(7): 126-174. |
[8] | Xingzong Dong, Guangye Liu, Zhaoan Chen, Quan Zhang, Yunpeng Xu, Zhongmin Liu. Enhanced performance of Pd-[DBU][Cl]/AC mercury-free catalysts in acetylene hydrochlorination [J]. Chinese Journal of Catalysis, 2023, 46(3): 137-147. |
[9] | Diab khalafallah, Yunxiang Zhang, Hao Wang, Jong-Min Lee, Qinfang Zhang. Energy-saving electrochemical hydrogen production via co-generative strategies in hybrid water electrolysis: Recent advances and perspectives [J]. Chinese Journal of Catalysis, 2023, 55(12): 44-115. |
[10] | Liqing Wu, Qing Liang, Jiayi Zhao, Juan Zhu, Hongnan Jia, Wei Zhang, Ping Cai, Wei Luo. A Bi-doped RuO2 catalyst for efficient and durable acidic water oxidation [J]. Chinese Journal of Catalysis, 2023, 55(12): 182-190. |
[11] | Hangjie Li, Yuehua Xiao, Jiale Xiao, Kai Fan, Bingkuan Li, Xiaolong Li, Liang Wang, Feng-Shou Xiao. Selective hydrogenation of CO2 into dimethyl ether over hydrophobic and gallium-modified copper catalysts [J]. Chinese Journal of Catalysis, 2023, 54(11): 178-187. |
[12] | Xianbiao Fu. Some thoughts about the electrochemical nitrate reduction reaction [J]. Chinese Journal of Catalysis, 2023, 53(10): 8-12. |
[13] | Qi Zhang, Hui Chen, Lan Yang, Xiao Liang, Lei Shi, Qing Feng, Yongcun Zou, Guo-Dong Li, Xiaoxin Zou. Non-catalytic, instant iridium (Ir) leaching: A non-negligible aspect in identifying Ir-based perovskite oxygen-evolving electrocatalysts [J]. Chinese Journal of Catalysis, 2022, 43(3): 885-893. |
[14] | Xiang-dong Meng, Chao Zhen, Gang Liu, Hui-Ming Cheng. Stabilizing CuO photocathode with a Cu3N protection shell [J]. Chinese Journal of Catalysis, 2022, 43(3): 755-760. |
[15] | Yeqin Feng, Lin Qin, Junhao Zhang, Fangyu Fu, Huijie Li, Hua Xiang, Hongjin Lv. Wheel-shaped icosanuclear Cu-containing polyoxometalate catalyst: Mechanistic and stability studies on light-driven hydrogen generation [J]. Chinese Journal of Catalysis, 2022, 43(2): 442-450. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||