Chinese Journal of Catalysis ›› 2025, Vol. 68: 1-50.DOI: 10.1016/S1872-2067(24)60152-X
• Reviews • Next Articles
Yaqiang Wua,b,1, Jianuo Lia,1, Wei-Kean Chongc,1, Zhenhua Pand,*(), Qian Wanga,e,*(
)
Received:
2024-07-16
Accepted:
2024-09-24
Online:
2025-01-18
Published:
2025-01-02
Contact:
* E-mail: About author:
Zhenhua Pan (Associate Professor at Department of Applied Chemistry, Graduation School of Engineering, University of Hyogo, Japan) earned his Ph.D. from the University of Tokyo under the supervision of Prof. Kazunari Domen in 2016. In April 2020, he became an assistant professor in the Katayama Lab at Chuo University. In April 2024, he started his own lab at the University of Hyogo as an associate professor. His research focuses on the development of wide-spectrum-responsive photocatalysts for artificial photosynthesis, the investigation of photochemical processes in photocatalytic reactions, and the creation of scalable photocatalyst panels.1Contributed equally to this work.
Dedicated to Prof. K. Domen on the occasion of his 70th birthday.
Yaqiang Wu, Jianuo Li, Wei-Kean Chong, Zhenhua Pan, Qian Wang. Novel materials and techniques for photocatalytic water splitting developed by Professor Kazunari Domen[J]. Chinese Journal of Catalysis, 2025, 68: 1-50.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(24)60152-X
Fig. 1. Three most studied routes for solar hydrogen production via water splitting: photocatalytic (PC), photoelectrochemical (PEC), and photovoltaic-driven electrocatalytic (PV-E) processes.
Approach | Advantage | Challenge | Example | STH | Ref. |
---|---|---|---|---|---|
Natural photosynthesis | high scalability | low efficiency | plants and algae | typically < 0.5% | |
Two-step thermochemical reactions | lower reaction temperature compared to direct thermolysis; flexible reoxidation timing, performed at night or as needed | precise control of reaction conditions low efficiency | porous monolithic CeO2 in an advanced solar-cavity receiver reactor | maximum 0.7% for over 500 cycles | [ |
PV-E | high efficiency simple to optimize use of commercial materials | high cost complex structure relatively low scalability | InGaP/GaAs/GaInNAsSb solar cell + polymer electrolyte membrane (PEM) electrolyzer | maximum 30% for the first 48 hours | [ |
PEC | relative high efficiency simple to optimize utilization of semiconductor-liquid junctions | relative high cost low stability low scalability | RuO2|GaAs/GaInAs/GaInP/AlInP|anatase TiO2/Rh|electrolyte | maximum 19% for 2 hours | [ |
Homogenous PC system | bio-mimetic and bio-inspired high activity per active site low cost | organic solvent sacrificial reagent soluble redox mediator low stability | two-electron mixed-valence dirhodium compound, Eosin Y with hydrogenase | — | [10, 11] |
Heterogeneous PC system | low cost high scalability simplicity | low efficiency | cocatalyst-modified SrTiO3:Al | maximum 0.76% for 1600 hours, 100 m2 | [ |
Table 1 Overview of solar fuel systems: Key technical attributes and challenges.
Approach | Advantage | Challenge | Example | STH | Ref. |
---|---|---|---|---|---|
Natural photosynthesis | high scalability | low efficiency | plants and algae | typically < 0.5% | |
Two-step thermochemical reactions | lower reaction temperature compared to direct thermolysis; flexible reoxidation timing, performed at night or as needed | precise control of reaction conditions low efficiency | porous monolithic CeO2 in an advanced solar-cavity receiver reactor | maximum 0.7% for over 500 cycles | [ |
PV-E | high efficiency simple to optimize use of commercial materials | high cost complex structure relatively low scalability | InGaP/GaAs/GaInNAsSb solar cell + polymer electrolyte membrane (PEM) electrolyzer | maximum 30% for the first 48 hours | [ |
PEC | relative high efficiency simple to optimize utilization of semiconductor-liquid junctions | relative high cost low stability low scalability | RuO2|GaAs/GaInAs/GaInP/AlInP|anatase TiO2/Rh|electrolyte | maximum 19% for 2 hours | [ |
Homogenous PC system | bio-mimetic and bio-inspired high activity per active site low cost | organic solvent sacrificial reagent soluble redox mediator low stability | two-electron mixed-valence dirhodium compound, Eosin Y with hydrogenase | — | [10, 11] |
Heterogeneous PC system | low cost high scalability simplicity | low efficiency | cocatalyst-modified SrTiO3:Al | maximum 0.76% for 1600 hours, 100 m2 | [ |
Fig. 2. Diagram showing photocatalytic water splitting to produce H2 and O2 based on one-step excitation. CB: conduction band; VB: valence band; HEC: H2 evolution cocatalyst; OEC: O2 evolution cocatalyst.
Fig. 3. SEM images of SrTiO3 particles: (a) SrTiO3 (STO) (pristine), (b) SrTiO3 synthesized in yttria crucibles using SrCl2 as flux (flux-Y), and (c) SrTiO3 synthesized in alumina crucibles using SrCl2 as flux (flux-Al). (d) Water splitting activities of various SrTiO3 photocatalysts. Reaction conditions: 0.1 g catalyst, Rh2?yCryO3 as the cocatalyst (Rh 0.1 wt%, Cr 0.1 wt%), 300 W Xe lamp irradiation (λ > 300 nm). Reprinted with permission from Ref. [41]. Copyright 2016, The Royal Society of Chemistry. (e) Schematic energy diagrams for SrTiO3 and SrTiO3:Al, illustrating the effect of Al3+ on Ti3+ sites and electron/hole recombination. Reprinted with permission from Ref. [44]. Copyright 2019, The Royal Society of Chemistry.
Fig. 4. Structural illustration of (a) K4Nb6O17 with a typical layered structure. (b) Spatially separated reaction sites on Rb2La2Ti3O10. Reproduced with permission from Ref. [49]. Copyright 1997, American Chemical Society. (c) Illustration of the charge transfer mechanism in K4Nb6O17 layered structure with the incorporation of confined cocatalysts, permitting the desired HER and impeding the unfavorable backward reaction. Reproduced with permission from Ref. [50]. Copyright 1989, Academic Press Inc.
Photocatalyst | Surface modification | Reaction medium | Light source | Gas evolution rate | Efficiency a | Duration (stability) b | Ref. | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
H2 | O2 | ||||||||||||||||||
BaTaO2N:Mg | Na-Rh/Cr2O3 /IrO2 | water | 300 W Xe lamp (λ > 420 nm) | 2 μmol/h | 1 μmol/h | AQY: 0.08% (420 nm) STH: 0.0004% (0.92 Sun) | 30 h (~99%) | [ | |||||||||||
BaTaO2N | Rh/Cr2O3/IrO2 | water | 300 W Xe lamp (AM 1.5G) | ~0.27 μmol/h | ~0.13 μmol/h | AQY: 0.1% (400 nm) STH: 0.0005% (1 Sun) | 15 h (~86%) | [ | |||||||||||
CaTaO2N | RhCrOy | water | 300 W Xe lamp (λ > 300 nm) | ~1.3 μmol/h | ~0.6 μmol/h | AQY: 0.003% (440 nm) | 30 h (~86%) | [ | |||||||||||
CaTaO2N | Ru/Cr2O3/Ir | water | 300 W Xe lamp (λ > 420 nm) | 4.92 μmol/h | 2.12 μmol/h | AQY: 0.45% (420 nm) STH: 0.012% (1 Sun) | 20 h (~70%) | [ | |||||||||||
Cs2La2Ti3O10 | Ni/NiO | water | 450 W mercury lamp | 700 μmol/h | 340 μmol/h | [ | |||||||||||||
Cs1.5La2Ti2.5Nb0.5O10 | Ni/NiO | water | 450 W mercury lamp | 540 μmol/h | 265 μmol/h | [ | |||||||||||||
CsLa2Ti2NbO10 | Ni/NiO | water | 450 W mercury lamp | 115 μmol/h | 50 μmol/h | [ | |||||||||||||
Dy2Ti2O7 | NiOx | water | 400 W mercury lamp | ~160.3 μmol/h | ~72.6 μmol/h | [ | |||||||||||||
Er2Ti2O7 | NiOx | water | 400 W mercury lamp | ~419.2 μmol/h | ~184.9 μmol/h | [ | |||||||||||||
Eu2Ti2O7 | NiOx | water | 400 W mercury lamp | ~17.8 μmol/h | ~6.8 μmol/h | [ | |||||||||||||
GaN:Mg | RuO2 | water | 450 W mercury lamp | ~670 μmol/h | ~280 μmol/h | 21 h (~99%) | [ | ||||||||||||
GaN:ZnO | Rh/Cr2O3/IrO2 | water (H2SO4, pH 4) | 300 W Xe lamp (λ > 420 nm) | 14 μmol/h | 7.1 μmol/h | STH: 0.0125% (1 Sun) | 5 h | [ | |||||||||||
GaN:ZnO | RuO2 | water (H2SO4, pH 3) | 450 W mercury lamp (visible) | ~58 μmol/h | ~30 μmol/h | AQY: 0.14% (300-480 nm) | 15 h (~98%) | [ | |||||||||||
GaN:ZnO | Rh/Cr2O3/ Mn3O4 | water | 300 W Xe lamp (λ > 420 nm) | ~11.2 μmol/h | ~4.9 μmol/h | 12 h | [ | ||||||||||||
GaN:ZnO | Rh/Cr2O3 (ads.) | water | 450 W mercury lamp (λ > 400 nm) | 426 μmol/h | 213 μmol/h | 8 h (~99%) | [ | ||||||||||||
(Ga1‒xZnx)(N1‒xOx) | Rh-Cr | water (H2SO4, pH 4.5) | 450 W mercury lamp | ~320 μmol/h | ~150 μmol/h | AQY: 2.5% (430 nm) | 35 h (~97%) | [ | |||||||||||
(Ga1‒xZnx)(N1‒xOx) | RuO2 | water (H2SO4, pH 3) | 450 W mercury lamp | 58 μmol/h | 29 μmol/h | AQY: 0.23% (420 nm) | [ | ||||||||||||
(Ga1‒xZnx)(N1‒xOx) | Rh/Cr2O3 | water | 450 W mercury lamp (λ > 400 nm) | ~175.1 μmol/h | ~139 μmol/h | 4 h | [ | ||||||||||||
(Ga1‒xZnx)(N1‒xOx) | Rh2‒yCryO3/SiO2 | water | 300 W Xe lamp (λ > 300 nm) | ~130.7 μmol/h | ~57.7 μmol/h | 7 h | [ | ||||||||||||
Gd2Ti2O7 | NiOx | water | 400 W mercury lamp | ~446.6 μmol/h | ~228.8 μmol/h | [ | |||||||||||||
β-Ge3N4 | RuO2 | water (H2SO4, pH 0) | 450 W mercury lamp | 467 μmol/h | ~233 μmol/h | 25 h | [ | ||||||||||||
β-Ge3N4 (NH3) | RuO2 | water | 450 W mercury lamp | 1100 μmol/h | 550 μmol/h | AQY: 7.0% (300 nm) | 5 h | [ | |||||||||||
Ho2Ti2O7 | NiOx | water | 400 W mercury lamp | ~564.4 μmol/h | ~253.4 μmol/h | [ | |||||||||||||
K2La2Ti3O10 | Ni/NiO | water (0.1 mol/L KOH) | 450 W mercury lamp | 444 μmol/h | 221 μmol/h | 10 h (~99%) | [ | ||||||||||||
K2La2Ti3O10 | Cr/Ni | water (0.1 mol/L KOH) | 450 W mercury lamp | 885 μmol/h | 442 μmol/h | 124 h (~40%) | [ | ||||||||||||
K4Nb6O17 | Ni/NiO | water | 450 W mercury lamp | 63 μmol/h | 31 μmol/h | AQY: 3.5% (330 nm) | 50 h (~86%) | [ | |||||||||||
K4Nb6O17 | NiO | water (pH 9.7) | 450 W mercury lamp | 124 μmol/h | 62 μmol/h | AQY: 5.2% (330 nm) | 5 h | [ | |||||||||||
K2Rb2Nb6O17 | NiO | water (pH 9.7) | 450 W mercury lamp | 78 μmol/h | 39 μmol/h | AQY: 3.3% (330 nm) | 5 h | [ | |||||||||||
LaMg1/3Ta2/3O2N | TiOXH/SiOXH/ RhCrOy | water | 300 W Xe lamp (λ > 300 nm) | ~3.6 μmol/h | ~1.8 μmol/h | AQY: 0.3% (440 nm) | 22 h (~98%) | [ | |||||||||||
LaMg1/3Ta2/3O2N | TiO2/RhCrOy | water | 300 W Xe lamp (λ > 300 nm) | ~1.9 μmol/h | ~0.9 μmol/h | 5 h | [ | ||||||||||||
LaMg1/3Ta2/3O2N | RhCrOy/SiO2/ TiO2 | water | 300 W Xe lamp (λ > 300 nm) | 22 μmol/h | 11 μmol/h | AQY: 0.18% (430 nm) | 27 h (~99%) | [ | |||||||||||
Lu2Ti2O7 | NiOx | water | 400 W mercury lamp | ~58.9 μmol/h | ~21.9 μmol/h | [ | |||||||||||||
Rb2La2Ti3O10 | Ni/NiO | water (0.1 mol/L RbOH) | 450 W mercury lamp | 869 μmol/h | 430 μmol/h | 30 h (~87%) | [ | ||||||||||||
Rb1.5La2Ti2.5Nb0.5 O10 | Ni/NiO | water (0.1 mol/L RbOH) | 450 W mercury lamp | 725 μmol/h | 358 μmol/h | [ | |||||||||||||
RbLa2Ti2NbO10 | Ni/NiO | water (0.1 mol/L RbOH) | 450 W mercury lamp | 79 μmol/h | 30 μmol/h | [ | |||||||||||||
Rb4Nb6O17 | NiO | water (pH 9.7) | 450 W mercury lamp | 228 μmol/h | 110 μmol/h | AQY: 10.0% (330 nm) | 30 h (~91%) | [ | |||||||||||
SrTaO2N | CrOy/Ru/IrO2 | water (NaOH, pH 8) | 300 W Xe lamp (λ > 420 nm) | 9.1 μmol/h | 3.0 μmol/h | AQY: 0.34% (420 nm) STH: ~0.0055% (1 Sun) | 18 h (~65%) | [ | |||||||||||
SrTiO3 | NiOx | water vapor | 450 W mercury lamp | 4.4 μL/h | 2.2 μL/h | [ | |||||||||||||
SrTiO3 | Ni/NiO | water | 450 W mercury lamp | 24.4 μmol/h | 10.6 μmol/h | 60 h (~95%) | [ | ||||||||||||
SrTiO3 | NiOx | water (5 mol/L OH-) | 450 W mercury lamp | 24 μmol/h | ~12 μmol/h | [ | |||||||||||||
SrTiO3 | Rh2O3/Cr2O3 | water | 450 W mercury lamp | ~400 μmol/h | ~200 μmol/h | 5 h | [ | ||||||||||||
SrTiO3:Al | Rh2‒yCryO3 | water | 300 W Xe lamp (λ > 300 nm) | 550 μmol/h | 280 μmol/h | AQY: 30% (360 nm) | 5 h | [ | |||||||||||
SrTiO3:Al | MoOx/RhCrOy | water | 300 W Xe lamp (300-500 nm) | ~1.8 mmol/h | ~0.9 mmol/h | AQY: 60% (365 nm) | 16 h (~91%) | [ | |||||||||||
SrTiO3:Al | Rh/Cr2O3/ CoOOH | water | 300 W Xe lamp (full arc) | 3.54 mmol/h | 1.78 mmol/h | EQE: 95.7% (350 nm) STH: 0.65% (1 Sun) | 12.5 (~94%) | [ | |||||||||||
SrTiO3:Al | RhCrOy/CoOy | water vapor | 20 mW UV LED (365 nm) | ~0.9 μmol/h | ~0.4 μmol/h | AQY: 0.86% (365 nm) | 6 h | [ | |||||||||||
SrTiO3:Al [100 m2 panel] | Rh2‒yCryO3/ CoOx | water | Natural sunlight | oxyhydrogen: 568 mL/min | STH: 0.76% | 1600 h (~79%) | [ | ||||||||||||
SrTiO3:Ga | Rh2O3/Cr2O3 | water | 450 W mercury lamp | ~4.3 mmol/h | ~2.2 mmol/h | 2 h | [ | ||||||||||||
SrTiO3:Ga, La | Rh2O3/Cr2O3 | water | 450 W mercury lamp | ~1200 μmol/h | ~600 μmol/h | 2 h | [ | ||||||||||||
SrTiO3:La | Rh2O3/Cr2O3 | water | 450 W mercury lamp | ~100 μmol/h | ~50 μmol/h | 5 h | [ | ||||||||||||
SrTiO3:Na | Rh2O3/Cr2O3 | water | 450 W mercury lamp | ~10.1 mmol/h | ~5.2 mmol/h | 1.5 h | [ | ||||||||||||
SrTiO3:Na, Ta | Rh2O3/Cr2O3 | water | 450 W mercury lamp | ~400 μmol/h | ~200 μmol/h | 5 h | [ | ||||||||||||
SrTiO3:Ta | Rh2O3/Cr2O3 | water | 450 W mercury lamp | ~200 μmol/h | ~100 μmol/h | 5 h | [ | ||||||||||||
Ta3N5 | Rh/Cr2O3 | water | 300 W Xe lamp (λ > 420 nm) | ~10.9 μmol/h | ~4.8 μmol/h | AQY: 2.2% (320 nm) STH: 0.014% (1 Sun) | 15 h (~90%) | [ | |||||||||||
TaON:Zr | Ru/Cr2O3/IrO2 | water (NaOH, pH 8.0) | 300 W Xe lamp (λ > 380 nm) | ~13.7 μmol/h | ~ 6.3 μmol/h | AQY: 0.81% (365 nm) STH: 0.009% (0.8 Sun) | 24 h (82%) | [ | |||||||||||
Tm2Ti2O7 | NiOx | water | 400 W mercury lamp | ~237.0 μmol/h | ~106.9 μmol/h | [ | |||||||||||||
Yb2Ti2O7 | NiOx | water | 400 W mercury lamp | ~198.6 μmol/h | ~94.5 μmol/h | [ | |||||||||||||
Y2Ti2O5S2 | IrO2/Rh/Cr2O3 | water (La2O3, pH 8.5) | 300 W Xe lamp (λ > 420 nm) | ~6.4 μmol/h | ~3.2 μmol/h | AQY: 0.36% (420 nm) STH: 0.007% (1 Sun) | 20 h (~81%) | [ | |||||||||||
ZrO2:TaON | IrO2/Cr2O3/ RuOx | water | 450 W mercury lamp (visible) | ~3.0 μmol/h | ~1.4 μmol/h | AQY: ~0.1% (420 nm) | 16 h | [ | |||||||||||
(Zn1+xGe)(N2Ox) | Rh2‒yCryO3 | water | 300 W Xe lamp (λ > 420 nm) | 11.1 μmol/h | 5.4 μmol/h | AQY: 0.20% (420 nm) | 50 h (~87%) | [ | |||||||||||
(Zn1.44Ge)(N2O0.44) | RuO2 | Water | 420 W mercury lamp (visible) | 14.2 μmol/h | 7.4 μmol/h | 10 h (~99%) | [ | ||||||||||||
(Zn1.44Ge)(N2O0.44) | RhyCr2‒yO3 | water | 450 W mercury lamp (λ > 400 nm) | ~520.6 μmol/h | ~262.7 μmol/h | AQY: 2.0% (430 nm) | [ |
Table 2 A summary of the representative photocatalytic systems developed by Professor Kazunari Domen and his team for one-step overall water splitting.
Photocatalyst | Surface modification | Reaction medium | Light source | Gas evolution rate | Efficiency a | Duration (stability) b | Ref. | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
H2 | O2 | ||||||||||||||||||
BaTaO2N:Mg | Na-Rh/Cr2O3 /IrO2 | water | 300 W Xe lamp (λ > 420 nm) | 2 μmol/h | 1 μmol/h | AQY: 0.08% (420 nm) STH: 0.0004% (0.92 Sun) | 30 h (~99%) | [ | |||||||||||
BaTaO2N | Rh/Cr2O3/IrO2 | water | 300 W Xe lamp (AM 1.5G) | ~0.27 μmol/h | ~0.13 μmol/h | AQY: 0.1% (400 nm) STH: 0.0005% (1 Sun) | 15 h (~86%) | [ | |||||||||||
CaTaO2N | RhCrOy | water | 300 W Xe lamp (λ > 300 nm) | ~1.3 μmol/h | ~0.6 μmol/h | AQY: 0.003% (440 nm) | 30 h (~86%) | [ | |||||||||||
CaTaO2N | Ru/Cr2O3/Ir | water | 300 W Xe lamp (λ > 420 nm) | 4.92 μmol/h | 2.12 μmol/h | AQY: 0.45% (420 nm) STH: 0.012% (1 Sun) | 20 h (~70%) | [ | |||||||||||
Cs2La2Ti3O10 | Ni/NiO | water | 450 W mercury lamp | 700 μmol/h | 340 μmol/h | [ | |||||||||||||
Cs1.5La2Ti2.5Nb0.5O10 | Ni/NiO | water | 450 W mercury lamp | 540 μmol/h | 265 μmol/h | [ | |||||||||||||
CsLa2Ti2NbO10 | Ni/NiO | water | 450 W mercury lamp | 115 μmol/h | 50 μmol/h | [ | |||||||||||||
Dy2Ti2O7 | NiOx | water | 400 W mercury lamp | ~160.3 μmol/h | ~72.6 μmol/h | [ | |||||||||||||
Er2Ti2O7 | NiOx | water | 400 W mercury lamp | ~419.2 μmol/h | ~184.9 μmol/h | [ | |||||||||||||
Eu2Ti2O7 | NiOx | water | 400 W mercury lamp | ~17.8 μmol/h | ~6.8 μmol/h | [ | |||||||||||||
GaN:Mg | RuO2 | water | 450 W mercury lamp | ~670 μmol/h | ~280 μmol/h | 21 h (~99%) | [ | ||||||||||||
GaN:ZnO | Rh/Cr2O3/IrO2 | water (H2SO4, pH 4) | 300 W Xe lamp (λ > 420 nm) | 14 μmol/h | 7.1 μmol/h | STH: 0.0125% (1 Sun) | 5 h | [ | |||||||||||
GaN:ZnO | RuO2 | water (H2SO4, pH 3) | 450 W mercury lamp (visible) | ~58 μmol/h | ~30 μmol/h | AQY: 0.14% (300-480 nm) | 15 h (~98%) | [ | |||||||||||
GaN:ZnO | Rh/Cr2O3/ Mn3O4 | water | 300 W Xe lamp (λ > 420 nm) | ~11.2 μmol/h | ~4.9 μmol/h | 12 h | [ | ||||||||||||
GaN:ZnO | Rh/Cr2O3 (ads.) | water | 450 W mercury lamp (λ > 400 nm) | 426 μmol/h | 213 μmol/h | 8 h (~99%) | [ | ||||||||||||
(Ga1‒xZnx)(N1‒xOx) | Rh-Cr | water (H2SO4, pH 4.5) | 450 W mercury lamp | ~320 μmol/h | ~150 μmol/h | AQY: 2.5% (430 nm) | 35 h (~97%) | [ | |||||||||||
(Ga1‒xZnx)(N1‒xOx) | RuO2 | water (H2SO4, pH 3) | 450 W mercury lamp | 58 μmol/h | 29 μmol/h | AQY: 0.23% (420 nm) | [ | ||||||||||||
(Ga1‒xZnx)(N1‒xOx) | Rh/Cr2O3 | water | 450 W mercury lamp (λ > 400 nm) | ~175.1 μmol/h | ~139 μmol/h | 4 h | [ | ||||||||||||
(Ga1‒xZnx)(N1‒xOx) | Rh2‒yCryO3/SiO2 | water | 300 W Xe lamp (λ > 300 nm) | ~130.7 μmol/h | ~57.7 μmol/h | 7 h | [ | ||||||||||||
Gd2Ti2O7 | NiOx | water | 400 W mercury lamp | ~446.6 μmol/h | ~228.8 μmol/h | [ | |||||||||||||
β-Ge3N4 | RuO2 | water (H2SO4, pH 0) | 450 W mercury lamp | 467 μmol/h | ~233 μmol/h | 25 h | [ | ||||||||||||
β-Ge3N4 (NH3) | RuO2 | water | 450 W mercury lamp | 1100 μmol/h | 550 μmol/h | AQY: 7.0% (300 nm) | 5 h | [ | |||||||||||
Ho2Ti2O7 | NiOx | water | 400 W mercury lamp | ~564.4 μmol/h | ~253.4 μmol/h | [ | |||||||||||||
K2La2Ti3O10 | Ni/NiO | water (0.1 mol/L KOH) | 450 W mercury lamp | 444 μmol/h | 221 μmol/h | 10 h (~99%) | [ | ||||||||||||
K2La2Ti3O10 | Cr/Ni | water (0.1 mol/L KOH) | 450 W mercury lamp | 885 μmol/h | 442 μmol/h | 124 h (~40%) | [ | ||||||||||||
K4Nb6O17 | Ni/NiO | water | 450 W mercury lamp | 63 μmol/h | 31 μmol/h | AQY: 3.5% (330 nm) | 50 h (~86%) | [ | |||||||||||
K4Nb6O17 | NiO | water (pH 9.7) | 450 W mercury lamp | 124 μmol/h | 62 μmol/h | AQY: 5.2% (330 nm) | 5 h | [ | |||||||||||
K2Rb2Nb6O17 | NiO | water (pH 9.7) | 450 W mercury lamp | 78 μmol/h | 39 μmol/h | AQY: 3.3% (330 nm) | 5 h | [ | |||||||||||
LaMg1/3Ta2/3O2N | TiOXH/SiOXH/ RhCrOy | water | 300 W Xe lamp (λ > 300 nm) | ~3.6 μmol/h | ~1.8 μmol/h | AQY: 0.3% (440 nm) | 22 h (~98%) | [ | |||||||||||
LaMg1/3Ta2/3O2N | TiO2/RhCrOy | water | 300 W Xe lamp (λ > 300 nm) | ~1.9 μmol/h | ~0.9 μmol/h | 5 h | [ | ||||||||||||
LaMg1/3Ta2/3O2N | RhCrOy/SiO2/ TiO2 | water | 300 W Xe lamp (λ > 300 nm) | 22 μmol/h | 11 μmol/h | AQY: 0.18% (430 nm) | 27 h (~99%) | [ | |||||||||||
Lu2Ti2O7 | NiOx | water | 400 W mercury lamp | ~58.9 μmol/h | ~21.9 μmol/h | [ | |||||||||||||
Rb2La2Ti3O10 | Ni/NiO | water (0.1 mol/L RbOH) | 450 W mercury lamp | 869 μmol/h | 430 μmol/h | 30 h (~87%) | [ | ||||||||||||
Rb1.5La2Ti2.5Nb0.5 O10 | Ni/NiO | water (0.1 mol/L RbOH) | 450 W mercury lamp | 725 μmol/h | 358 μmol/h | [ | |||||||||||||
RbLa2Ti2NbO10 | Ni/NiO | water (0.1 mol/L RbOH) | 450 W mercury lamp | 79 μmol/h | 30 μmol/h | [ | |||||||||||||
Rb4Nb6O17 | NiO | water (pH 9.7) | 450 W mercury lamp | 228 μmol/h | 110 μmol/h | AQY: 10.0% (330 nm) | 30 h (~91%) | [ | |||||||||||
SrTaO2N | CrOy/Ru/IrO2 | water (NaOH, pH 8) | 300 W Xe lamp (λ > 420 nm) | 9.1 μmol/h | 3.0 μmol/h | AQY: 0.34% (420 nm) STH: ~0.0055% (1 Sun) | 18 h (~65%) | [ | |||||||||||
SrTiO3 | NiOx | water vapor | 450 W mercury lamp | 4.4 μL/h | 2.2 μL/h | [ | |||||||||||||
SrTiO3 | Ni/NiO | water | 450 W mercury lamp | 24.4 μmol/h | 10.6 μmol/h | 60 h (~95%) | [ | ||||||||||||
SrTiO3 | NiOx | water (5 mol/L OH-) | 450 W mercury lamp | 24 μmol/h | ~12 μmol/h | [ | |||||||||||||
SrTiO3 | Rh2O3/Cr2O3 | water | 450 W mercury lamp | ~400 μmol/h | ~200 μmol/h | 5 h | [ | ||||||||||||
SrTiO3:Al | Rh2‒yCryO3 | water | 300 W Xe lamp (λ > 300 nm) | 550 μmol/h | 280 μmol/h | AQY: 30% (360 nm) | 5 h | [ | |||||||||||
SrTiO3:Al | MoOx/RhCrOy | water | 300 W Xe lamp (300-500 nm) | ~1.8 mmol/h | ~0.9 mmol/h | AQY: 60% (365 nm) | 16 h (~91%) | [ | |||||||||||
SrTiO3:Al | Rh/Cr2O3/ CoOOH | water | 300 W Xe lamp (full arc) | 3.54 mmol/h | 1.78 mmol/h | EQE: 95.7% (350 nm) STH: 0.65% (1 Sun) | 12.5 (~94%) | [ | |||||||||||
SrTiO3:Al | RhCrOy/CoOy | water vapor | 20 mW UV LED (365 nm) | ~0.9 μmol/h | ~0.4 μmol/h | AQY: 0.86% (365 nm) | 6 h | [ | |||||||||||
SrTiO3:Al [100 m2 panel] | Rh2‒yCryO3/ CoOx | water | Natural sunlight | oxyhydrogen: 568 mL/min | STH: 0.76% | 1600 h (~79%) | [ | ||||||||||||
SrTiO3:Ga | Rh2O3/Cr2O3 | water | 450 W mercury lamp | ~4.3 mmol/h | ~2.2 mmol/h | 2 h | [ | ||||||||||||
SrTiO3:Ga, La | Rh2O3/Cr2O3 | water | 450 W mercury lamp | ~1200 μmol/h | ~600 μmol/h | 2 h | [ | ||||||||||||
SrTiO3:La | Rh2O3/Cr2O3 | water | 450 W mercury lamp | ~100 μmol/h | ~50 μmol/h | 5 h | [ | ||||||||||||
SrTiO3:Na | Rh2O3/Cr2O3 | water | 450 W mercury lamp | ~10.1 mmol/h | ~5.2 mmol/h | 1.5 h | [ | ||||||||||||
SrTiO3:Na, Ta | Rh2O3/Cr2O3 | water | 450 W mercury lamp | ~400 μmol/h | ~200 μmol/h | 5 h | [ | ||||||||||||
SrTiO3:Ta | Rh2O3/Cr2O3 | water | 450 W mercury lamp | ~200 μmol/h | ~100 μmol/h | 5 h | [ | ||||||||||||
Ta3N5 | Rh/Cr2O3 | water | 300 W Xe lamp (λ > 420 nm) | ~10.9 μmol/h | ~4.8 μmol/h | AQY: 2.2% (320 nm) STH: 0.014% (1 Sun) | 15 h (~90%) | [ | |||||||||||
TaON:Zr | Ru/Cr2O3/IrO2 | water (NaOH, pH 8.0) | 300 W Xe lamp (λ > 380 nm) | ~13.7 μmol/h | ~ 6.3 μmol/h | AQY: 0.81% (365 nm) STH: 0.009% (0.8 Sun) | 24 h (82%) | [ | |||||||||||
Tm2Ti2O7 | NiOx | water | 400 W mercury lamp | ~237.0 μmol/h | ~106.9 μmol/h | [ | |||||||||||||
Yb2Ti2O7 | NiOx | water | 400 W mercury lamp | ~198.6 μmol/h | ~94.5 μmol/h | [ | |||||||||||||
Y2Ti2O5S2 | IrO2/Rh/Cr2O3 | water (La2O3, pH 8.5) | 300 W Xe lamp (λ > 420 nm) | ~6.4 μmol/h | ~3.2 μmol/h | AQY: 0.36% (420 nm) STH: 0.007% (1 Sun) | 20 h (~81%) | [ | |||||||||||
ZrO2:TaON | IrO2/Cr2O3/ RuOx | water | 450 W mercury lamp (visible) | ~3.0 μmol/h | ~1.4 μmol/h | AQY: ~0.1% (420 nm) | 16 h | [ | |||||||||||
(Zn1+xGe)(N2Ox) | Rh2‒yCryO3 | water | 300 W Xe lamp (λ > 420 nm) | 11.1 μmol/h | 5.4 μmol/h | AQY: 0.20% (420 nm) | 50 h (~87%) | [ | |||||||||||
(Zn1.44Ge)(N2O0.44) | RuO2 | Water | 420 W mercury lamp (visible) | 14.2 μmol/h | 7.4 μmol/h | 10 h (~99%) | [ | ||||||||||||
(Zn1.44Ge)(N2O0.44) | RhyCr2‒yO3 | water | 450 W mercury lamp (λ > 400 nm) | ~520.6 μmol/h | ~262.7 μmol/h | AQY: 2.0% (430 nm) | [ |
Fig. 6. (a) Refined crystal structure of the TaON photocatalyst. Brown, red, and gray spheres denote Ta, O, and N atoms, respectively. Reprinted with permission from Ref. [98]. Copyright 2007, American Chemical Society. (b) Schematic band structures of Ta2O5, TaON, and Ta3N5. Reproduced with permission from Ref. [100]. Copyright 2003, American Chemical Society. (c) Colorized and magnified annular dark field scanning transmission electron microscopy (ADF-STEM) images of a Ta3N5 nanorod in Ta3N5/KTaO3 viewed from the [001] direction of the Ta3N5. (d) Time courses of gas evolution during overall water splitting over Rh/Cr2O3-modified Ta3N5/KTaO3 under simulated sunlight irradiation (AM 1.5G, 100 mW/cm2). Reprinted with permission from Ref. [90]. Copyright 2018, Springer Nature Limited.
Fig. 7. (a) Unit-cell for the Imma LaTiO2N crystal structure. (b) Total and partial density of states for LaTiO2N computed from DFT calculations. Left-to-right: Refined crystal structure, maximum-entropy method computed electron-density and DFT calculated valence electron-density distributions for LaTiO2N on bc plane (c) and ac plane (d). Reprinted with permission from Ref. [115]. Copyright 2010, The Royal Society of Chemistry.
Fig. 8. (a) Flux-assisted synthesis procedure for BaTaO2N synthesis of the obtained BaTaO2N (BTON) crystals, with insets showing the SEM image, TEM image, and selected area electron diffraction (SAED) patterns. XRD patterns (b) and the H2 evolution rates (c) of BTON prepared using various flux agents: BTON (KCl), BTON (RbCl), BTON (CsCl), and BTON (BaCl2). Reaction conditions: 0.1 wt% Pt-modified BTON 0.1 g; ultrapure water 150 mL; 10 vol% CH3OH; 300 W Xe lamp (λ > 420 nm). Reprinted with permission from Ref. [122]. Copyright 2020, American Chemical Society.
Fig. 9. Powder XRD patterns (a) and UV-visible diffuse reflectance spectra (b) for (Ga1-xZnx)(N1-xOx) solid solutions (x = 0-1). Reprinted with permission from Ref. [132]. Copyright 2007, American Chemical Society. (c) Schematic band structures of GaN and (Ga1-xZnx)(N1-xOx) with x = 0.05?0.22. Reproduced with permission from Ref. [133]. Copyright 2005, American Chemical Society. (d) Time course of overall water splitting under visible light (λ > 400 nm) over the photocatalyst RuO2/(Ga1?xZnx)(N1?xOx) before (left) and after (right) post-calcination. Reprinted with permission from Ref. [134]. Copyright 2008, Elsevier Inc.
Fig. 10. Crystal structure (a), band dispersion and density of states (b), SEM image (c), and UV-visible diffuse reflectance spectra (d) for Sm2Ti2S2O5. Reprinted with permission from Ref. [144]. Copyright 2002, American Chemical Society.
Fig. 11. (a) SEM image of prepared Y2Ti2S2O5 powder. (b) UV-visible diffuse reflectance spectra and photograph for Y2Ti2S2O5. (c) Schematic band structure diagram for Y2Ti2S2O5. (d) Time course of overall water splitting on Cr2O3/Rh/IrO2-modified Y2Ti2S2O5 in distilled water buffered by La2O3 (pH = 8.5) under simulated sunlight (AM 1.5G). Reprinted with permission from Ref. [92]. Copyright 2019, Springer Nature Limited.
Fig. 12. TEM images of GaN:ZnO modified with Rh/Cr2O3 (core/shell) (a) and Mn3O4 (b) nanoparticles. (c) The mechanism for visible-light-driven overall water splitting on Mn3O4 and Rh/Cr2O3 modified GaN:ZnO solid solution. (d) Time courses of the gas production using modified GaN:ZnO under visible light irradiation (λ > 420 nm). Rh, Cr, and Mn loading amounts: 0.75 wt%, 0.31 wt%, and 0.05 wt%, respectively. Reprinted with permission from Ref. [77]. Copyright 2010, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fig. 13. (a) Mechanism of the optimized HER and OER cocatalysts modification for SrTiO3:Al photocatalyst. (b) A photograph of Rh(0.1 wt%)/Cr2O3(0.05 wt%)/CoOOH(0.05 wt%) loaded SrTiO3:Al. (c) Comparison of the H2 and O2 evolution on SrTiO3:Al with various modifications during photoirradiation. Left, loaded with Rh(0.1 wt%)/Cr2O3(0.05 wt%) by two-step photodeposition. Middle, loaded with Rh(0.1 wt%)/Cr2O3(0.05 wt%)/CoOOH(0.05 wt%) by three-step photodeposition. Right, loaded with Rh(0.1 wt%)-Cr(0.1 wt%) oxide by co-impregnation. (d) Ultraviolet-visible diffuse reflectance spectrum of bare SrTiO3:Al (black solid line) and the wavelength dependence of EQE during water splitting on Rh/Cr2O3/CoOOH-loaded SrTiO3:Al (red dots). Reprinted with permission from Ref. [46]. Copyright 2020, Springer Nature Limited.
Fig. 14. Schematic reaction mechanism of photocatalytic overall water splitting on photocatalysts modified with (a) NiO, (b) core/shell Cr2O3/Rh cocatalysts, and (c) a-TiO2/Rh2-yCryO3.
Fig. 15. Gas evolution during water splitting on (a) Rh2-yCryO3/ LaMg1/3Ta2/3O2N and (b) a-TiO2/Rh2-yCryO3/LaMg1/3Ta2/3O2N. Reprinted with permission from Ref. [85]. Copyright 2015, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fig. 16. (a) Schematic illustration of Z-scheme water splitting, incorporating an HEP, an OEP, and a redox shuttle. (b) Schematic illustration of Z-scheme water splitting comprising Pt/ZrO2/TaON as HEP, Pt/WO3 as OEP, and IO3?/I? as the redox mediator, showing the forward and suppressed backward electron transfer pathways in this configuration.
Fig. 17. (a) Schematic diagram for a Z-scheme system using reduced graphene oxide (RGO) as the solid-state electron mediator combining the Cr2O3/Pt/IrO2/Sm2Ti2O5S2 HEP and CoOx/BiVO4 OEP. (b) AQY values of the Z-scheme system under 8.5 and 9.0 kPa Ar background pressure at different wavelengths along with the DRS data for the Sm2Ti2O5S2 and BiVO4. (c) Time courses of gas evolution from the Z-scheme system over time at different Ar background pressures, under light irradiation produced by an AM 1.5G solar simulator. Reprinted with permission from Ref. [152]. Copyright 2024, Springer Nature Limited.
Photocatalytic system | Surface modification | Reaction medium | Light source | Gas evolution rate | Efficiency b | Duration (stability) c | Ref. | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
HEP | OEP | Mediator | H2 | O2 | ||||||||||||||
BaTaO2N | WO3 | IO3-/I- | Pt | water (5 mmol/L NaI) | 300 W Xe lamp (> 420 nm) | ~6.6 μmol/h | ~3.1 μmol/h | AQY: 0.1% (430 nm) | 50 h (~54%) | [ | ||||||||
BaTaO2N- RbCl | WO3 | IO3-/I- | Pt/PtOx | water (1 mmol/L NaI) | 300 W Xe lamp (> 420 nm) | ~242 μmol/h | ~114 μmol/h | AQY: 4.0% (420 nm) STH: 0.24% | 10 h | [ | ||||||||
CaTaO2N | WO3 | IO3-/I- | Pt | water (5 mmol/L NaI) | 300 W Xe lamp (> 420 nm) | ~4.3 μmol/h | ~2.0 μmol/h | 16 h (~97%) | [ | |||||||||
LaMg1/3 Ta2/3O2N | BiVO4:Mo | Au | RhCrOx/ TiO2 | water | 300 W Xe lamp (> 420 nm) | ~1.1 μmol/h | ~0.6 μmol/h | AQY: 0.07% (418 nm) STH: 0.001% (1 Sun) | 8 h | [ | ||||||||
La5Ti2AgS5O7 | WO3: H+,Cs+ | IO3-/I- | Pt/NiS/ PtOx | water (2.5 mmol/L NaI) | 300 W Xe lamp (> 420 nm) | 11.1 μmol/h | 5.4 μmol/h | AQY: 0.12% (420 nm) | 11 h (~61%) | [ | ||||||||
La5Ti2AgS5O7 | WO3: H+,Cs+ | IO3-/I- | Pt/PtOx | water (2.5 mmol/L NaI) | 300 W Xe lamp (> 420 nm) | 5.6 μmol/h | 2.6 μmol/h | [ | ||||||||||
La5Ti2AgS5O7 | WO3: H+,Cs+ | IO3-/I- | NiS/PtOx | water (2.5 mmol/L NaI) | 300 W Xe lamp (> 420 nm) | 2.3 μmol/h | 1.1 μmol/h | [ | ||||||||||
La5Ti2Cu0.9 Ag0.1S5O7 | WO3: H+,Cs+ | IO3-/I- | Pt/NiS/ PtOx | water (2.5 mmol/L NaI) | 300 W Xe lamp (> 420 nm) | 3.7 μmol/h | 1.8 μmol/h | [ | ||||||||||
La5Ti2Cu0.9 Ag0.1S5O7:Ga | WO3: H+,Cs+ | IO3-/I- | Pt/NiS/ PtOx | water (2.5 mmol/L NaI) | 300 W Xe lamp (> 420 nm) | 1.9 μmol/h | 0.9 μmol/h | [ | ||||||||||
La5Ti2Cu0.9 Ag0.1S5O7:Ga | WO3: H+,Cs+ | IO3-/I- | Rh/Cr2O3/ PtOx | water (15 mmol/L NaI, H2SO4, pH 4) | 300 W Xe lamp (> 420 nm) | ~30.9 μmol/h | ~14.2 μmol/h | AQY: 2.4% (420 nm) | 9 h (~80%) | [ | ||||||||
La5Ti2Cu0.9 Ag0.1S5O7:Ga | LaTiO2N | Au | Rh/CoOx | water (NaOH, pH 11.0) | 300 W Xe lamp (> 420 nm) | ~0.51 μmol/h | ~0.18 μmol/h | AQY: 0.04% (420 nm) | 22 h (~55%) | [ | ||||||||
La5Ti2Cu0.9 Ag0.1S5O7:Ga | BiVO4 | Au | Rh/Cr2O3 | water | 300 W Xe lamp (> 420 nm) | 22.0 μmol/h | 11.0 μmol/h | AQY: 3.2% (420 nm) STH: 0.11% (1 Sun) | 12 h (~99%) | [ | ||||||||
La5Ti2Cu0.9 Ag0.1S5O7:Ga | BiVO4:Mo | Au | Rh/Cr2O3/ CoOx | water | 300 W Xe lamp (> 420 nm) | ~75.6 μmol/h | ~35.0 μmol/h | AQY: 11.8% (420 nm) STH: 0.4% (1 Sun) | 8 h | [ | ||||||||
La5Ti2Cu0.9 Ag0.1S5O7:Mg,Al | BiVO4:Mo | Au | CoOx/Cr2O3 /Rh | water | 300 W Xe lamp (> 420 nm) | ~97.5 μmol/h | ~49.5 μmol/h | AQY: 16.3% (420 nm) STH: 0.67% (1 Sun) | 20 h (~94%) | [ | ||||||||
La5Ti2Cu0.9 Ag0.1S5O7:Mg,Al | BiVO4:Mo | Au | CoOx/Cr2O3/ Rh/SiO2 | water | 300 W Xe lamp (> 420 nm) | ~52.3 μmol/h | ~23.7 μmol/h | AQY: 9.7% (420 nm) STH: 0.41% (1 Sun) | 4 h | [ | ||||||||
La5Ti2CuS5O7 | WO3: H+, Cs+ | IO3-/I- | Pt/PtOx | water (2.5 mmol/L NaI, pH 6.5) | 300 W Xe lamp (> 420 nm) | 1.1 μmol/h | 0.3 μmol/h | 60 h (~70%) | [ | |||||||||
La5Ti2CuS5O7 | WO3: H+,Cs+ | IO3-/I- | Pt/NiS/PtOx | water (2.5 mmol/L NaI) | 300 W Xe lamp (> 420 nm) | 7.5 μmol/h | 3.7 μmol/h | 4 h | [ | |||||||||
La5Ti2CuS5O7 | BiVO4 | Au | Rh/Cr2O3 | Water | 300 W Xe lamp (> 420 nm) | 4.7 μmol/h | 2.3 μmol/h | 6 h | [ | |||||||||
La6Ti2S8O5 | WO3: H+,Cs+ | IO3-/I- | Rh/PtOx | Water (2.5 mmol/L NaI, pH 6.5) | 300 W Xe lamp (> 420 nm) | 0.3 μmol/h | 0.1 μmol/h | 10 h | [ | |||||||||
MgTa2O6-x Ny:TaON | BiVO4 | Fe3+/Fe2+ | Rh/Cr | water (25 mmol/L Na3PO4, pH 6.0, 10 mmol/L K4[Fe(CN)6]) | 300 W Xe lamp (> 420 nm) | ~160 μmol/h | ~80 μmol/h | AQY: ~12.3% (420 nm) | 4 h | [ | ||||||||
MgTa2O6-x Ny:TaON | WO3 | IO3-/I- | Pt/PtOx | water (1 mmol/L NaI) | 300 W Xe lamp (> 420 nm) | 108.3 μmol/h | 55.3 μmol/h | AQY: 6.8% (420 nm) | [ | |||||||||
Sm2Ti2S2O5 | TiO2 | IO3-/I- | Pt | water (50 mmol/L NaI, pH 12) | 420 W mercury lamp | 9.0 μmol/h | 3.2 μmol/h | 14 h (~38%) | [ | |||||||||
Sm2Ti2S2O5 | BiVO4 | Co/Cr/Pt/Ir | water | 300 W Xe lamp (> 420 nm) | 1.6 μmol/h | 0.8 μmol/h | [ | |||||||||||
Sm2Ti2S2O5 | BiVO4 | Fe3+/Fe2+ | Co/Cr/Pt/Ir | water (2 mmol/L FeCl3, pH 2.3) | 300 W Xe lamp (> 420 nm) | 114.7 μmol/h | 54.6 μmol/h | [ | ||||||||||
Sm2Ti2S2O5 | BiVO4 | reduced graphene oxide | Co/Cr/Pt/Ir | water | 300 W Xe lamp (> 420 nm) | 169 μmol/h | 74 μmol/h | [ | ||||||||||
Sm2Ti2S2O5 | BiVO4 | Carbon nanotubes | Co/Cr/Pt/Ir | water | 300 W Xe lamp (> 420 nm) | 175 μmol/h | 75 μmol/h | AQY: 5.1% (420 nm) STH: 0.16% (1 Sun) | 84 h (~82%) | [ | ||||||||
Sm2Ti2S2O5 | BiVO4 | rGO | Cr2O3/Pt/ IrO2/CoOx | water | 300 W Xe lamp (> 420 nm) | 240 μmol/h | 115 μmol/h | AQY: 7.0% (420 nm) STH: 0.22% (1 Sun) | 108 h (~81%) | [ | ||||||||
Sm2Ti2S2O5 | WO3: H+,Cs+ | IO3-/I- | Pt/IrO2/ PtOx | water (2.5 mmol/L NaI, pH 6.5) | 300 W Xe lamp (> 420 nm) | 4.1 μmol/h | 1.6 μmol/h | 10 h | [ | |||||||||
SrTaO2N | BiVO4 | Fe3+/Fe2+ | Pt/Cr2O3/ Ir-FeCoOx | water (25 mmol/L Na3PO4, pH 6.0, 5 mmol/L K4[Fe(CN)6]) | 300 W Xe lamp (AM 1.5G) | ~17.8 μmol/h | ~7.7 μmol/h | AQY: 4.0% (420 nm) STH: 0.15% (0.87 Sun) | 33 h (~92%) | [ | ||||||||
SrTiO3:Rh | GaN:ZnO | Fe3+/Fe2+ | Ru/Au/IrO2 | water (2 mmol/L FeCl3, H2SO4, pH 2.75) | 300 W Xe lamp (> 420 nm) | 38 μmol/h | 17.8 μmol/h | STH: 0.037% (1 Sun) | 100 h (~92%) | [ | ||||||||
SrTiO3:La,Rh | BiVO4:Mo | Au | Ru/RuOx | water | 300 W Xe lamp (> 420 nm) | ~94.1 μmol/h | ~46.2 μmol/h | AQY: 30% (419 nm) STH: 1.1% (1 Sun) | 13 h (~99%) | [ | ||||||||
SrTiO3:La,Rh | BiVO4:Mo | Au | Ru/RuOx | water | 300 W Xe lamp (> 420 nm) | 4.0 μmol/ (h∙cm2) | 2.0 μmol/ (h∙cm2) | AQY: 5.9% (418 nm) STH: 0.2% (0.9 Sun) | 8 h | [ | ||||||||
SrTiO3:La,Rh | BiVO4:Mo | C | Ru/RuOx | water | 300 W Xe lamp (> 420 nm) | 8.6 μmol/ (h∙cm2) | 4.4 μmol/ (h∙cm2) | AQY: 26% (419 nm) STH: 1.0% (1 Sun) | 17 h (~99%) | [ | ||||||||
SrTiO3:La,Rh | BiVO4:Mo | C | Ru/RuOx | water (pH 3.5) | 300 W Xe lamp (> 420 nm) | 11 μmol/ (h∙cm2) | 5.5 μmol/ (h∙cm2) | [ | ||||||||||
SrTiO3:Rh | BiVO4:Mo | ITO | Ru/RuOx | water | 300 W Xe lamp (> 420 nm) | 6.5 μmol/ (h∙cm2) | 3.2 μmol/ (h∙cm2) | AQY: 10.2% (420 nm) STH: 0.4% (1 Sun) | 48 h (~84%) | [ | ||||||||
TaON | BiVO4 | Fe3+/Fe2+ | RhyCr2-yO3/ Ir/IrO2 | water (25 mmol/L Na3PO4, pH 6.0, 10 mmol/L K4[Fe(CN)6]) | 300 W Xe lamp (> 420 nm) | ~200 μmol/h | ~100 μmol/h | AQY: 16.9% (420 nm) STH: 0.8% (1 Sun) | 4.5 h (~98%) | [ | ||||||||
TaON | WO3 | IO3-/I- | Pt/PtOx | water (1 mmol/L NaI) | 300 W Xe lamp (> 420 nm) | 15.6 μmol/h | 7.5 μmol/h | [ | ||||||||||
TaON | WO3 | IO3-/I- | Pt | water (5 mmol/L NaI) | 300 W Xe lamp (> 400 nm) | 24 μmol/h | 12 μmol/h | AQY: 0.4% (420 nm) | 100 h | [ | ||||||||
TaON | WO3 | IO3-/I- | Pt/PtOx | water (5 mmol/L NaI, pH 6.5) | 300 W Xe lamp (> 400 nm) | ~18.7 μmol/h | ~8.5 μmol/h | AQY: 0.5% (420 nm) | 19 h (~99%) | [ | ||||||||
TaON | TaON | IO3-/I- | Pt/RuO2 | water (1 mmol/L NaI) | 300 W Xe lamp (> 420 nm) | ~7.2 μmol/h | ~2.8 μmol/h | AQY: ~0.1% (420 nm) | 10 h (~43 %) | [ | ||||||||
TiO2 (anatase) | TiO2 (rutile) | IO3-/I- | Pt | water (0.1 mol/L NaI, pH 11) | 400 mercury lamp | ~141.8 μmol/h | ~70.9 μmol/h | 20 h (~98%) | [ | |||||||||
(ZnSe)0.5(CuGa2.5Se4.25)0.5 | BiVO4:Mo | Au | Pt/CdS/TiO2 | Water | 300 W Xe lamp (> 420 nm) | 12 μmol/h | 6 μmol/h | AQY: 1.5% (420 nm) | 5 h | [ | ||||||||
m-ZrO2:TaON | WO3 | IO3-/I- | Pt | water (1 mmol/L IO3-/I-) | 300 W Xe lamp (> 420 nm) | ~4.2 μmol/h | ~1.36 μmol/h | 40 h (~ 99%) | [ | |||||||||
ZrO2:TaON | BiVO4 | Fe3+/Fe2+ | Rh/Cr | water (25 mmol/L Na3PO4, pH 6.0, 10 mmol/L K4[Fe(CN)6]) | 300 W Xe lamp (> 420 nm) | ~160 μmol/h | ~80 μmol/h | AQY: 12.3% (420 nm) STH: 0.6% (1 Sun) | 50 h (~98%) | [ | ||||||||
ZrO2:TaON | WO3 | IO3-/I- | Pt | water (1.0 mmol/L NaI) | 300 W Xe lamp (> 420 nm) | 32.6 μmol/h | 15.6 μmol/h | AQY: 6.3% (420 nm) | 10 h (~90%) | [ |
Table 3 A summary of the two-step photoexcitation (Z-scheme) systems developed by Professor Kazunari Domen and his team for photocatalytic overall water splitting, achieved without the use of sacrificial reagents.
Photocatalytic system | Surface modification | Reaction medium | Light source | Gas evolution rate | Efficiency b | Duration (stability) c | Ref. | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
HEP | OEP | Mediator | H2 | O2 | ||||||||||||||
BaTaO2N | WO3 | IO3-/I- | Pt | water (5 mmol/L NaI) | 300 W Xe lamp (> 420 nm) | ~6.6 μmol/h | ~3.1 μmol/h | AQY: 0.1% (430 nm) | 50 h (~54%) | [ | ||||||||
BaTaO2N- RbCl | WO3 | IO3-/I- | Pt/PtOx | water (1 mmol/L NaI) | 300 W Xe lamp (> 420 nm) | ~242 μmol/h | ~114 μmol/h | AQY: 4.0% (420 nm) STH: 0.24% | 10 h | [ | ||||||||
CaTaO2N | WO3 | IO3-/I- | Pt | water (5 mmol/L NaI) | 300 W Xe lamp (> 420 nm) | ~4.3 μmol/h | ~2.0 μmol/h | 16 h (~97%) | [ | |||||||||
LaMg1/3 Ta2/3O2N | BiVO4:Mo | Au | RhCrOx/ TiO2 | water | 300 W Xe lamp (> 420 nm) | ~1.1 μmol/h | ~0.6 μmol/h | AQY: 0.07% (418 nm) STH: 0.001% (1 Sun) | 8 h | [ | ||||||||
La5Ti2AgS5O7 | WO3: H+,Cs+ | IO3-/I- | Pt/NiS/ PtOx | water (2.5 mmol/L NaI) | 300 W Xe lamp (> 420 nm) | 11.1 μmol/h | 5.4 μmol/h | AQY: 0.12% (420 nm) | 11 h (~61%) | [ | ||||||||
La5Ti2AgS5O7 | WO3: H+,Cs+ | IO3-/I- | Pt/PtOx | water (2.5 mmol/L NaI) | 300 W Xe lamp (> 420 nm) | 5.6 μmol/h | 2.6 μmol/h | [ | ||||||||||
La5Ti2AgS5O7 | WO3: H+,Cs+ | IO3-/I- | NiS/PtOx | water (2.5 mmol/L NaI) | 300 W Xe lamp (> 420 nm) | 2.3 μmol/h | 1.1 μmol/h | [ | ||||||||||
La5Ti2Cu0.9 Ag0.1S5O7 | WO3: H+,Cs+ | IO3-/I- | Pt/NiS/ PtOx | water (2.5 mmol/L NaI) | 300 W Xe lamp (> 420 nm) | 3.7 μmol/h | 1.8 μmol/h | [ | ||||||||||
La5Ti2Cu0.9 Ag0.1S5O7:Ga | WO3: H+,Cs+ | IO3-/I- | Pt/NiS/ PtOx | water (2.5 mmol/L NaI) | 300 W Xe lamp (> 420 nm) | 1.9 μmol/h | 0.9 μmol/h | [ | ||||||||||
La5Ti2Cu0.9 Ag0.1S5O7:Ga | WO3: H+,Cs+ | IO3-/I- | Rh/Cr2O3/ PtOx | water (15 mmol/L NaI, H2SO4, pH 4) | 300 W Xe lamp (> 420 nm) | ~30.9 μmol/h | ~14.2 μmol/h | AQY: 2.4% (420 nm) | 9 h (~80%) | [ | ||||||||
La5Ti2Cu0.9 Ag0.1S5O7:Ga | LaTiO2N | Au | Rh/CoOx | water (NaOH, pH 11.0) | 300 W Xe lamp (> 420 nm) | ~0.51 μmol/h | ~0.18 μmol/h | AQY: 0.04% (420 nm) | 22 h (~55%) | [ | ||||||||
La5Ti2Cu0.9 Ag0.1S5O7:Ga | BiVO4 | Au | Rh/Cr2O3 | water | 300 W Xe lamp (> 420 nm) | 22.0 μmol/h | 11.0 μmol/h | AQY: 3.2% (420 nm) STH: 0.11% (1 Sun) | 12 h (~99%) | [ | ||||||||
La5Ti2Cu0.9 Ag0.1S5O7:Ga | BiVO4:Mo | Au | Rh/Cr2O3/ CoOx | water | 300 W Xe lamp (> 420 nm) | ~75.6 μmol/h | ~35.0 μmol/h | AQY: 11.8% (420 nm) STH: 0.4% (1 Sun) | 8 h | [ | ||||||||
La5Ti2Cu0.9 Ag0.1S5O7:Mg,Al | BiVO4:Mo | Au | CoOx/Cr2O3 /Rh | water | 300 W Xe lamp (> 420 nm) | ~97.5 μmol/h | ~49.5 μmol/h | AQY: 16.3% (420 nm) STH: 0.67% (1 Sun) | 20 h (~94%) | [ | ||||||||
La5Ti2Cu0.9 Ag0.1S5O7:Mg,Al | BiVO4:Mo | Au | CoOx/Cr2O3/ Rh/SiO2 | water | 300 W Xe lamp (> 420 nm) | ~52.3 μmol/h | ~23.7 μmol/h | AQY: 9.7% (420 nm) STH: 0.41% (1 Sun) | 4 h | [ | ||||||||
La5Ti2CuS5O7 | WO3: H+, Cs+ | IO3-/I- | Pt/PtOx | water (2.5 mmol/L NaI, pH 6.5) | 300 W Xe lamp (> 420 nm) | 1.1 μmol/h | 0.3 μmol/h | 60 h (~70%) | [ | |||||||||
La5Ti2CuS5O7 | WO3: H+,Cs+ | IO3-/I- | Pt/NiS/PtOx | water (2.5 mmol/L NaI) | 300 W Xe lamp (> 420 nm) | 7.5 μmol/h | 3.7 μmol/h | 4 h | [ | |||||||||
La5Ti2CuS5O7 | BiVO4 | Au | Rh/Cr2O3 | Water | 300 W Xe lamp (> 420 nm) | 4.7 μmol/h | 2.3 μmol/h | 6 h | [ | |||||||||
La6Ti2S8O5 | WO3: H+,Cs+ | IO3-/I- | Rh/PtOx | Water (2.5 mmol/L NaI, pH 6.5) | 300 W Xe lamp (> 420 nm) | 0.3 μmol/h | 0.1 μmol/h | 10 h | [ | |||||||||
MgTa2O6-x Ny:TaON | BiVO4 | Fe3+/Fe2+ | Rh/Cr | water (25 mmol/L Na3PO4, pH 6.0, 10 mmol/L K4[Fe(CN)6]) | 300 W Xe lamp (> 420 nm) | ~160 μmol/h | ~80 μmol/h | AQY: ~12.3% (420 nm) | 4 h | [ | ||||||||
MgTa2O6-x Ny:TaON | WO3 | IO3-/I- | Pt/PtOx | water (1 mmol/L NaI) | 300 W Xe lamp (> 420 nm) | 108.3 μmol/h | 55.3 μmol/h | AQY: 6.8% (420 nm) | [ | |||||||||
Sm2Ti2S2O5 | TiO2 | IO3-/I- | Pt | water (50 mmol/L NaI, pH 12) | 420 W mercury lamp | 9.0 μmol/h | 3.2 μmol/h | 14 h (~38%) | [ | |||||||||
Sm2Ti2S2O5 | BiVO4 | Co/Cr/Pt/Ir | water | 300 W Xe lamp (> 420 nm) | 1.6 μmol/h | 0.8 μmol/h | [ | |||||||||||
Sm2Ti2S2O5 | BiVO4 | Fe3+/Fe2+ | Co/Cr/Pt/Ir | water (2 mmol/L FeCl3, pH 2.3) | 300 W Xe lamp (> 420 nm) | 114.7 μmol/h | 54.6 μmol/h | [ | ||||||||||
Sm2Ti2S2O5 | BiVO4 | reduced graphene oxide | Co/Cr/Pt/Ir | water | 300 W Xe lamp (> 420 nm) | 169 μmol/h | 74 μmol/h | [ | ||||||||||
Sm2Ti2S2O5 | BiVO4 | Carbon nanotubes | Co/Cr/Pt/Ir | water | 300 W Xe lamp (> 420 nm) | 175 μmol/h | 75 μmol/h | AQY: 5.1% (420 nm) STH: 0.16% (1 Sun) | 84 h (~82%) | [ | ||||||||
Sm2Ti2S2O5 | BiVO4 | rGO | Cr2O3/Pt/ IrO2/CoOx | water | 300 W Xe lamp (> 420 nm) | 240 μmol/h | 115 μmol/h | AQY: 7.0% (420 nm) STH: 0.22% (1 Sun) | 108 h (~81%) | [ | ||||||||
Sm2Ti2S2O5 | WO3: H+,Cs+ | IO3-/I- | Pt/IrO2/ PtOx | water (2.5 mmol/L NaI, pH 6.5) | 300 W Xe lamp (> 420 nm) | 4.1 μmol/h | 1.6 μmol/h | 10 h | [ | |||||||||
SrTaO2N | BiVO4 | Fe3+/Fe2+ | Pt/Cr2O3/ Ir-FeCoOx | water (25 mmol/L Na3PO4, pH 6.0, 5 mmol/L K4[Fe(CN)6]) | 300 W Xe lamp (AM 1.5G) | ~17.8 μmol/h | ~7.7 μmol/h | AQY: 4.0% (420 nm) STH: 0.15% (0.87 Sun) | 33 h (~92%) | [ | ||||||||
SrTiO3:Rh | GaN:ZnO | Fe3+/Fe2+ | Ru/Au/IrO2 | water (2 mmol/L FeCl3, H2SO4, pH 2.75) | 300 W Xe lamp (> 420 nm) | 38 μmol/h | 17.8 μmol/h | STH: 0.037% (1 Sun) | 100 h (~92%) | [ | ||||||||
SrTiO3:La,Rh | BiVO4:Mo | Au | Ru/RuOx | water | 300 W Xe lamp (> 420 nm) | ~94.1 μmol/h | ~46.2 μmol/h | AQY: 30% (419 nm) STH: 1.1% (1 Sun) | 13 h (~99%) | [ | ||||||||
SrTiO3:La,Rh | BiVO4:Mo | Au | Ru/RuOx | water | 300 W Xe lamp (> 420 nm) | 4.0 μmol/ (h∙cm2) | 2.0 μmol/ (h∙cm2) | AQY: 5.9% (418 nm) STH: 0.2% (0.9 Sun) | 8 h | [ | ||||||||
SrTiO3:La,Rh | BiVO4:Mo | C | Ru/RuOx | water | 300 W Xe lamp (> 420 nm) | 8.6 μmol/ (h∙cm2) | 4.4 μmol/ (h∙cm2) | AQY: 26% (419 nm) STH: 1.0% (1 Sun) | 17 h (~99%) | [ | ||||||||
SrTiO3:La,Rh | BiVO4:Mo | C | Ru/RuOx | water (pH 3.5) | 300 W Xe lamp (> 420 nm) | 11 μmol/ (h∙cm2) | 5.5 μmol/ (h∙cm2) | [ | ||||||||||
SrTiO3:Rh | BiVO4:Mo | ITO | Ru/RuOx | water | 300 W Xe lamp (> 420 nm) | 6.5 μmol/ (h∙cm2) | 3.2 μmol/ (h∙cm2) | AQY: 10.2% (420 nm) STH: 0.4% (1 Sun) | 48 h (~84%) | [ | ||||||||
TaON | BiVO4 | Fe3+/Fe2+ | RhyCr2-yO3/ Ir/IrO2 | water (25 mmol/L Na3PO4, pH 6.0, 10 mmol/L K4[Fe(CN)6]) | 300 W Xe lamp (> 420 nm) | ~200 μmol/h | ~100 μmol/h | AQY: 16.9% (420 nm) STH: 0.8% (1 Sun) | 4.5 h (~98%) | [ | ||||||||
TaON | WO3 | IO3-/I- | Pt/PtOx | water (1 mmol/L NaI) | 300 W Xe lamp (> 420 nm) | 15.6 μmol/h | 7.5 μmol/h | [ | ||||||||||
TaON | WO3 | IO3-/I- | Pt | water (5 mmol/L NaI) | 300 W Xe lamp (> 400 nm) | 24 μmol/h | 12 μmol/h | AQY: 0.4% (420 nm) | 100 h | [ | ||||||||
TaON | WO3 | IO3-/I- | Pt/PtOx | water (5 mmol/L NaI, pH 6.5) | 300 W Xe lamp (> 400 nm) | ~18.7 μmol/h | ~8.5 μmol/h | AQY: 0.5% (420 nm) | 19 h (~99%) | [ | ||||||||
TaON | TaON | IO3-/I- | Pt/RuO2 | water (1 mmol/L NaI) | 300 W Xe lamp (> 420 nm) | ~7.2 μmol/h | ~2.8 μmol/h | AQY: ~0.1% (420 nm) | 10 h (~43 %) | [ | ||||||||
TiO2 (anatase) | TiO2 (rutile) | IO3-/I- | Pt | water (0.1 mol/L NaI, pH 11) | 400 mercury lamp | ~141.8 μmol/h | ~70.9 μmol/h | 20 h (~98%) | [ | |||||||||
(ZnSe)0.5(CuGa2.5Se4.25)0.5 | BiVO4:Mo | Au | Pt/CdS/TiO2 | Water | 300 W Xe lamp (> 420 nm) | 12 μmol/h | 6 μmol/h | AQY: 1.5% (420 nm) | 5 h | [ | ||||||||
m-ZrO2:TaON | WO3 | IO3-/I- | Pt | water (1 mmol/L IO3-/I-) | 300 W Xe lamp (> 420 nm) | ~4.2 μmol/h | ~1.36 μmol/h | 40 h (~ 99%) | [ | |||||||||
ZrO2:TaON | BiVO4 | Fe3+/Fe2+ | Rh/Cr | water (25 mmol/L Na3PO4, pH 6.0, 10 mmol/L K4[Fe(CN)6]) | 300 W Xe lamp (> 420 nm) | ~160 μmol/h | ~80 μmol/h | AQY: 12.3% (420 nm) STH: 0.6% (1 Sun) | 50 h (~98%) | [ | ||||||||
ZrO2:TaON | WO3 | IO3-/I- | Pt | water (1.0 mmol/L NaI) | 300 W Xe lamp (> 420 nm) | 32.6 μmol/h | 15.6 μmol/h | AQY: 6.3% (420 nm) | 10 h (~90%) | [ |
Fig. 18. (a) Preparation processes of core/shell SiO2|Ta3N5 photocatalyst with spatially separated cocatalysts. Time-dependent photocatalytic performance under visible light (λ > 420 nm) in the presence of sacrificial reagents: H2 evolution in 20 vol% methanol solution (b) and O2 evolution in 0.02 mol/L silver nitrate medium (c). TPS and TS represents Ta3N5/Pt|SiO2 and Ta3N5|SiO2 core/shells, respectively. Reprinted with permission from Ref. [221]. Copyright 2013, John Wiley & Sons, Ltd.
Fig. 19. Illustration showing the preparation of (a) a photoelectrode and (b) a photocatalyst sheet using the particle transfer method, and photoelectrodes prepared using (c) the film transfer method and (d) the roll-pressing method, and a photocatalyst sheet using (e) the screen-printing method.
Fig. 20. (a) I-E curve of a Co/BaTaO2N|Ta|Ti photoelectrode prepared by particle transfer, under simulated AM 1.5G light in 0.2 mol/L potassium phosphate aqueous solution (pH adjusted to 13). The applied potential was swept at +10 mV/s under intermittent irradiation with a period of 2 s. (b) I-t curve of the Co/BaTaO2N|Ta|Ti photoelectrode at 0.8 V vs. RHE under simulated AM 1.5G light, with CrOx-coated Pt mesh as the counter electrode. Reprinted with permission from Ref. [236]. Copyright 2015, American Chemical Society.
Fig. 21. (a) Time course of gas evolution of the Ta3N5(570 nm)|Ta|Ti photoanode held at 1.23 V vs. RHE and a Pt counter electrode, respectively, under simulated AM 1.5G light. Solid lines denote the total charges estimated from the photocurrent. Reprinted with permission from Ref. [245]. Copyright 2016, The Royal Society of Chemistry. (b) Current-potential curves obtained from Ta3N5|Ta|Ti and Ta3N5|NbNx|Ta|Ti photoelectrodes with different NbNx interlayer thicknesses (KPi, 0.5 mol/L, pH 13, AM 1.5G light). Reprinted with permission from Ref. [246]. Copyright 2016, The Royal Society of Chemistry.
Fig. 22. (a) The schematic of overall water splitting on the Ru-modified SrTiO3:La,Rh?Au?BiVO4:Mo sheet. (b) Time courses of the evolved gases for overall water splitting on a Cr2O3/Ru-modified SrTiO3:La,Rh?Au?BiVO4:Mo sheet under simulated sunlight (AM 1.5G) at 288 K and 5 kPa (open symbols) and 331 K and 10 kPa (closed symbols). Reprinted with permission from Ref. [13]. Copyright 2016, Macmillan Publishers Limited.
Fig. 23. (a) Schematics of 1 × 1 m water splitting panel containing nine photocatalyst sheets in size of 33 × 33 cm2. (b) A photocatalyst sheets each 33 × 33 cm2. Reaction time courses of 5 × 5 cm2 SrTiO3:Al panel loaded with Rh2?yCryO3 and CoOy with the light source of (c) 300 W Xe lamp (λ = 300-500 nm) and (d) simulated sunlight (AM 1.5G). Reprinted with permission from Ref. [12]. Copyright 2017, Elsevier Inc.
Fig. 24. (a) A photographic image of a panel reactor unit (625 cm2). (b) An overhead view of the 100-m2 solar hydrogen production system consisting of 1600-panel reactor units (625 cm2 each unit) and a hut housing a gas separation facility (yellow box). (c) The variations of solar illumination intensity (red) and the gas evolution rate in the water-splitting panel reactor (grey). Reprinted with permission from Ref. [15]. Copyright 2021, Springer Nature Limited.
Fig. 25. IR spectra of ethanol adsorbed on mordenite at 453 K immediately following ethanol adsorption (a) and 10 min later (b). (c) Mechanisms of intermediate investigation (in green) and ethanol dehydration process (in yellow) on zeolites. Reproduced with permission from Ref. [269]. Copyright 2005, American Chemical Society.
Fig. 26. (a) Schematic of time-resolved SFG spectroscopy. (b) The non-resonant pulses excite the electrons of the metal substrate directly, leading to a high transient electronic temperature over a few picoseconds. Reproduced with permission from Ref. [278]. Copyright 2007, Springer-Verlag. (c) An energy scheme was postulated to reveal the laser-induced transformation of different types of formate on the NiO(111) surface, thereby inducing the temperature jump. Reprinted with permission from Ref. [279]. Copyright 1998, American Chemical Society.
Fig. 27. Pressure-dependent IRA spectra of ethylene adsorbed on bare Pt(111) at 150 K (a?c) and of ethylidyne-covered Pt(111) at 150 K (d?f). (g,h) IRA spectra on Pt(111) at 150 K in the presence of a 1:1 mixture of ethylene and hydrogen. The indicated pressure is the partial pressure of ethylene. Reproduced with permission from Ref. [289]. Copyright 1997, Elsevier Science B.V.
Fig. 28. (a) Schematic illustration of optical geometry and spectro-electrochemical cell for in situ ATR-SEIRAS measurements. (b) Potential-dependent SEIRA spectra of adsorbed CO on Pt Cocatalyst. Reprinted with permission from Ref. [293]. Copyright 2009, American Chemical Society. (c) Schematic illustration of charge-carrier behavior over CoOx-loaded LaTiO2N and the corresponding Femtosecond to second time-resolved visible to mid-infrared absorption spectra (d). Reprinted with permission from Ref. [296]. Copyright 2014, American Chemical Society.
Strategy | Description |
---|---|
Doping | introducing bandgap narrowing through interactions of cation states with valence or conduction bands, or creating intrabandgap levels; suppressing the formation of “killer defects” (enhancing ηabsorption and ηseparation) |
(Oxy)nitride and oxysulfide | modifying the VB by incorporating N 2p or S 2p anions, leading to a narrowed bandgap (enhancing ηabsorption) |
Solid solution | adjusting bandgaps and energy levels by varying the ratios of wide- and narrow-bandgap semiconductors (enhancing ηabsorption) |
Z-scheme system | utilizing a two-step photoexcitation process with an HEP and an OEP, both with narrow bandgaps (enhancing ηabsorption and ηseparation) |
Flux treatment | tailoring crystallinity and grain boundary structure to limit defect formation (enhancing ηseparation) |
Combination of different cocatalyst deposition methods | enhancing cocatalyst dispersion and creating additional active sites (enhancing ηseparation and ηreaction) |
Co-deposition of HEC and OEC | promoting charge separation by providing both reductive and oxidative active sites; spatially separating HEC and OEC through facet engineering (enhancing ηseparation and ηreaction) |
Two-component cocatalysts | improving charge transport from the light absorber to the cocatalyst (enhancing ηseparation and ηreaction) |
Surface modification for HEC and photocatalyst | effectively suppressing back reactions on the surface of HEC and light absorbers (enhancing ηreaction) |
Particle transfer method | effectively facilitating charge separation and transfer between HEP and OEP in a Z-scheme configuration, or between the photocatalyst and the substrate in a photoelectrode (enhancing ηseparation) |
Table 4 Strategies typically employed by Domen's team to enhance photocatalytic performance.
Strategy | Description |
---|---|
Doping | introducing bandgap narrowing through interactions of cation states with valence or conduction bands, or creating intrabandgap levels; suppressing the formation of “killer defects” (enhancing ηabsorption and ηseparation) |
(Oxy)nitride and oxysulfide | modifying the VB by incorporating N 2p or S 2p anions, leading to a narrowed bandgap (enhancing ηabsorption) |
Solid solution | adjusting bandgaps and energy levels by varying the ratios of wide- and narrow-bandgap semiconductors (enhancing ηabsorption) |
Z-scheme system | utilizing a two-step photoexcitation process with an HEP and an OEP, both with narrow bandgaps (enhancing ηabsorption and ηseparation) |
Flux treatment | tailoring crystallinity and grain boundary structure to limit defect formation (enhancing ηseparation) |
Combination of different cocatalyst deposition methods | enhancing cocatalyst dispersion and creating additional active sites (enhancing ηseparation and ηreaction) |
Co-deposition of HEC and OEC | promoting charge separation by providing both reductive and oxidative active sites; spatially separating HEC and OEC through facet engineering (enhancing ηseparation and ηreaction) |
Two-component cocatalysts | improving charge transport from the light absorber to the cocatalyst (enhancing ηseparation and ηreaction) |
Surface modification for HEC and photocatalyst | effectively suppressing back reactions on the surface of HEC and light absorbers (enhancing ηreaction) |
Particle transfer method | effectively facilitating charge separation and transfer between HEP and OEP in a Z-scheme configuration, or between the photocatalyst and the substrate in a photoelectrode (enhancing ηseparation) |
|
[1] | Athira Krishnan, K. Archana, A. S. Arsha, Amritha Viswam, M. S. Meera. Divulging the potential role of wide band gap semiconductors in electro and photo catalytic water splitting for green hydrogen production [J]. Chinese Journal of Catalysis, 2025, 68(1): 103-145. |
[2] | Xianglin Xiang, Bei Cheng, Bicheng Zhu, Chuanjia Jiang, Guijie Liang. High-entropy alloy nanocrystals boosting photocatalytic hydrogen evolution coupled with selective oxidation of cinnamyl alcohol [J]. Chinese Journal of Catalysis, 2025, 68(1): 326-335. |
[3] | Shijie Li, Changjun You, Fang Yang, Guijie Liang, Chunqiang Zhuang, Xin Li. Interfacial Mo-S bond modulated S-scheme Mn0.5Cd0.5S/Bi2MoO6 heterojunction for boosted photocatalytic removal of emerging organic contaminants [J]. Chinese Journal of Catalysis, 2025, 68(1): 259-271. |
[4] | Wenjie Yu, Chao Feng, Ronghua Li, Beibei Zhang, Yanbo Li. Recent advances in tantalum nitride for photoelectrochemical water splitting [J]. Chinese Journal of Catalysis, 2025, 68(1): 51-82. |
[5] | Baofei Hao, Younes Ahmadi, Jan Szulejko, Tianhao Zhang, Zhansheng Lu, Ki-Hyun Kim. The design and fabrication of TiO2/Bi4O5Br2 step-scheme heterojunctions for the photodegradation of gaseous hydrogen sulfide: DFT calculation, kinetics, pathways, and mechanisms [J]. Chinese Journal of Catalysis, 2025, 68(1): 282-299. |
[6] | Hui Fu, Jin Tian, Qianqian Zhang, Zhaoke Zheng, Hefeng Cheng, Yuanyuan Liu, Baibiao Huang, Peng Wang. Single-atom modified graphene cocatalyst for enhanced photocatalytic CO2 reduction on halide perovskite [J]. Chinese Journal of Catalysis, 2024, 64(9): 143-151. |
[7] | Zheng Lin, Wanting Xie, Mengjing Zhu, Changchun Wang, Jia Guo. Boosting photocatalytic hydrogen evolution enabled by SiO2-supporting chiral covalent organic frameworks with parallel stacking sequence [J]. Chinese Journal of Catalysis, 2024, 64(9): 87-97. |
[8] | Chunguang Chen, Jinfeng Zhang, Hailiang Chu, Lixian Sun, Graham Dawson, Kai Dai. Chalcogenide-based S-scheme heterojunction photocatalysts [J]. Chinese Journal of Catalysis, 2024, 63(8): 81-108. |
[9] | Qiqi Zhang, Hui Miao, Jun Wang, Tao Sun, Enzhou Liu. Self-assembled S-scheme In2.77S4/K+-doped g-C3N4 photocatalyst with selective O2 reduction pathway for efficient H2O2 production using water and air [J]. Chinese Journal of Catalysis, 2024, 63(8): 176-189. |
[10] | Haruka Yamamoto, Langqiu Xiao, Yugo Miseki, Hiroto Ueki, Megumi Okazaki, Kazuhiro Sayama, Thomas E. Mallouk, Kazuhiko Maeda. Is platinum-loaded titania the best material for dye-sensitized hydrogen evolution under visible light? [J]. Chinese Journal of Catalysis, 2024, 63(8): 124-132. |
[11] | Chao Li, Shuo Wang, Yuan Liu, Xihe Huang, Yan Zhuang, Shuhong Wu, Ying Wang, Na Wen, Kaifeng Wu, Zhengxin Ding, Jinlin Long. Superposition of dual electric fields in covalent organic frameworks for efficient photocatalytic hydrogen evolution [J]. Chinese Journal of Catalysis, 2024, 63(8): 164-175. |
[12] | Wei Xu, Chao Zhen, Huaze Zhu, Tingting Yao, Jianhang Qiu, Yan Liang, Shuo Bai, Chunlin Chen, Hui-Ming Cheng, Gang Liu. A Ta3N5 photoanode with few deep-level defects derived from topologic transition of ammonium tantalum oxyfluoride for ultralow-bias photoelectrochemical water splitting [J]. Chinese Journal of Catalysis, 2024, 61(6): 144-153. |
[13] | Ting Zhao, Bingbing Gong, Guancheng Xu, Jiahui Jiang, Li Zhang. In situ surface reconstruction of heterostructure Ni2P/CoP/FeP4 nanowires network catalyst for high-current-density overall water splitting [J]. Chinese Journal of Catalysis, 2024, 61(6): 269-280. |
[14] | Shiwen Du, Fuxiang Zhang. General applications of density functional theory in photocatalysis [J]. Chinese Journal of Catalysis, 2024, 61(6): 1-36. |
[15] | Mengzhen Ren, Tianfu Liu, Yuanyuan Dong, Zheng Li, Jiaxin Yang, Zhenheng Diao, Hongjin Lv, Guo-Yu Yang. Near-unity photocatalytic dehydrocoupling of thiophenols into disulfides and hydrogen using coupled CdS Nanorods and Ni-containing polyoxometalate [J]. Chinese Journal of Catalysis, 2024, 61(6): 312-321. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||