Chinese Journal of Catalysis ›› 2025, Vol. 70: 378-387.DOI: 10.1016/S1872-2067(24)60227-5
• Articles • Previous Articles Next Articles
Huimei Duana,*,1(), Xiaofei Lia,1, Chuanhui Wanga, Congyun Zhanga, Kaiwen Yub, Lei Chena, Yunshang Zhangc, Jiabin Jia, Xianfeng Yangd, Dongjiang Yanga,e,*(
)
Received:
2024-10-29
Accepted:
2024-12-13
Online:
2025-03-18
Published:
2025-03-20
Contact:
* E-mail: About author:
1 Contributed equally to this work.
Supported by:
Huimei Duan, Xiaofei Li, Chuanhui Wang, Congyun Zhang, Kaiwen Yu, Lei Chen, Yunshang Zhang, Jiabin Ji, Xianfeng Yang, Dongjiang Yang. TiO2-facet-dependent effect on methane combustion over Ir/TiO2 catalysts[J]. Chinese Journal of Catalysis, 2025, 70: 378-387.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(24)60227-5
Fig. 2. XRD and Raman spectra of pure TiO2 (A,B) and Ir/TiO2 (C,D) samples. The standard patterns of Ir (PDF# 46-1044) and anatase TiO2 (PDF# 21-1272) were attached for comparison.
Fig. 3. TEM (Inserted: particle size distributions of Ir particles) and HRTEM images of Ir/TiO2-{100} (A1,A2), Ir/TiO2-{101} (B1,B2), and Ir/TiO2-{001} (C1,C2) catalysts.
Fig. 7. In situ DRIFTS spectra of Ir/TiO2-{100}, Ir/TiO2-{101}, and Ir/TiO2-{001} samples under the following conditions at 350 °C: 0.2% CH4/Ar (25 mL min-1) and 2% O2/Ar (25 mL min-1).
Fig. 8. Charge density difference for Ir/TiO2-{100} (A), Ir/TiO2-{101} (B), and Ir/TiO2-{001} (C) samples: cyan and yellow areas mean charge depletion and accumulation, respectively. The optimized geometric structures (D) and activation energy (E) of the first C-H bond cracking in CH4 on the surfaces of three Ir/TiO2 catalysts. I, II, and III represent Ir/TiO2-{100}, Ir/TiO2-{101}, and Ir/TiO2-{001}, respectively.
|
[1] | Ziguo Cai, Xuefeng Yu, Penglong Wang, Huifang Wu, Ruifeng Chong, Limin Ren, Tao Hu, Xiang Wang. Role of Y2O3 in Cu/ZnO/Y2O3 catalysts for CO2 hydrogenation to methanol [J]. Chinese Journal of Catalysis, 2025, 70(3): 410-419. |
[2] | Wenjun Qiang, Duohua Liao, Maolin Wang, Lingzhen Zeng, Weiqi Li, Xuedong Ma, Liang Yang, Shuang Li, Ding Ma. Synergistic sites over the ZnxZrO catalyst for targeted cleavage of the C-H bonds of ethane in tandem with CO2 activation [J]. Chinese Journal of Catalysis, 2025, 70(3): 272-284. |
[3] | Jiaxin Li, Yan Lv, Xueyan Wu, Xinyu Guo, Zhuojun Yang, Jixi Guo, Tianhua Zhou, Dianzeng Jia. Surface confinement of sub-1 nm Pt nanoclusters on 1D/2D NiO nanotubes/nanosheets as an effective electrocatalyst for urea-assisted energy-saving hydrogen production [J]. Chinese Journal of Catalysis, 2025, 69(2): 203-218. |
[4] | Yangyang Li, Jingyi Yang, Botao Qiao, Tao Zhang. Size-dependent strong metal-support interaction modulation of Pt/CoFe2O4 catalysts [J]. Chinese Journal of Catalysis, 2025, 69(2): 292-302. |
[5] | Chenyang Shen, Menghui Liu, Song He, Haibo Zhao, Chang-jun Liu. Advances in the studies of the supported ruthenium catalysts for CO2 methanation [J]. Chinese Journal of Catalysis, 2024, 63(8): 1-15. |
[6] | Haifang Mao, Yang Liu, Zhenmin Xu, Zhenfeng Bian. Defect-induced in situ electron-metal-support interactions on MOFs accelerating Fe(III) reduction for high-efficiency Fenton reactions [J]. Chinese Journal of Catalysis, 2024, 61(6): 247-258. |
[7] | Yuanlong Tan, Yafeng Zhang, Ya Gao, Jingyuan Ma, Han Zhao, Qingqing Gu, Yang Su, Xiaoyan Xu, Aiqin Wang, Bing Yang, Guo-Xu Zhang, Xiao Yan Liu, Tao Zhang. Redox-driven surface generation of highly active Pd/PdO interface boosting low-temperature methane combustion [J]. Chinese Journal of Catalysis, 2024, 60(5): 242-252. |
[8] | Wei Liao, Qian Zhou, Jin Long, Chenzhong Wu, Bin Wang, Qiong Peng, Jianxin Cao, Qingmei Wang. Vacancy engineering of carbon support strengthens the interaction with in-situ synthesized Pt nanodendrites for boosted oxygen reduction electrocatalysis [J]. Chinese Journal of Catalysis, 2024, 59(4): 260-271. |
[9] | Hao Cai, Fang Chen, Cheng Hu, Weiyi Ge, Tong Li, Xiaolei Zhang, Hongwei Huang. Oxygen vacancies mediated ultrathin Bi4O5Br2 nanosheets for efficient piezocatalytic peroxide hydrogen generation in pure water [J]. Chinese Journal of Catalysis, 2024, 57(2): 123-132. |
[10] | Quanquan Bie, Haibo Yin, Yunlong Wang, Haiwei Su, Yue Peng, Junhua Li. Electrocatalytic reduction of CO2 with enhanced C2 liquid products activity by the synergistic effect of Cu single atoms and oxygen vacancies [J]. Chinese Journal of Catalysis, 2024, 57(2): 96-104. |
[11] | Xinjie Song, Shipeng Fan, Zehua Cai, Zhou Yang, Xun Chen, Xianzhi Fu, Wenxin Dai. NH3 synthesis via visible-light-assisted thermocatalytic NO reduction by CO in the presence of H2O over Cu/CeO2 [J]. Chinese Journal of Catalysis, 2023, 49(6): 168-179. |
[12] | Fengwei Zhang, Hefang Guo, Mengmeng Liu, Yang Zhao, Feng Hong, Jingjing Li, Zhengping Dong, Botao Qiao. Enhancing the chemoselective hydrogenation of nitroarenes: Designing a novel surface-strained carbon-based Pt nanocatalyst [J]. Chinese Journal of Catalysis, 2023, 48(5): 195-204. |
[13] | Keran Wang, Lei Luo, Chao Wang, Junwang Tang. Photocatalytic methane activation by dual reaction sites co-modified WO3 [J]. Chinese Journal of Catalysis, 2023, 46(3): 103-112. |
[14] | Huayang Zhang, Wenjie Tian, Xiaoguang Duan, Hongqi Sun, Yingping Huang, Yanfen Fang, Shaobin Wang. Single-atom catalysts on metal-based supports for solar photoreduction catalysis [J]. Chinese Journal of Catalysis, 2022, 43(9): 2301-2315. |
[15] | Peng Li, Guoqiang Zhao, Ningyan Cheng, Lixue Xia, Xiaoning Li, Yaping Chen, Mengmeng Lao, Zhenxiang Cheng, Yan Zhao, Xun Xu, Yinzhu Jiang, Hongge Pan, Shi Xue Dou, Wenping Sun. Toward enhanced alkaline hydrogen electrocatalysis with transition metal-functionalized nitrogen-doped carbon supports [J]. Chinese Journal of Catalysis, 2022, 43(5): 1351-1359. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||