Chinese Journal of Catalysis ›› 2025, Vol. 70: 272-284.DOI: 10.1016/S1872-2067(24)60235-4
• Articles • Previous Articles Next Articles
Wenjun Qianga,1, Duohua Liaoa,1, Maolin Wangb, Lingzhen Zengb, Weiqi Lia, Xuedong Maa, Liang Yanga, Shuang Lia,*(), Ding Mab,*(
)
Received:
2024-10-15
Accepted:
2025-01-05
Online:
2025-03-18
Published:
2025-03-20
Contact:
* E-mail: About author:
1 Contributed equally to this work.
Supported by:
Wenjun Qiang, Duohua Liao, Maolin Wang, Lingzhen Zeng, Weiqi Li, Xuedong Ma, Liang Yang, Shuang Li, Ding Ma. Synergistic sites over the ZnxZrO catalyst for targeted cleavage of the C-H bonds of ethane in tandem with CO2 activation[J]. Chinese Journal of Catalysis, 2025, 70: 272-284.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(24)60235-4
Fig. 2. (a) XRD patterns of ZrO2, ZnO, and ZnxZrO catalysts. (b) The partially enlarged XRD patterns of ZrO2, ZnO, and ZnxZrO catalysts. (c) Raman spectra of ZrO2, ZnO, and ZnxZrO catalysts.
Catalyst | Crystal structure | ZrO2 lattice parameter a | Cell volume a (Å^3) | Average grain size a (nm) | I582/I438 b | |
---|---|---|---|---|---|---|
a (Å) | c (Å) | |||||
ZrO2 | t-ZrO2/m-ZrO2 | 3.5931 | 5.1309 | 67.01 | 12 | - |
Zn0.02ZrO | t-ZrO2 | 3.5987 | 5.1140 | 66.77 | 17 | 0.27 |
Zn0.05ZrO | t-ZrO2 | 3.6004 | 5.1098 | 66.50 | 19 | 0.37 |
Zn0.1ZrO | t-ZrO2 | 3.6013 | 5.1089 | 66.42 | 23 | 0.42 |
Zn0.2ZrO | t-ZrO2 | 3.5926 | 5.0935 | 66.33 | 27 | 0.53 |
Zn1ZrO | t-ZrO2/h-ZnO | 3.5982 | 5.2506 | 67.29 | 40 | 0.44 |
ZnO | h-ZnO | 3.2491 | 5.2048 | 47.58 | >100 | 0.34 |
Table 1 Crystal structures, the ZrO2 lattice parameters, cell volume, average grain size, and relative concentration of OV for ZrO2, ZnO, and ZnxZrO catalysts.
Catalyst | Crystal structure | ZrO2 lattice parameter a | Cell volume a (Å^3) | Average grain size a (nm) | I582/I438 b | |
---|---|---|---|---|---|---|
a (Å) | c (Å) | |||||
ZrO2 | t-ZrO2/m-ZrO2 | 3.5931 | 5.1309 | 67.01 | 12 | - |
Zn0.02ZrO | t-ZrO2 | 3.5987 | 5.1140 | 66.77 | 17 | 0.27 |
Zn0.05ZrO | t-ZrO2 | 3.6004 | 5.1098 | 66.50 | 19 | 0.37 |
Zn0.1ZrO | t-ZrO2 | 3.6013 | 5.1089 | 66.42 | 23 | 0.42 |
Zn0.2ZrO | t-ZrO2 | 3.5926 | 5.0935 | 66.33 | 27 | 0.53 |
Zn1ZrO | t-ZrO2/h-ZnO | 3.5982 | 5.2506 | 67.29 | 40 | 0.44 |
ZnO | h-ZnO | 3.2491 | 5.2048 | 47.58 | >100 | 0.34 |
Fig. 3. HRTEM images of ZrO2, ZnO, and ZnxZrO catalysts. (a,b) ZrO2; (c,d) Zn0.02ZrO; (e,f) Zn0.05ZrO; (g,h) Zn0.1ZrO; (i,j) Zn0.2ZrO; (k-n) Zn1ZrO; (o,p) ZnO.
Fig. 4. Zn K-edge XANES (a) and phase-uncorrected FT-EXAFS (b) spectra of Zn foil, ZnO, and ZnxZrO catalysts (The EXAFS spectra have been obtained by transforming the corresponding k3 χ(k) EXAFS function).
Catalyst | The type of basic sites a (mmol/g) | The type of acid sites b (mmol/g) | |||||
---|---|---|---|---|---|---|---|
Weak | Strong | Total | Weak | Medium | Strong | ||
ZrO2 | 0.1012 | 0.1142 | 0.2154 | 0.0433 | 0.0425 | 0.0768 | |
Zn0.02ZrO | 0.0782 | 0.1224 | 0.2006 | 0.0387 | 0.0494 | 0.0729 | |
Zn0.05ZrO | 0.0459 | 0.1377 | 0.1837 | 0.0243 | 0.0509 | 0.0649 | |
Zn0.1ZrO | 0.0316 | 0.1441 | 0.1757 | 0.0156 | 0.0709 | 0.0521 | |
Zn0.2ZrO | 0.0191 | 0.1501 | 0.1692 | 0.0195 | 0.0771 | 0.0483 | |
Zn1ZrO | 0.0093 | 0.1237 | 0.1316 | 0.0223 | 0.0520 | 0.0382 |
Table 2 The acid-base properties of ZrO2 and ZnxZrO catalysts.
Catalyst | The type of basic sites a (mmol/g) | The type of acid sites b (mmol/g) | |||||
---|---|---|---|---|---|---|---|
Weak | Strong | Total | Weak | Medium | Strong | ||
ZrO2 | 0.1012 | 0.1142 | 0.2154 | 0.0433 | 0.0425 | 0.0768 | |
Zn0.02ZrO | 0.0782 | 0.1224 | 0.2006 | 0.0387 | 0.0494 | 0.0729 | |
Zn0.05ZrO | 0.0459 | 0.1377 | 0.1837 | 0.0243 | 0.0509 | 0.0649 | |
Zn0.1ZrO | 0.0316 | 0.1441 | 0.1757 | 0.0156 | 0.0709 | 0.0521 | |
Zn0.2ZrO | 0.0191 | 0.1501 | 0.1692 | 0.0195 | 0.0771 | 0.0483 | |
Zn1ZrO | 0.0093 | 0.1237 | 0.1316 | 0.0223 | 0.0520 | 0.0382 |
Fig. 7. C2H6 conversion (a), C2H4 yield (b), and C2H4 selectivity and CO2 conversion (c) over ZrO2, ZnO, and ZnxZrO catalysts. Reaction conditions: T = 600 °C, C2H6:CO2:N2 = 1:1:2, GHSVC2H6 = 3000 mL/(g·h).
Fig. 10. (a) The C2H6 conversion, C2H4 selectivity, and C2H4 STY over Zn0.2ZrO catalyst compared with other catalysts reported in the literature. Reaction conditions: T = 600 or 700 °C, C2H6:CO2:N2 = 1:1:2, GHSVC2H6 = 3000 mL/(g·h), Reference numbers were marked along with symbols. (b) The apparent activation energy of Zn0.2ZrO and other catalysts reported in the literature. Reaction conditions: T = 550, 575, 600, and 700 °C, C2H6:CO2:N2 = 1:1:2, GHSVC2H6 = 3000 mL/(g·h).
Fig. 11. (a) Raman spectra of Zn0.2ZrO pretreated with CO at 500 and 600 °C. (b,c) XPS spectra of Zn0.2ZrO pretreated with HNO3 solution. C2H6 conversion and C2H4 yield over Zn0.2ZrO: pretreated with CO at 500 and 600 °C (d) and pretreated with HNO3 solution (e). Reaction conditions: T = 600 °C, C2H6:CO2:N2 = 1:1:2, GHSVC2H6 = 3000 mL/(g·h).
Fig. 12. In situ FTIR spectra of reaction intermediates over the Zn0.2ZrO catalyst. (a) C2H6:N2 = 1:3; (b) CO2:N2 = 1:3; (c) C2H6:CO2:N2 = 1:1:2. Reaction conditions: T = 300 °C, GHSV = 12000 mL/(g·h)). α: HCOO*, HCO3*, and H3CO* stretching vibrations [76]; β: O-H stretching vibrations and gas CO2 stretching vibrations; γ: C-H and C=C stretching vibrations (ethylene); δ: C-H stretching vibrations (ethane) [77]; λ: C=O stretching vibrations (CO2) [78]; ε: HCOO* stretching vibrations [28].
Fig. 13. C2H6 Conversion (a) and C2H4 selectivity (b) over Zn0.2ZrO catalyst in C2H6 pulse experiment. Reaction conditions: T = 600 °C, C2H6:N2 = 1:3, GHSVC2H6 = 3000 mL/(g·h).
|
[1] | Farideh Kolahdouzan, Nahal Goodarzi, Mahboobeh Setayeshmehr, Dorsa Sadat Mousavi, Alireza Z. Moshfegh. 1D-based nanostructures in photocatalytic CO2 reduction [J]. Chinese Journal of Catalysis, 2025, 70(3): 230-259. |
[2] | Ziguo Cai, Xuefeng Yu, Penglong Wang, Huifang Wu, Ruifeng Chong, Limin Ren, Tao Hu, Xiang Wang. Role of Y2O3 in Cu/ZnO/Y2O3 catalysts for CO2 hydrogenation to methanol [J]. Chinese Journal of Catalysis, 2025, 70(3): 410-419. |
[3] | Lina Zhang, Guowei Liu, Xinyan Deng, Qiuye Li, Jianjun Yang. Atomically dispersed Ba sites as electron promoters to enhance the performance for photoreduction of CO2 [J]. Chinese Journal of Catalysis, 2025, 70(3): 341-352. |
[4] | Huimei Duan, Xiaofei Li, Chuanhui Wang, Congyun Zhang, Kaiwen Yu, Lei Chen, Yunshang Zhang, Jiabin Ji, Xianfeng Yang, Dongjiang Yang. TiO2-facet-dependent effect on methane combustion over Ir/TiO2 catalysts [J]. Chinese Journal of Catalysis, 2025, 70(3): 378-387. |
[5] | Mingzhi Wang, Wensheng Fang, Deyu Zhu, Chenfeng Xia, Wei Guo, BaoYu Xia. Tandem design on electrocatalysts and reactors for electrochemical CO2 reduction [J]. Chinese Journal of Catalysis, 2025, 69(2): 1-16. |
[6] | Xingjuan Li, Yuhao Guo, Qinhui Guan, Xiao Li, Lulu Zhang, Weiguang Ran, Na Li, Tingjiang Yan. High-density Au-OV synergistic sites boost tandem photocatalysis for CO2 hydrogenation to CH3OH [J]. Chinese Journal of Catalysis, 2025, 69(2): 303-314. |
[7] | Dongxiao Wen, Nan Wang, Jiahe Peng, Tetsuro Majima, Jizhou Jiang. Collaborative photocatalytic C-C coupling with Cu and P dual sites to produce C2H4 over CuxP/g-C3N4 heterojunction [J]. Chinese Journal of Catalysis, 2025, 69(2): 58-74. |
[8] | Bailing Zhong, Jundie Hu, Xiaogang Yang, Yinying Shu, Yahui Cai, Chang Ming Li, Jiafu Qu. Metal species confined in metal-organic frameworks for CO2 hydrogenation: Synthesis, catalytic mechanisms, and future perspectives [J]. Chinese Journal of Catalysis, 2025, 68(1): 177-203. |
[9] | Jinxin Wang, Jiaqi Zhang, Chen Chen. Electrochemical CO2RR to C2+ products: A vision of dynamic surfaces of Cu-based catalysts [J]. Chinese Journal of Catalysis, 2025, 68(1): 83-102. |
[10] | Miao Zhang, Limin Zhang, Mingrui Wang, Guanghui Zhang, Chunshan Song, Xinwen Guo. The electronic interaction of encapsulating graphene layers with FeCo alloy promotes efficient CO2 Hydrogenation to light olefins [J]. Chinese Journal of Catalysis, 2025, 68(1): 366-375. |
[11] | Lingxuan Hu, Yan Zhang, Qian Lin, Fengying Cao, Weihao Mo, Shuxian Zhong, Hongjun Lin, Liyan Xie, Leihong Zhao, Song Bai. Unraveling the Ni-Co synergy in bifunctional hydroxide cocatalysts for better cooperation of CO2 reduction and H2O oxidation in 2D S-scheme photosynthetic systems [J]. Chinese Journal of Catalysis, 2025, 68(1): 311-325. |
[12] | Jialin Wang, Kaini Zhang, Ta Thi Thuy Nga, Yiqing Wang, Yuchuan Shi, Daixing Wei, Chung-Li Dong, Shaohua Shen. Chalcogen heteroatoms doped nickel-nitrogen-carbon single-atom catalysts with asymmetric coordination for efficient electrochemical CO2 reduction [J]. Chinese Journal of Catalysis, 2024, 64(9): 54-65. |
[13] | Kaining Li, Yasutaka Kuwahara, Hiromi Yamashita. Poly(ethylenimine)-assisted synthesis of hollow carbon spheres comprising multi-sized Ni species for CO2 electroreduction [J]. Chinese Journal of Catalysis, 2024, 64(9): 66-76. |
[14] | Hui Fu, Jin Tian, Qianqian Zhang, Zhaoke Zheng, Hefeng Cheng, Yuanyuan Liu, Baibiao Huang, Peng Wang. Single-atom modified graphene cocatalyst for enhanced photocatalytic CO2 reduction on halide perovskite [J]. Chinese Journal of Catalysis, 2024, 64(9): 143-151. |
[15] | Shuanglong Zhou, Yue Shi, Yu Dai, Tianrong Zhan, Jianping Lai, Lei Wang. Continuous-flow electrosynthesis of urea and oxalic acid by CO2-nitrate reduction and glycerol oxidation [J]. Chinese Journal of Catalysis, 2024, 63(8): 270-281. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||