Chinese Journal of Catalysis ›› 2025, Vol. 74: 82-96.DOI: 10.1016/S1872-2067(25)64677-8
• Articles • Previous Articles Next Articles
Shi-Ning Lia,1, Juntao Yaoa,1, Shuxin Panga,1, Jing-Peng Zhanga, Shiying Lib, Zhicheng Liuc, Lu Hand, Weibin Fanb,*(), Kake Zhua,*(
), Yi-An Zhua,*(
)
Received:
2025-01-14
Accepted:
2025-03-03
Online:
2025-07-18
Published:
2025-07-20
Contact:
*E-mail: About author:
1Contributed equally to this work.
Supported by:
Shi-Ning Li, Juntao Yao, Shuxin Pang, Jing-Peng Zhang, Shiying Li, Zhicheng Liu, Lu Han, Weibin Fan, Kake Zhu, Yi-An Zhu. Co particles separated by immiscible Ag on yttria-stabilized zirconia as durable methane dry reforming catalyst under pressurized conditions[J]. Chinese Journal of Catalysis, 2025, 74: 82-96.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(25)64677-8
Fig. 1. XRD patterns for fresh Co/YSZ, Ag0.03-Co1/YSZ, Ag1-Co1/YSZ catalysts and Ag/YSZ (a) and TEM image (b) and elemental mappings (c-f) for Ag1-Co1/YSZ. A structure model of Ag1-Co1/YSZ is presented in (g).
Catalyst | Metal Loading | SBET m2 g-1 | H2-chemisorption (q) Mmol g-1 | Work function eV | |||
---|---|---|---|---|---|---|---|
Ag wt% | Co wt% | Ag mol% | Co mol% | ||||
YSZ | 41 | ||||||
Ag9-Co1/YSZ | 18.1 | 1.2 | 16.7 | 2.0 | 27 | 3.01 | |
Ag3-Co1/YSZ | 14.4 | 2.8 | 13.0 | 4.8 | 28 | 6.30 | |
Ag1.5-Co1/YSZ | 12.2 | 4.5 | 11.1 | 7.6 | 22 | 8.38 | |
Ag1-Co1/YSZ | 10.0 | 6.2 | 9.2 | 10.5 | 23 | 9.26 | 4.38a (4.90b) |
Ag0.25-Co1/YSZ | 3.1 | 7.5 | 4.2 | 18.7 | 26 | ||
Ag0.03-Co1/YSZ | 0.4 | 9.3 | 0.6 | 23.1 | 27 | 4.13 | |
Co/YSZ | 0 | 14 | 0 | 23.7 | 20 | 5.36 | 3.63 (4.62) |
Table 1 Physicochemical properties of Ag-Co/YSZ catalysts.
Catalyst | Metal Loading | SBET m2 g-1 | H2-chemisorption (q) Mmol g-1 | Work function eV | |||
---|---|---|---|---|---|---|---|
Ag wt% | Co wt% | Ag mol% | Co mol% | ||||
YSZ | 41 | ||||||
Ag9-Co1/YSZ | 18.1 | 1.2 | 16.7 | 2.0 | 27 | 3.01 | |
Ag3-Co1/YSZ | 14.4 | 2.8 | 13.0 | 4.8 | 28 | 6.30 | |
Ag1.5-Co1/YSZ | 12.2 | 4.5 | 11.1 | 7.6 | 22 | 8.38 | |
Ag1-Co1/YSZ | 10.0 | 6.2 | 9.2 | 10.5 | 23 | 9.26 | 4.38a (4.90b) |
Ag0.25-Co1/YSZ | 3.1 | 7.5 | 4.2 | 18.7 | 26 | ||
Ag0.03-Co1/YSZ | 0.4 | 9.3 | 0.6 | 23.1 | 27 | 4.13 | |
Co/YSZ | 0 | 14 | 0 | 23.7 | 20 | 5.36 | 3.63 (4.62) |
Fig. 2. Semi in situ XPS spectra of Co 2p (a), Ag 3d (b), O 1s (c), and C 1s (d) for representative Co/YSZ and Ag1-Co1/YSZ after exposing to H2 at 1073 K for 3 min and mixture gas feed of CH4, CO2 at 1073 K for 10 min. (e) A structure cartoon for the surface structure is diagrammatically illustrated in (d).
Catalyst | Ag0 | Co0 | Co2+ | C | ||
---|---|---|---|---|---|---|
C-C | C-O | C=O | ||||
Co/YSZ | — | 0.070 | 0.068 | 0.039 | 0.050 | 0.013 |
Ag0.03-Co1/YSZ | 0.05 | 0.06 | 0.077 | 0.038 | 0.041 | 0.014 |
Ag1-Co1/YSZ | 0.071 | 0.090 | 0.072 | 0.034 | 0.032 | 0.018 |
Table 2 Surface composition(mol%) of fresh Ag-Co/YSZ catalysts determined by semi in situ XPS at H2 atmosphere.
Catalyst | Ag0 | Co0 | Co2+ | C | ||
---|---|---|---|---|---|---|
C-C | C-O | C=O | ||||
Co/YSZ | — | 0.070 | 0.068 | 0.039 | 0.050 | 0.013 |
Ag0.03-Co1/YSZ | 0.05 | 0.06 | 0.077 | 0.038 | 0.041 | 0.014 |
Ag1-Co1/YSZ | 0.071 | 0.090 | 0.072 | 0.034 | 0.032 | 0.018 |
Fig. 3. Catalytic stability for Ag1-Co1/YSZ, Ag0.03-Co1/YSZ and Co/YSZ catalysts, displayed for CH4 conversion (a), CO2 conversion (b) and the corresponding H2/CO ratio variations (c) as a function of TOS at 1123 K and pressures from 1.0 to 20.0 bar with a space velocity of 3636 mL h-1 g-cat-1. The dashed line in (a) indicates the equilibrium conversion of CH4.
Fig. 5. CO2-TGA (a), air-TGA (b), quantity of coke detected on typical samples (c) and Raman pattern (d) for typical spent Co/YSZ, Ag0.03-Co1/YSZ and Ag1-Co1/YSZ catalysts.
Fig. 7. (a) Activation energy and TOF value of Co/YSZ, Ag0.03-Co1/YSZ and Ag1-Co1/YSZ. (b-e) relationship among CH4 turnover rate and gas partial pressure (CH4, CO2, H2, CO). (f) TOF value and Ea for Co/YSZ, Ag0.03-Co1/YSZ and Ag1-Co1/YSZ
Fig. 9. (a) Gibbs free energy diagrams for DRM over Co (111) through CH+O path, Ag-Co(111) through C+O path at 1123 K. Flux analysis of DRM under experimental reactor inlet conditions (1123 K, 20 bar of total pressure, with a gas composition of 50% CH4, 50% CO2, 0% CO, 0% H2, and 0% H2O) over Ag-Co(111) (b), Co(111) (c). The arrows, which are labeled with the percentage of the total reaction flux, show the direction the reversible elementary steps actually proceed. The percentage of the reaction flux was calculated as the absolute value of the net rate for that elementary step divided by the rate for methane consumption.
Fig. 10. (a) The model of graphene island is semi-hexagonal and attached to a step edge. The total energy (E) of a graphene island, the edge and bulk energies on Co (b), and Ag-Co (c) as a function of number of C atoms Ntot. The dotted lines are bulk energy, the dashed lines are the edge energy, and the full lines are the total energy of the island. The red line indicates the critical island size.
|
[1] | Cunjun Li, Jie He, Tianle Cai, Xianlei Chen, Hengcong Tao, Yingtang Zhou, Mingshan Zhu. Surface oxygen vacancies of BiOBr regulating piezoelectricity for enhancing efficiency and selectivity of photocatalytic CO2 reduction [J]. Chinese Journal of Catalysis, 2025, 74(7): 130-143. |
[2] | Yunchao Zhang, Jinkang Pan, Xiang Ni, Feiqi Mo, Yuanguo Xu, Pengyu Dong. Revealing the dynamics of charge carriers in organic/inorganic hybrid FS-COF/WO3 S-scheme heterojunction for boosted photocatalytic hydrogen evolution [J]. Chinese Journal of Catalysis, 2025, 74(7): 250-263. |
[3] | Ya-Hui Li, Yu Chen, Jin-Yu Guo, Rui Wang, Shu-Na Zhao, Gang Li, Shuang-Quan Zang. Engineering coordination microenvironments of polypyridine Ni catalysts embedded in covalent organic frameworks for efficient CO2 photoreduction [J]. Chinese Journal of Catalysis, 2025, 74(7): 155-166. |
[4] | Ningxujin Ding, Danyu Wang, Shihui Zou, Jie Fan, Lyubov Alexandrovna Isupova, Junyu Lang, Yong Yang. A spatial-resolved online MS study on OCM reaction catalyzed by Mn-Na2WO4/SiO2 system for radicals coupling mechanistic insight [J]. Chinese Journal of Catalysis, 2025, 74(7): 167-176. |
[5] | Gang Wang, Imran Muhammad, Hui-Min Yan, Jun Li, Yang-Gang Wang. Regulating the local environment of Ni single-atom catalysts with heteroatoms for efficient CO2 electroreduction [J]. Chinese Journal of Catalysis, 2025, 74(7): 120-129. |
[6] | Xinli Li, Xiaonan Zhang, Zhenzhen Du, Feixue Han, Zhihui Fan, Shaokang Zhang, Zhenzhou Zhang, Weifeng Tu, Yi-Fan Han. Electronic enrichment on Ni atoms at Ni-CeO2 interfaces: Unraveling the catalytic role in CO methanation and its volcano-type relation with the CeO2 content [J]. Chinese Journal of Catalysis, 2025, 74(7): 177-190. |
[7] | Qisong Yi, Lu Lin, Huawei Geng, Shaohua Chen, Yuanchao Shao, Ping He, Zhifeng Liu, Haimei Xu, Tiehong Chen, Yuanshuai Liu, Valentin Valtchev. Benefits of H-ZSM-5 zeolite from fluoride-mediated acidic synthesis for liquid-phase conversion of cyclohexanol [J]. Chinese Journal of Catalysis, 2025, 74(7): 97-107. |
[8] | Yuanjie Xu, Run Hou, Kunxiang Chi, Bo Liu, Zemin An, Lizhi Wu, Li Tan, Xupeng Zong, Yihu Dai, Zailai Xie, Yu Tang. A water-resistant and stable Pd-Co3O4 catalytic interface for complete methane oxidation with insights on active structures and reaction pathway [J]. Chinese Journal of Catalysis, 2025, 74(7): 191-201. |
[9] | Xinlong Zheng, Yiming Song, Chongtai Wang, Qizhi Gao, Zhongyun Shao, Jiaxin Lin, Jiadi Zhai, Jing Li, Xiaodong Shi, Daoxiong Wu, Weifeng Liu, Wei Huang, Qi Chen, Xinlong Tian, Yuhao Liu. Properties, applications, and challenges of copper- and zinc-based multinary metal sulfide photocatalysts for photocatalytic hydrogen evolution [J]. Chinese Journal of Catalysis, 2025, 74(7): 22-70. |
[10] | Yang Chen, Yu Tang, Leiyun Han, Jiayan Liu, Yingjie Hua, Xudong Zhao, Xiaoyang Liu. Dual-shell hollow nanospheres NiCo2S4@CoS2/MoS2: Enhancing catalytic activity for oxygen evolution reaction and achieving water splitting via the unique synergistic effects of mechanisms of adsorption-desorption and lattice oxygen oxidation [J]. Chinese Journal of Catalysis, 2025, 74(7): 394-410. |
[11] | Mansurbek Urol ugli Abdullaev, Woosong Jeon, Yun Kang, Juhwan Noh, Jung Ho Shin, Hee-Joon Chun, Hyun Woo Kim, Yong Tae Kim. Data-driven framework based on machine learning and optimization algorithms to predict oxide-zeolite-based composite and reaction conditions for syngas-to-olefin conversion [J]. Chinese Journal of Catalysis, 2025, 74(7): 211-227. |
[12] | Bowen Sun, Siyun Mu, Bingbing Chen, Guojun Hu, Rui Gao, Chuan Shi. Hydrogen production via ammonia decomposition on molybdenum carbide catalysts: Exploring the Mo/C ratio and phase transition dynamics [J]. Chinese Journal of Catalysis, 2025, 74(7): 365-376. |
[13] | Xueqing Zhang, Wusha Jiye, Yuhua Zhang, Jinlin Li, Li Wang. Advances in iron-based Fischer-Tropsch synthesis with high carbon efficiency [J]. Chinese Journal of Catalysis, 2025, 74(7): 4-21. |
[14] | Lin Zhang, Hui Zhang, Jinghong Fang, Jialin Cui, Jie Liu, Hui Liu, Lishui Sun, Qiong Sun, Lifeng Dong, Yingjie Zhao. Highly conjugated and chemically stable three-dimensional covalent organic frameworks for efficient photocatalytic CO2 reduction [J]. Chinese Journal of Catalysis, 2025, 74(7): 144-154. |
[15] | Qiyang Zhang, Vita A. Kondratenko, Xiangnong Ding, Jana Weiss, Stephan Bartling, Elizaveta Fedorova, Dan Zhao, Dmitry E. Doronkin, Dongxu Wang, Christoph Kubis, Evgenii V. Kondratenko. Understanding the reaction-induced restructuring of CoOx species in silicalite-1 to control selectivity in non-oxidative dehydrogenation of propane [J]. Chinese Journal of Catalysis, 2025, 74(7): 108-119. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||