Chinese Journal of Catalysis ›› 2025, Vol. 74: 97-107.DOI: 10.1016/S1872-2067(25)64718-8
• Articles • Previous Articles Next Articles
Qisong Yia,b,1, Lu Lina,1, Huawei Genga, Shaohua Chenc, Yuanchao Shaoa, Ping Hea, Zhifeng Liua, Haimei Xua, Tiehong Chenc, Yuanshuai Liua,*(), Valentin Valtcheva,d,*(
)
Received:
2025-01-10
Accepted:
2025-04-01
Online:
2025-07-18
Published:
2025-07-20
Contact:
*E-mail: About author:
1Contributed equally to this work.
Supported by:
Qisong Yi, Lu Lin, Huawei Geng, Shaohua Chen, Yuanchao Shao, Ping He, Zhifeng Liu, Haimei Xu, Tiehong Chen, Yuanshuai Liu, Valentin Valtchev. Benefits of H-ZSM-5 zeolite from fluoride-mediated acidic synthesis for liquid-phase conversion of cyclohexanol[J]. Chinese Journal of Catalysis, 2025, 74: 97-107.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(25)64718-8
Fig. 1. (a) The schematic diagram of ZSM-5 synthesis under acidic conditions. XRD patterns (b) and SEM images (c,d) of H-ZSM-5(A) and H-ZSM-5(B) zeolites. TEM (e,f, inset: SAED spectrum) and mapping images (g) of H-ZSM-5(A) zeolite.
Sample | Si/Ala | Acidity (μmol·g-1) | B/L | Si/Alb | ||
---|---|---|---|---|---|---|
BAS | LAS | Total | ||||
H-ZSM-5(A) | 75 (± 8) | 230 | 10 | 240 | 23 | — |
H-ZSM-5(A)-H-10d | 80 (± 5) | 220 | 11 | 231 | 20 | 579 (± 21) |
H-ZSM-5(B) | 73 (± 6) | 239 | 22 | 261 | 11 | — |
H-ZSM-5(B)-H-10d | 93 (± 8) | 174 | 27 | 201 | 6 | 372 (± 17) |
Table 1 Acidity measurements of ZSM-5 zeolites before and after hydrothermal treatment using Py-IR.
Sample | Si/Ala | Acidity (μmol·g-1) | B/L | Si/Alb | ||
---|---|---|---|---|---|---|
BAS | LAS | Total | ||||
H-ZSM-5(A) | 75 (± 8) | 230 | 10 | 240 | 23 | — |
H-ZSM-5(A)-H-10d | 80 (± 5) | 220 | 11 | 231 | 20 | 579 (± 21) |
H-ZSM-5(B) | 73 (± 6) | 239 | 22 | 261 | 11 | — |
H-ZSM-5(B)-H-10d | 93 (± 8) | 174 | 27 | 201 | 6 | 372 (± 17) |
Fig. 2. (a) FT-IR spectra of H-ZSM-5(A) and H-ZSM-5(B). (b) Water adsorption isotherm over two zeolite samples. FT-IR spectra have been calibrated based on the sample mass.
Fig. 3. (a) The catalytic activity of ZSM-5 zeolites for the dehydration of cyclohexanol in decalin before and after the hydrothermal treatment as well as steaming treatment. (b) Apparent activation energies (Ea,app) for dehydration of cyclohexanol over ZSM-5 zeolites. (c) Adsorption isotherms of cyclohexanol from decalin over ZSM-5. (d) The proposed reaction path for dehydration of cyclohexanol over ZSM-5 zeolites. Hydrothermal treatment conditions: 0.5 g zeolite, 50 mL H2O, 200 °C, 15 rpm, 5?10 d. Steaming treatment conditions: 0.4 g zeolite, 0.04 mL·min?1 H2O, 20 mL·min?1 N2, 500 °C, 4 h on a fixed bed reactor. Reaction conditions: 0.1 g zeolite, 5 g cyclohexanol, 100 mL decalin, 180 °C, 3 Mpa H2, 4 h in a stirred batch reactor.
Fig. 5. (a) 29Si MAS NMR spectra of ZSM-5 zeolites before and after hydrothermal treatment. (b) The structure diagram of Q4 and Q3 silica species. The fitted 29Si MAS NMR spectra of H-ZSM-5(A) (c) and H-ZSM-5(B) (d) before and after hydrothermal treatment.
Fig. 6. (a) 27Al MAS NMR spectra of ZSM-5 zeolites before and after hydrothermal treatment. (b) The schematic diagrams of different locations of Al. The fitted 27Al MAS NMR spectra (c-d), and the distribution of Al (e) over ZSM-5 zeolites before and after hydrothermal treatment.
|
[1] | Tingkai Xiong, Fengyu Gao, Jiajun Wen, Honghong Yi, Shunzheng Zhao, Xiaolong Tang. Efficient synthesis of flexible SCR catalysts utilizing graphene oxide as a bridging agent without calcination: Catalytic performance, mechanism and kinetics studies [J]. Chinese Journal of Catalysis, 2025, 74(7): 377-393. |
[2] | Cheng Li, Xudong Fang, Bin Li, Siyang Yan, Zhiyang Chen, Leilei Yang, Shaowen Hao, Hongchao Liu, Jiaxu Liu, Wenliang Zhu. Efficient carbon integration of CO2 in propane aromatization over acidic zeolites [J]. Chinese Journal of Catalysis, 2025, 72(5): 314-322. |
[3] | Qingfeng Hua, Hao Mei, Guang Feng, Lina Su, Yanan Yang, Qichang Li, Shaobo Li, Xiaoxia Chang, Zhiqi Huang. Accelerating C-C coupling in alkaline electrochemical CO2 reduction by optimized local water dissociation kinetics [J]. Chinese Journal of Catalysis, 2025, 71(4): 128-137. |
[4] | Yitong Wang, Chaofeng Zhang, Cheng Cai, Caoxing Huang, Xiaojun Shen, Hongming Lou, Changwei Hu, Xuejun Pan, Feng Wang, Jun Xie. Advances in humins formation mechanism, inhibition strategies, and value-added applications [J]. Chinese Journal of Catalysis, 2025, 71(4): 25-53. |
[5] | Meng Liu, Caixia Miao, Yumeng Fo, Wenxuan Wang, Yao Ning, Shengqi Chu, Weiyu Song, Ying Zhang, Jian Liu, Zhijie Wu, Wenhao Luo. Chelating-agent-free incorporation of isolated Ni single-atoms within BEA zeolite for enhanced biomass hydrogenation [J]. Chinese Journal of Catalysis, 2025, 71(4): 308-318. |
[6] | Ziguo Cai, Xuefeng Yu, Penglong Wang, Huifang Wu, Ruifeng Chong, Limin Ren, Tao Hu, Xiang Wang. Role of Y2O3 in Cu/ZnO/Y2O3 catalysts for CO2 hydrogenation to methanol [J]. Chinese Journal of Catalysis, 2025, 70(3): 410-419. |
[7] | Yucheng Qian, Shunsaku Yasumura, Ningqiang Zhang, Akihiko Anzai, Takashi Toyao, Ken-ichi Shimizu. Mechanism of selective reduction of N2O by CO over Fe-β catalysts studied by in-situ/operando spectroscopy [J]. Chinese Journal of Catalysis, 2025, 69(2): 185-192. |
[8] | Yanling Yang, Peijie Han, Yuanbao Zhang, Jingdong Lin, Shaolong Wan, Yong Wang, Haichao Liu, Shuai Wang. Site requirements of supported W2C nanocatalysts for efficient hydrodeoxygenation of m-cresol to aromatics [J]. Chinese Journal of Catalysis, 2024, 67(12): 91-101. |
[9] | Guang-Hui Lu, Jian Yu, Ning Li. A chemoenzymatic cascade for sustainable production of chiral N-arylated aspartic acids from furfural and waste [J]. Chinese Journal of Catalysis, 2024, 67(12): 102-111. |
[10] | Xu Zhang, Wen-Jing Zhang, Yan-Cheng Hu, Zhi-Guang Zhang, Jing-Pei Cao. Catalytic production of fused tetracyclic high-energy-density fuel with biomass-derived cyclopentanone and benzoquinone [J]. Chinese Journal of Catalysis, 2024, 67(12): 166-175. |
[11] | Bo Zhou, Jianqiao Shi, Yimin Jiang, Lei Xiao, Yuxuan Lu, Fan Dong, Chen Chen, Tehua Wang, Shuangyin Wang, Yuqin Zou. Enhanced dehydrogenation kinetics for ascorbic acid electrooxidation with ultra-low cell voltage and large current density [J]. Chinese Journal of Catalysis, 2023, 50(7): 372-380. |
[12] | Bin Chen, Ya-Fei Jiang, Hai Xiao, Jun Li. Bimetallic single-cluster catalysts anchored on graphdiyne for alkaline hydrogen evolution reaction [J]. Chinese Journal of Catalysis, 2023, 50(7): 306-313. |
[13] | Pan Zeng, Cheng Yuan, Genlin Liu, Jiechang Gao, Yanguang Li, Liang Zhang. Recent progress in electronic modulation of electrocatalysts for high-efficient polysulfide conversion of Li-S batteries [J]. Chinese Journal of Catalysis, 2022, 43(12): 2946-2965. |
[14] | Jianxiang Wu, Xuejing Yang, Ming Gong. Recent advances in glycerol valorization via electrooxidation: Catalyst, mechanism and device [J]. Chinese Journal of Catalysis, 2022, 43(12): 2966-2986. |
[15] | Yufei Wang, Mingyang Li, Emma Gordon, Hang Ren. Mapping the kinetics of hydrogen evolution reaction on Ag via pseudo-single-crystal scanning electrochemical cell microscopy [J]. Chinese Journal of Catalysis, 2022, 43(12): 3170-3176. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||