Chinese Journal of Catalysis ›› 2024, Vol. 67: 102-111.DOI: 10.1016/S1872-2067(24)60146-4
• Article • Previous Articles Next Articles
Guang-Hui Lu, Jian Yu, Ning Li()
Received:
2024-07-03
Accepted:
2024-09-18
Online:
2024-11-30
Published:
2024-11-30
Contact:
Ning Li
Supported by:
Guang-Hui Lu, Jian Yu, Ning Li. A chemoenzymatic cascade for sustainable production of chiral N-arylated aspartic acids from furfural and waste[J]. Chinese Journal of Catalysis, 2024, 67: 102-111.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(24)60146-4
Fig. 1. Photooxygenation of FCA into HFO under different catalytic modes: (A) the reaction scheme; (B) HFO yield. Reaction conditions: 20 mmol L-1 FCA, 5 mol% TCPP, 20 mL carbonate buffer (0.34 mol L-1 Na2CO3/0.06 mol L-1 NaHCO3, pH = 8.5), green light, 25 °C; (1) batch reaction with 600 r min-1; (2) continuous flow reaction with 34.9 mL min-1 reaction mixture; (3) continuous flow reaction with 34.9 mL min-1 reaction mixture in the presence of 60 mol% ACT; (4) continuous flow reaction with 34.9 mL min-1 reaction mixture and 13 mL min-1 O2 in the presence of 60 mol% ACT.
Fig. 2. (A) Effect of PNP concentrations on electrocatalytic furfural oxidation. (B) Cyclic voltammograms of ACT in electrooxidation of furfural paired with different reduction reactions. (C) Effect of ACT loadings on electrocatalytic furfural oxidation. (D) Effect of PNP concentrations on photoelectrocatalytic FCA oxidation. Reaction conditions unless otherwise stated: anode chamber: 100 mmol L-1 furfural, 60 mol% ACT, 16 mL carbonate buffer (0.34 mol L-1 Na2CO3/0.06 mol L-1 NaHCO3, pH 10), 0.8 V vs. Ag/AgCl, 13 mL min-1 O2, 600 r min-1, 25 °C, 3 h; cathode chamber: 10 mmol L-1 PNP, 10 equiv. NaBH4, 16 mL 1 mol L-1 aqueous KOH, Cu(OH)2@CF; (A)10-40 mmol L-1 PNP; (C) 10 mol%-60 mol% ACT; (B) anode chamber: 100 mmol L-1 furfural, 20 mmol L-1 ACT, 16 mL carbonate buffer (0.34 mol L-1 Na2CO3/0.06 mol L-1 NaHCO3, pH = 10), 100 mV s-1 scan rate, 25 °C; cathode chamber: 16 mL 2 mol L-1 aqueous NaOH, Pt wire (HER); 16 mL 1 mol L-1 aqueous KOH (40 mmol L-1 PNP, 0.4 mol L-1 NaBH4), Cu(OH)2@CF (PNPH). (D) anode chamber: 100 mmol L-1 FCA, 20 mol% ACT, 1 mol% TCPP, 20 mL carbonate buffer (0.34 mol L-1 Na2CO3/0.06 mol L-1 NaHCO3, pH 10), 0.8 V vs. Ag/AgCl, 11.5 mL min-1 reaction mixture, 13 mL min-1 O2, 600 r min-1, 25 °C, 1 h; cathode chamber: 10-40 mmol L-1 PNP, 10 equiv. NaBH4, 16 mL 1 mol L-1 aqueous KOH, Cu(OH)2@CF.
Fig. 3. Concurrent photoelectrocatalytic oxidation of furfural to MA with (A) and without (B) pH control. Reaction conditions: anode chamber: 100 mmol L-1 furfural, 20 mol% ACT, 1 mol% TCPP, 20 mL carbonate buffer (1 mol L-1 Na2CO3/1 mol L-1 NaHCO3, pH = 10), green light, 0.8 V vs. Ag/AgCl, 11.5 mL min-1 reaction mixture, 13 mL min-1 O2, 600 r min-1, 25 °C, tuning pH to around 10 by Na2CO3 powder every 1 h for (A); cathode chamber: 40 mmol L-1 PNP, 0.4 mol L-1 NaBH4, 16 mL 1 mol L-1 aqueous KOH, Cu(OH)2@CF.
Fig. 4. Photoelectrocatalytic oxidation of furfural into MA in different concentrations of carbonate buffer. (A) 1 mol L-1 Na2CO3/1 mol L-1 NaHCO3; (B) 0.5 mol L-1 Na2CO3/0.5 mol L-1 NaHCO3; (C) 0.25 mol L-1 Na2CO3/0.25 mol L-1 NaHCO3. Reaction conditions: anode chamber: 100 mmol L-1 furfural, 20 mol% ACT, 1 mol% TCPP, 20 mL carbonate buffer (pH = 10), green light, 0.8 V vs. Ag/AgCl, 11.5 mL min-1 reaction mixture, 13 mL min-1 O2, 600 r min-1, 25 °C, with pH control; cathode chamber: 40 mmol L-1 PNP, 16 mL 1 mol L-1 aqueous KOH, NiBx@NF.
Fig. 5. Photoelectrosynthesis of MA driven by sunlight: (A) the set-up diagram; (B) time course of photoelectrocatalytic oxidation of furfural. Reaction conditions: anode chamber: 100 mmol L-1 furfural, 20 mol% ACT, 1 mol% TCPP, 20 mL carbonate buffer (1 mol L-1 Na2CO3/1 mol L-1 NaHCO3, pH 10), sunlight, 0.8 V vs. Ag/AgCl, 11.5 mL min-1 reaction mixture, 13 mL min-1 O2, 600 r min-1, 25-35 °C; cathode chamber: 40 mmol L-1 PNP, 16 mL 1 mol L-1 aqueous KOH, NiBx@NF.
Fig. 6. High-titer MA and FA synthesis. Reaction conditions: anode chamber: 100 mmol L-1 furfural, 20 mol% ACT, 1 mol% TCPP, 20 mL carbonate buffer (0.5 mol L-1 Na2CO3/0.5 mol L-1 NaHCO3, pH = 10), green light, 0.8 V vs. Ag/AgCl, 11.5 mL min-1 reaction mixture, 13 mL min-1 O2, 600 r min-1, 25 °C; cathode chamber: 40 mmol L-1 PNP, 16 mL 1 mol L-1 aqueous KOH, NiBx@NF, adding 40 mmol L-1 PNP at the 2nd hour; upon TCPP removal and tuning pH to 8.5, 1 mg mL-1 purified MaiA was added to initiate the isomerization at 25 °C and 500 r min-1. Arrows indicate the supplementation of approximately 100 mmol L-1 furfural.
Fig. 7. Paired photoelectrosynthesis of MA and PAP (A), MA and OAP (B), scheme of enzymatic synthesis of N-arylated (S)-aspartic acids (C) and HPLC analysis (D). Reaction conditions: (A) and (B): anode chamber: 100 mmol L-1 furfural, 20 mol% ACT, 1 mol% TCPP, 20 mL carbonate buffer (1 mol L-1 Na2CO3/1 mol L-1 NaHCO3, pH 10), green light, 0.8 V vs. Ag/AgCl, 11.5 mL min-1 reaction mixture, 13 mL min-1 O2, 600 r min-1, 25 °C; cathode chamber: 40 mmol L-1 ONP/PNP, 16 mL 1 mol L-1 aqueous KOH, NiBx@NF, N2; (D) samples: (a) the reaction mixture of enzymatic condensation of commercially available PAP and FA; (b) the reaction mixture of enzymatic condensation of PAP and FA obtained via paired photoelectro(bio)synthesis; (c) the reaction mixture of enzymatic condensation of OAP and FA obtained via paired photoelectro(bio)synthesis; (d) the mixture of standard chemicals; enzymatic reaction conditions: 1 mg mL-1 EDDS lyase, 5 mmol L-1 OAP/PAP, 50 mmol L-1 FA, 2 mL pH = 8.5 buffer containing 5% DMSO, 25 °C, 150 r min-1, N2, 24 h.
|
[1] | Jianxiang Wu, Xuejing Yang, Ming Gong. Recent advances in glycerol valorization via electrooxidation: Catalyst, mechanism and device [J]. Chinese Journal of Catalysis, 2022, 43(12): 2966-2986. |
[2] | Xiaoling Liu, Lei Chen, Hongzhong Xu, Shi Jiang, Yu Zhou, Jun Wang. Straightforward synthesis of beta zeolite encapsulated Pt nanoparticles for the transformation of 5-hydroxymethyl furfural into 2,5-furandicarboxylic acid [J]. Chinese Journal of Catalysis, 2021, 42(6): 994-1003. |
[3] | Xiaoyan Liu, Guojun Lan, Zhenqing Li, Lihua Qian, Jian Liu, Ying Li. Stabilization of heterogeneous hydrogenation catalysts for the aqueous-phase reactions of renewable feedstocks [J]. Chinese Journal of Catalysis, 2021, 42(5): 694-709. |
[4] | Zengtian Chen, Yuxue Xiao, Chao Zhang, Zaihui Fu, Ting Huang, Qingfeng Li, Yuanxiong Yao, Shutao Xu, Xiaoli Pan, Wenhao Luo, Changzhi Li. Fabrication of a solid superacid with temperature-regulated silica-isolated biochar nanosheets [J]. Chinese Journal of Catalysis, 2020, 41(4): 698-709. |
[5] | Qing-Hua Li, Yuan Dong, Fei-Fei Chen, Lei Liu, Chun-Xiu Li, Jian-He Xu, Gao-Wei Zheng. Reductive amination of ketones with ammonium catalyzed by a newly identified Brevibacterium epidermidis strain for the synthesis of (S)-chiral amines [J]. Chinese Journal of Catalysis, 2018, 39(10): 1625-1632. |
[6] | Xiushuai Chen, Chuanjin Hou, Qing Li, Yanjun Liu, Ruifeng Yang, Xiangping Hu. Enantioselective synthesis of chiral phosphonylated 2,3-dihydrofurans by copper catalyzed asymmetric formal [3+2] cycloaddition of propargylic esters with β-keto phosphonates [J]. Chinese Journal of Catalysis, 2016, 37(8): 1389-1395. |
[7] | Xiangdong Long, Peng Sun, Zelong Li, Rui Lang, Chungu Xia, Fuwei Li. Magnetic Co/Al2O3 catalyst derived from hydrotalcite for hydrogenation of levulinic acid to γ-valerolactone [J]. Chinese Journal of Catalysis, 2015, 36(9): 1512-1518. |
[8] | Xiaochen Zhao, Jinming Xu, Aiqin Wang, Tao Zhang. Porous carbon in catalytic transformation of cellulose [J]. Chinese Journal of Catalysis, 2015, 36(9): 1419-1427. |
[9] | P. B. Thorat, S. V. Goswami, V. P. Sondankar, S. R. Bhusare. Stereoselective synthesis of vic-halohydrins and an unusual Knoevenagel product from an organocatalyzed aldol reaction: A non-enamine mode [J]. Chinese Journal of Catalysis, 2015, 36(7): 1093-1100. |
[10] | Fulin Zhu, Xiangping Hu. Enantioselective N-propargylation of indoles via Cu-catalyzed propargylic alkylation/dehydrogenation of indolines [J]. Chinese Journal of Catalysis, 2015, 36(1): 86-92. |
[11] | Daniel E. Resasco. Carbon nanohybrids used as catalysts and emulsifiers for reactions in biphasic aqueous/organic systems [J]. Chinese Journal of Catalysis, 2014, 35(6): 798-806. |
[12] | John Matthiesen, Thomas Hoff, Chi Liu, Charles Pueschel, Radhika Rao, Jean-Philippe Tessonnier. Functional carbons and carbon nanohybrids for the catalytic conversion of biomass to renewable chemicals in the condensed phase [J]. Chinese Journal of Catalysis, 2014, 35(6): 842-855. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||