Chinese Journal of Catalysis ›› 2025, Vol. 74: 177-190.DOI: 10.1016/S1872-2067(25)64688-2
• Articles • Previous Articles Next Articles
Xinli Lia, Xiaonan Zhanga, Zhenzhen Dua, Feixue Hanb, Zhihui Fana, Shaokang Zhanga, Zhenzhou Zhanga, Weifeng Tua,*(), Yi-Fan Hana,b,*(
)
Received:
2025-01-18
Accepted:
2025-03-14
Online:
2025-07-18
Published:
2025-07-20
Contact:
*E-mail: Supported by:
Xinli Li, Xiaonan Zhang, Zhenzhen Du, Feixue Han, Zhihui Fan, Shaokang Zhang, Zhenzhou Zhang, Weifeng Tu, Yi-Fan Han. Electronic enrichment on Ni atoms at Ni-CeO2 interfaces: Unraveling the catalytic role in CO methanation and its volcano-type relation with the CeO2 content[J]. Chinese Journal of Catalysis, 2025, 74: 177-190.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(25)64688-2
Sample | Mole ratioa Ce/(Ce+Ni) | BET surface areas b (m² g-1) | Mean Ni crystalline size c (nm) | Mean Ni particle size d (nm) | Mean CeO2 particle d size (nm) | Dispersion of Ni e (%) |
---|---|---|---|---|---|---|
Ni/Al2O3 | — | 203.7 | 13.1 | 13.2 | — | 7.6 |
0.01CeNi/Al2O3 | 0.013 | 244.9 | 14.1 | — | — | 7.1 |
0.02CeNi/Al2O3 | 0.022 | 225.4 | 15.4 | — | — | 6.5 |
0.05CeNi/Al2O3 | 0.038 | 229.7 | 15.1 | 14.9 | 3.1 | 6.6 |
0.07CeNi/Al2O3 | 0.071 | 224.1 | 15.2 | — | — | 6.6 |
0.10CeNi/Al2O3 | 0.091 | 205.3 | 14.1 | 15.5 | 4.4 | 7.1 |
0.13CeNi/Al2O3 | 0.123 | 189.0 | 14.2 | 15.8 | 5.2 | 7.0 |
Table 1 Physical properties of Ni/Al2O3 and xCeNi/Al2O3 catalysts.
Sample | Mole ratioa Ce/(Ce+Ni) | BET surface areas b (m² g-1) | Mean Ni crystalline size c (nm) | Mean Ni particle size d (nm) | Mean CeO2 particle d size (nm) | Dispersion of Ni e (%) |
---|---|---|---|---|---|---|
Ni/Al2O3 | — | 203.7 | 13.1 | 13.2 | — | 7.6 |
0.01CeNi/Al2O3 | 0.013 | 244.9 | 14.1 | — | — | 7.1 |
0.02CeNi/Al2O3 | 0.022 | 225.4 | 15.4 | — | — | 6.5 |
0.05CeNi/Al2O3 | 0.038 | 229.7 | 15.1 | 14.9 | 3.1 | 6.6 |
0.07CeNi/Al2O3 | 0.071 | 224.1 | 15.2 | — | — | 6.6 |
0.10CeNi/Al2O3 | 0.091 | 205.3 | 14.1 | 15.5 | 4.4 | 7.1 |
0.13CeNi/Al2O3 | 0.123 | 189.0 | 14.2 | 15.8 | 5.2 | 7.0 |
Fig. 2. HRTEM images and particle size distribution of the reduced Ni/Al2O3 (a1,a2), 0.05CeNi/Al2O3 (b1,b2), 0.1CeNi/Al2O3 (c1,c2) and 0.13CeNi/Al2O3 (d1,d2) catalysts.
Fig. 3. Effect of Ce content on the rate (rCH?, per total weight of Ni atoms) and TOF (per surface Ni atoms) of CH4 formation (a, 50 kPa CO, 700 kPa H2, Ar balance, 753 K) and the turnover frequencies of CH4 formation on CO pressure (b, 753 K), H2 pressure (c, 753 K), and temperature (d, 50 kPa CO, 700 kPa H2, Ar balance, 733-773 K) during CO-H2 reactions over Ni/Al2O3 and xCeNi/Al2O3 catalysts (weight hourly space velocity (WHSV) of 2.9×107 cm3 g-1 h-1, 1 MPa).
Fig. 4. H2-TPR profiles (a), Ni 2p XPS spectra (b), and Ce 3d XPS spectra (c) of Ni/Al2O3 and xCeNiAl2O3 catalysts with different Ce contents (Ce/(Ce + Ni) = 0.01, 0.02, 0.05, 0.07, 0.1 and 0.13).
Fig. 5. The fraction of Ni0 in Ni species (a), the fraction of Ce3+ in Ce species (b), CO-TPD profiles (c) of Ni/Al2O3 and xCeNiAl2O3 catalysts with different Ce contents (Ce/(Ce + Ni) = 0.01, 0.02, 0.05, 0.07, 0.1 and 0.13), and the apparent barriers of CH4 formation versus the downshift of Ni0 binding energy (d) and the desorption temperature of CO (e) over these catalysts.
Fig. 6. H2-TPD profiles (a), the fraction of surface Ni atoms and interfacial Ce atoms (b), and the amounts (normalized by the total weight of Ni atoms) of surface Ni atoms and interfacial Ce atoms (c) on Ni/Al2O3 and xCeNi/Al2O3 catalysts with different Ce contents (Ce/(Ce + Ni) = 0.01, 0.02, 0.05, 0.07, 0.1, and 0.13).
Fig. 7. The adsorption of CO (determined from the CO-TPD profiles in Fig. 5(c), normalized by total weight of Ni atoms) (a), the in-situ CO-DRIFTS spectra (b), and the fraction of interfacial CO (c) on Ni/Al2O3 and xCeNi/Al2O3 catalysts with different Ce contents (Ce/(Ce + Ni) = 0.01, 0.02, 0.05, 0.07, 0.1, and 0.13).
Fig. 8. Rates of CH4 formation (per total weight of Ni atoms) versus the amount of the H2 adsorption on interfacial Ni-CeO2 sites (a) and the amount of the CO adsorption on the interfacial Ni-CeO2 sites (b).
Fig. 9. Operando DRIFTS spectra of Ni/Al2O3 (a) and 0.05CeNi/Al2O3 (b) catalysts during CO-H2 (5 vol% CO, 70 vol% H2 and Ar balance) reaction at different temperatures (548-673 K).
Fig. 10. Transient DRIFTS spectra of Ni/Al2O3 and 0.05CeNi/Al2O3 catalysts in 5 vol% CO/Ar for 15 min (a,d), followed by Ar flow (b,e) and 70 vol% H2/Ar (c,f) at 573 K.
|
[1] | Xinyue Li, Haili Lin, Xuemei Jia, Shifu Chen, Jing Cao. An S-scheme heterojunction engineered with spatially separated dual active groups for simultaneously photocatalytic CO2 reduction and ciprofloxacin oxidation [J]. Chinese Journal of Catalysis, 2025, 73(6): 205-221. |
[2] | Tao Ban, Jian-Wei Wang, Xi-Yang Yu, Hai-Kuo Tian, Xin Gao, Zheng-Qing Huang, Chun-Ran Chang. Machine learning-assisted screening of SA-FLP dual-active-site catalysts for the production of methanol from methane and water [J]. Chinese Journal of Catalysis, 2025, 70(3): 311-321. |
[3] | Mayra Alejandra Suarez, Laura Santamaria, Gartzen Lopez, Enara Fernandez, Martin Olazar, Maider Amutio, Maite Artetxe. Oxidative steam reforming of HDPE pyrolysis volatiles on Ni catalysts: Effect of the support (Al2O3, ZrO2, SiO2) and promoter (CeO2, La2O3) on the catalyst performance [J]. Chinese Journal of Catalysis, 2025, 69(2): 149-162. |
[4] | Cong Liu, Xuanhao Mei, Ce Han, Xue Gong, Ping Song, Weilin Xu. Tuning strategies and structure effects of electrocatalysts for carbon dioxide reduction reaction [J]. Chinese Journal of Catalysis, 2022, 43(7): 1618-1633. |
[5] | Xiaohui Yu, Haiwei Su, Jianping Zou, Qinqin Liu, Lele Wang, Hua Tang. Doping-induced metal-N active sites and bandgap engineering in graphitic carbon nitride for enhancing photocatalytic H2 evolution performance [J]. Chinese Journal of Catalysis, 2022, 43(2): 421-432. |
[6] | Fang Li, Xiaoyang Yue, Haiping Zhou, Jiajie Fan, Quanjun Xiang. Construction of efficient active sites through cyano-modified graphitic carbon nitride for photocatalytic CO2 reduction [J]. Chinese Journal of Catalysis, 2021, 42(9): 1608-1616. |
[7] | Zhifeng Dai, Yongquan Tang, Fei Zhang, Yubing Xiong, Sai Wang, Qi Sun, Liang Wang, Xiangju Meng, Leihong Zhao, Feng-Shou Xiao. Combination of binary active sites into heterogeneous porous polymer catalysts for efficient transformation of CO2 under mild conditions [J]. Chinese Journal of Catalysis, 2021, 42(4): 618-626. |
[8] | Dan Yang, Yan Zhu. Evolution of catalytic activity driven by structural fusion of icosahedral gold cluster cores [J]. Chinese Journal of Catalysis, 2021, 42(2): 245-250. |
[9] | Jinghua Xu, Ruifeng Wang, Yaru Zhang, Lin Li, Wenjun Yan, Junying Wang, Guodong Liu, Xiong Su, Yanqiang Huang, Tao Zhang. Identification of the structure of Ni active sites for ethylene oligomerization on an amorphous silica-alumina supported nickel catalyst [J]. Chinese Journal of Catalysis, 2021, 42(12): 2181-2188. |
[10] | Leiduan Hao, Qineng Xia, Qiang Zhang, Justus Masa, Zhenyu Sun. Improving the performance of metal-organic frameworks for thermo-catalytic CO2 conversion: Strategies and perspectives [J]. Chinese Journal of Catalysis, 2021, 42(11): 1903-1920. |
[11] | Sufeng An, Guanghui Zhang, Jiaqiang Liu, Keyan Li, Gang Wan, Yan Liang, Donghui Ji, Jeffrey T. Miller, Chunshan Song, Wei Liu, Zhongmin Liu, Xinwen Guo. A facile sulfur-assisted method to synthesize porous alveolate Fe/g-C3N4 catalysts with ultra-small cluster and atomically dispersed Fe sites [J]. Chinese Journal of Catalysis, 2020, 41(8): 1198-1207. |
[12] | Xuemei Li, Junying Tian, Hailong Liu, Congkui Tang, Chungu Xia, Jing Chen, Zhiwei Huang. Effective synthesis of 5-amino-1-pentanol by reductive amination of biomass-derived 2-hydroxytetrahydropyran over supported Ni catalysts [J]. Chinese Journal of Catalysis, 2020, 41(4): 631-641. |
[13] | Chong Chen, Minglei Sun, Zhongpan Hu, Yuping Liu, Shoumin Zhang, Zhong-Yong Yuan. Nature of active phase of VOx catalysts supported on SiBeta for direct dehydrogenation of propane to propylene [J]. Chinese Journal of Catalysis, 2020, 41(2): 276-285. |
[14] | HUANG Weixin, FU Qiang. Surface and Interface Chemistry of Model Catalysts [J]. Chinese Journal of Catalysis, 2019, 40(s1): 165-168. |
[15] | Hongmei Ai, Hongyuan Yang, Qing Liu, Guoming Zhao, Jing Yang, Fangna Gu. ZrO2-modified Ni/LaAl11O18 catalyst for CO methanation:Effects of catalyst structure on catalytic performance [J]. Chinese Journal of Catalysis, 2018, 39(2): 297-308. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||