Chinese Journal of Catalysis ›› 2021, Vol. 42 ›› Issue (4): 618-626.DOI: 10.1016/S1872-2067(20)63679-8
• Articles • Previous Articles Next Articles
Zhifeng Daia, Yongquan Tangb, Fei Zhangd, Yubing Xionga,$(), Sai Wangb, Qi Sunc, Liang Wangc, Xiangju Mengb, Leihong Zhaoe,#(
), Feng-Shou Xiaob,c,*(
)
Received:
2020-05-24
Accepted:
2020-07-11
Online:
2021-04-18
Published:
2021-01-22
Contact:
Yubing Xiong,Leihong Zhao,Feng-Shou Xiao
About author:
$E-mail: yubing_xiong@163.comSupported by:
Zhifeng Dai, Yongquan Tang, Fei Zhang, Yubing Xiong, Sai Wang, Qi Sun, Liang Wang, Xiangju Meng, Leihong Zhao, Feng-Shou Xiao. Combination of binary active sites into heterogeneous porous polymer catalysts for efficient transformation of CO2 under mild conditions[J]. Chinese Journal of Catalysis, 2021, 42(4): 618-626.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(20)63679-8
Entry | Catalyst | Temperature (°C) | Conversion b (%) | Selectivity b (%) |
---|---|---|---|---|
1 | POP-PBnCl-TPPMg-4 | 40 | 52.4 | 99.0 |
2 | POP-PBnCl-TPPMg-12 | 40 | 89.3 | 94.3 |
3c | PBnCl+TPPMg-12 | 40 | 98.0 | 99.0 |
4 | POP-PBnCl | 40 | 20.3 | 99.0 |
5 | POP-TPPMg | 40 | < 1.0 | 99.0 |
6 | POP-PBnCl+POP-TPPMg-12 | 40 | 20.8 | 99.0 |
7d | POP-PBnCl-TPP-12 | 40 | 24.2 | 99.0 |
8 | POP-PBnCl-TPPMg-12 | 50 | > 99.0 | 96.2 |
9 | POP-PBnCl-TPPMg-12 | 30 | 54.3 | 99.0 |
10 | POP-PBnCl-TPPMg-10 | 40 | 81.3 | 99.0 |
11 | POP-PBnCl-TPPMg-20 | 40 | 99.0 | 99.0 |
12 | POP-PBnCl-TPPZn-12 | 40 | 82.0 | 99.0 |
13 | POP-PPrBr-TPPMg-12 | 40 | 91.7 | 99.0 |
Table 1 Catalytic performances of the various catalysts in the cycloaddition of CO2 with epichlorohydrin to form a cyclic carbonate.a
Entry | Catalyst | Temperature (°C) | Conversion b (%) | Selectivity b (%) |
---|---|---|---|---|
1 | POP-PBnCl-TPPMg-4 | 40 | 52.4 | 99.0 |
2 | POP-PBnCl-TPPMg-12 | 40 | 89.3 | 94.3 |
3c | PBnCl+TPPMg-12 | 40 | 98.0 | 99.0 |
4 | POP-PBnCl | 40 | 20.3 | 99.0 |
5 | POP-TPPMg | 40 | < 1.0 | 99.0 |
6 | POP-PBnCl+POP-TPPMg-12 | 40 | 20.8 | 99.0 |
7d | POP-PBnCl-TPP-12 | 40 | 24.2 | 99.0 |
8 | POP-PBnCl-TPPMg-12 | 50 | > 99.0 | 96.2 |
9 | POP-PBnCl-TPPMg-12 | 30 | 54.3 | 99.0 |
10 | POP-PBnCl-TPPMg-10 | 40 | 81.3 | 99.0 |
11 | POP-PBnCl-TPPMg-20 | 40 | 99.0 | 99.0 |
12 | POP-PBnCl-TPPZn-12 | 40 | 82.0 | 99.0 |
13 | POP-PPrBr-TPPMg-12 | 40 | 91.7 | 99.0 |
Fig. 4. Catalytic performance of the heterogeneous catalyst POP-PBnCl-TPPMg-12 (blue line) and the homogeneous catalyst PBnCl+TPPMg-12 (red line) in the cycloaddition of CO2 with epoxides under a low CO2 concentration (15% CO2 and 85% N2, v/v). Note: For the heterogeneous catalyst, 1 mL of CH3CN was used as the solvent, while the homogeneous catalysis was performed in solvent-free conditions. The solid and dotted lines represent the conversion and selectivity, respectively.
Entry | Epoxide | Product | T (°C) | Time (h) | Conversion b (%) | Selectivity b (%) |
---|---|---|---|---|---|---|
1 | ![]() | ![]() | 40 | 48 | 80.6 | 99.0 |
2 | ![]() | ![]() | 40 | 48 | 47.8 | 99.0 |
3 | ![]() | ![]() | 80 | 48 | 90.1 | 99.0 |
4 | ![]() | ![]() | 80 | 48 | 74.6 | 99.0 |
5 | ![]() | ![]() | 80 | 72 | 57.8 | 99.0 |
6 | ![]() | ![]() | 80 | 72 | 28.3 | 99.0 |
Table 2 Cycloaddition of CO2 with various substrates over the catalyst POP-PBnCl-TPPMg-12.a
Entry | Epoxide | Product | T (°C) | Time (h) | Conversion b (%) | Selectivity b (%) |
---|---|---|---|---|---|---|
1 | ![]() | ![]() | 40 | 48 | 80.6 | 99.0 |
2 | ![]() | ![]() | 40 | 48 | 47.8 | 99.0 |
3 | ![]() | ![]() | 80 | 48 | 90.1 | 99.0 |
4 | ![]() | ![]() | 80 | 48 | 74.6 | 99.0 |
5 | ![]() | ![]() | 80 | 72 | 57.8 | 99.0 |
6 | ![]() | ![]() | 80 | 72 | 28.3 | 99.0 |
|
[1] | Abhishek R. Varma, Bhushan S. Shrirame, Sunil K. Maity, Deepti Agrawal, Naglis Malys, Leonardo Rios-Solis, Gopalakrishnan Kumar, Vinod Kumar. Recent advances in fermentative production of C4 diols and their chemo-catalytic upgrading to high-value chemicals [J]. Chinese Journal of Catalysis, 2023, 52(9): 99-126. |
[2] | Meng Zhao, Jing Xu, Shuyan Song, Hongjie Zhang. Core/yolk-shell nanoreactors for tandem catalysis [J]. Chinese Journal of Catalysis, 2023, 50(7): 83-108. |
[3] | Si-Yuan Xia, Qi-Yuan Li, Shi-Nan Zhang, Dong Xu, Xiu Lin, Lu-Han Sun, Jingsan Xu, Jie-Sheng Chen, Guo-Dong Li, Xin-Hao Li. Size-dependent electronic interface effect of Pd nanocube-based heterojunctions on universally boosting phenol hydrogenation reactions [J]. Chinese Journal of Catalysis, 2023, 49(6): 180-187. |
[4] | Runze Liu, Xue Shao, Chang Wang, Weili Dai, Naijia Guan. Reaction mechanism of methanol-to-hydrocarbons conversion: Fundamental and application [J]. Chinese Journal of Catalysis, 2023, 47(4): 67-92. |
[5] | Long Jiao, Hai-Long Jiang. Metal-organic frameworks for catalysis: Fundamentals and future prospects [J]. Chinese Journal of Catalysis, 2023, 45(2): 1-5. |
[6] | Chao Nie, Xiangdong Long, Qi Liu, Jia Wang, Fei Zhan, Zelun Zhao, Jiong Li, Yongjie Xi, Fuwei Li. Facile fabrication of atomically dispersed Ru-P-Ru ensembles for efficient hydrogenations beyond isolated single atoms [J]. Chinese Journal of Catalysis, 2023, 45(2): 107-119. |
[7] | Xuefei Weng, Shuangli Yang, Ding Ding, Mingshu Chen, Huilin Wan. Applications of in-situ wide spectral range infrared absorption spectroscopy for CO oxidation over Pd/SiO2 and Cu/SiO2 catalysts [J]. Chinese Journal of Catalysis, 2022, 43(8): 2001-2009. |
[8] | Zixuan Zhou, Peng Gao. Direct carbon dioxide hydrogenation to produce bulk chemicals and liquid fuels via heterogeneous catalysis [J]. Chinese Journal of Catalysis, 2022, 43(8): 2045-2056. |
[9] | Chunpeng Wang, Zhe Wang, Shanjun Mao, Zhirong Chen, Yong Wang. Coordination environment of active sites and their effect on catalytic performance of heterogeneous catalysts [J]. Chinese Journal of Catalysis, 2022, 43(4): 928-955. |
[10] | Hui Chen, Bo Zhang, Xiao Liang, Xiaoxin Zou. Light alloying element-regulated noble metal catalysts for energy-related applications [J]. Chinese Journal of Catalysis, 2022, 43(3): 611-635. |
[11] | Tao Zhang, Xiaochi Han, Nhat Truong Nguyen, Lei Yang, Xuemei Zhou. TiO2-based photocatalysts for CO2 reduction and solar fuel generation [J]. Chinese Journal of Catalysis, 2022, 43(10): 2500-2529. |
[12] | Xiaoling Liu, Lei Chen, Hongzhong Xu, Shi Jiang, Yu Zhou, Jun Wang. Straightforward synthesis of beta zeolite encapsulated Pt nanoparticles for the transformation of 5-hydroxymethyl furfural into 2,5-furandicarboxylic acid [J]. Chinese Journal of Catalysis, 2021, 42(6): 994-1003. |
[13] | Renyang Zheng, Zaiku Xie. Full life cycle characterization strategies for spatiotemporal evolution of heterogeneous catalysts [J]. Chinese Journal of Catalysis, 2021, 42(12): 2141-2148. |
[14] | Jinghua An, Yehong Wang, Zhixin Zhang, Jian Zhang, Martin Gocyla, Rafal E. Dunin-Borkowski, Feng Wang. Linear-regioselective hydromethoxycarbonylation of styrene using Ru-clusters/CeO2 catalyst [J]. Chinese Journal of Catalysis, 2020, 41(6): 963-969. |
[15] | Tianyu Deng, Guangyue Xu, Yao Fu. One-pot cascade conversion of xylose to furfuryl alcohol over a bifunctional Cu/SBA-15-SO3H catalyst [J]. Chinese Journal of Catalysis, 2020, 41(3): 404-414. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||