Chinese Journal of Catalysis ›› 2022, Vol. 43 ›› Issue (10): 2500-2529.DOI: 10.1016/S1872-2067(21)64045-7
• Reviews • Previous Articles Next Articles
Tao Zhanga,†, Xiaochi Hana,†, Nhat Truong Nguyenb, Lei Yanga, Xuemei Zhoua,*()
Received:
2022-01-10
Accepted:
2022-03-03
Online:
2022-10-18
Published:
2022-09-30
Contact:
Xuemei Zhou
About author:
†Contributed equally to this work.
Supported by:
Tao Zhang, Xiaochi Han, Nhat Truong Nguyen, Lei Yang, Xuemei Zhou. TiO2-based photocatalysts for CO2 reduction and solar fuel generation[J]. Chinese Journal of Catalysis, 2022, 43(10): 2500-2529.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(21)64045-7
Fig. 1. The global change of temperature and CO2 concentration in the atmosphere in the 19th century (grey curve). The red bars and blue bars indicate the temperature above and below the average temperature, respectively. Original graph by Dr. Howard Diamond (NOAA ARL), and re-drawn from NOAA Climate.gov [12].
Fig. 2. The Latimer-Frost diagram for CO2 reduction in a homogeneous neutral aqueous solution via multiple electron and proton reaction paths: (a) C1 products; (b) C2+ products. Re-draw from data in references [9,30,31].
Fig. 4. Illustrations of the applications of TiO2 in photocatalysis, photoelectrochemical reactions, and the photothermal catalysis, and the corresponding strategies to improve the conversion efficiency.
Fig. 5. The reduction of carbon dioxide via photocatalysis. Several paths are included in the reaction. (1) Excitation; (2) charge carrier transfer; (3) volume recombination; (4) CO2 adsorption; (5) water oxidation with holes; (6) surface recombination; (7) competing to the surface reaction is the H+ reduction; (8) re-oxidation of the reduced products.
Fig. 6. (a) Schematic drawing of the charge carrier relaxation: (1) the electronic relaxation within CB; (2) trapping into deep states (DT) and shallow states (ST); (3) band edge electron-hole recombination; (4) the trapped electron-hole recombination; (5) exciton-exciton annihilation. (b) The lifetime photo-induced reactions of TiO2.
Fig. 7. The energy diagram of n-type TiO2 semiconductor in contact with second phase for the case (a) Ef > Eredox or Ef > ΦM leading to Schottky barrier (Us) with width W, ΦM is the work function of the metal, and (b) after applying anodic bias (+ΔU), further modifying Us and W. (c-e) Accumulation of charge carrier on the surface and form three different space charge region.
Reaction | ΔHo298 (kJ mol‒1) | ΔGo298 (kJ mol‒1) |
---|---|---|
Reduction reactions of CO2 with H2O | ||
H2O(l) → H2(g) + 1/2O2(g) | — | 237 |
CO2(g) → CO(g) + 1/2O2(g) | — | 257 |
CO2(g) + H2O(l) → HCOOH(l) + 1/2O2(g) | 541 | 275 |
CO2(g) + H2O(l) → HCHO(l) + O2(g) | 795.8 | 520 |
CO2(g) + H2O(l) → CH3OH(l) + 3/2O2(g) | 727.1 | 703 |
CO2(g) + H2O(l) → CH4(g) + 2O2(g) | 890.9 | 818 |
CO2 hydrogenation reduction [ | ||
CO2 + H2 → CO + H2O(g) | 41.2 | 28.6 |
CO2 + H2 → HCOOH(l) | -31.2 | 33.0 |
CO2 + 3H2 → CH3OH + H2O(l) | -131.0 | -9.0 |
CO2 + 4H2 → CH4 + 2H2O(g) | -164.9 | -113.5 |
2CO2 + 6H2 → C2H4 + 4H2O(g) | -127.91 | -57.52 |
3CO2 + 9H2 → C3H6 + 6H2O(g) | -249.84 | -125.69 |
4CO2 + 12H2 → C4H8 + 8H2O(g) | -360.44 | -179.95 |
Table 1 Standard molar enthalpy, ΔHo298, and the Gibbs free energy, ΔGo298, for the reduction reactions of CO2.
Reaction | ΔHo298 (kJ mol‒1) | ΔGo298 (kJ mol‒1) |
---|---|---|
Reduction reactions of CO2 with H2O | ||
H2O(l) → H2(g) + 1/2O2(g) | — | 237 |
CO2(g) → CO(g) + 1/2O2(g) | — | 257 |
CO2(g) + H2O(l) → HCOOH(l) + 1/2O2(g) | 541 | 275 |
CO2(g) + H2O(l) → HCHO(l) + O2(g) | 795.8 | 520 |
CO2(g) + H2O(l) → CH3OH(l) + 3/2O2(g) | 727.1 | 703 |
CO2(g) + H2O(l) → CH4(g) + 2O2(g) | 890.9 | 818 |
CO2 hydrogenation reduction [ | ||
CO2 + H2 → CO + H2O(g) | 41.2 | 28.6 |
CO2 + H2 → HCOOH(l) | -31.2 | 33.0 |
CO2 + 3H2 → CH3OH + H2O(l) | -131.0 | -9.0 |
CO2 + 4H2 → CH4 + 2H2O(g) | -164.9 | -113.5 |
2CO2 + 6H2 → C2H4 + 4H2O(g) | -127.91 | -57.52 |
3CO2 + 9H2 → C3H6 + 6H2O(g) | -249.84 | -125.69 |
4CO2 + 12H2 → C4H8 + 8H2O(g) | -360.44 | -179.95 |
Photocatalyst | Synthesis method | Light source | Reaction condition | Yield of product (μmol·g-1·h-1) | Sel. to CH4 (%) |
---|---|---|---|---|---|
Hollow anatase TiO2 | solvothermal | 300 W Xe lamp | G.P., 50 mg cat., 0.06 MPa | CH4 (1.72) | 100 [ |
Porous TiO2 (B) | micro-wave-assisted solvothermal | 300 W Xe light | L.P. (84 mg NaHCO3 + 0.3 mL 2 mol L?1 H2SO4), 100 mg cat., 80 °C | CH4 (0.77), CH3OH (0.27) | 74.03 [ |
0D TiO2 nanotubes | hydrothermal | 300 W Xe lamp | L.P. (100 mL DI water), 50 mg cat., 101 kPa, 25 °C | CH4 (19.31) | 100 [ |
F-TiO2-x | template, hydrothermal | 300 W Xe lamp (AM 1.5) | L.P. (1 mL UP H2O), 50 mg cat.; 10 kPa, 40 °C | CO (6.52) CH4 (4.31) | 60.2 [ |
N-TiO2 | hydrothermal | 300 W Xe lamp | L.P. (0.12 g NaHCO3 + 0.3 mL 4 mol L?1 HCl) 100 mg cat. | CH3OH (0.36) | 0 [ |
Mo/TiO2 | one-step hydrothermal | 300 W Xe lamp | G.P. (20 mL CO2), L.P. (20 μL H2O), 298 K | CO (8.2), CH4 (9.8) | 54.4 [ |
Co/TiO2 (Co:Ti=0.15) | in situ grow&cal. | 300 W Xe lamp | L.P. (3 mL H2O), 100 mg cat., 80 kPa | CO (0.34), CH4 (0.18) | 34.6 [ |
Eu/TiO2 | sol-gel | 300 W Xe lamp | L.P. (100 mL H2O), 50 mg cat., 101 kPa, 25 °C | CO (4.77), CH4 (7.28) | 60.41 [ |
Ag/TiO2 | in situ growth, calcination | 300 W Xe lamp (AM 1.5) | G.P. (CO2 + 0.5% water vapor) cat. plates, 25 °C | CH4 (4.93) | 100 [ |
Black TiO2@Cu | atomic layer deposition | 300 W Xe lamp | L.P. (1 mL H2O), 10 mg cat., 20 °C | CO (23.25), CH4 (4.3) | 15.6 [ |
Ag-Mo-TiO2 | impregnation, photodeposition | mercury lamp (365 nm) | G.P. (CO2 + 4.7% water vapor) 10 mg cat., 45 °C | CH4 (37.18) | 100 [ |
CuO-TiO2 | in situ growth, calcination | mercury lamp | L.P. (30 mL methanol), 30 mg cat., 25 °C | CH3OOCH (1600) | 0 [ |
brookite TiO2/g-C3N4 | in situ grow & calcination | 300 W Xe lamp | L.P. (1.5 g Na2CO3 + 5 mL 4 nol/L H2SO4), 60 mg cat. | (λ > 400 nm) CO (0.84) CH4 (5.21) UV-vis light CO (1.27) CH4 (6.49) | 86.15 [ 79.7 [ |
TiO2-x/W18O49 | template, calcination, alkaline hydrothermal | optical fiber lamp | G.P. (CO2 gas with a flow rate of 0.42 mL min?1), 10 mg cat., 80 °C | CO (0.54) | 0 [ |
Photocatalyst | Synthesis method | Light source | Reaction condition | Yield of products (μmol g-1 h-1) | Sel. to CH4 (%) |
TiO2/ZnIn2S4 | template, in situ growth | 300 W Xe lamp | L.P. (10 mL deionized water; 1 mmol NaHCO3 + 0.3 mL 2 mol L?1 H2SO4), 25 mg cat., 80 °C | CO (9.28) CH4 (4.26) CH3OH (4.78) | 23.25 [ |
Pt-Cu2O/TiO2 | solvothermal, co-deposition | 300 W Xe lamp | L.P. (10 mL deionized water) 20 mg cat. positioned on a plate, 71 kPa, 20 °C | CO (0.05) CH4 (1.42) | 96.6 [ |
TiO2/N‐doped graphene | solvothermal, calcination | 300 W Xe lamp | L.P. (10 mL deionized water; 0.084 g NaHCO3 + 0.3 mL 2 mol L?1 H2SO4), 20 mg cat. | CO (8.68) CH4 (3.76) CH3OH (5.67) | 20.76 [ |
Au/TiO2/BiVO4 | hydrothermal, wet chemical | 300 W Xe lamp | L.P. (10 mL deionized water), 200 mg cat. | CO (2.5) CH4 (7.5) | 75 [ |
TiO2/polydopamine | template, and calcination | 300 W Xe lamp | L.P. (10 mL deionized water; 0.084 g NaHCO3 + 0.3 mL 2 mol L?1 H2SO4), 50 mg cat. | CH4 (1.4) CH3OH (0.26) | 83.33 [ |
TiO2/CsPbBr3 | electrostatic self-assembly, solvothermal | 300 W Xe lamp | L.P. (30 mL acetonitrile+100 μL water) 10 mg cat. | CO (3.97) | 100 [ |
TiO2/MXene Ti3C2 | chemical etching, calcination | 300 W Xe arc lamp | L.P. (84 mg NaHCO3 + 0.3 mL 4 mol L?1 HCl), 50 mg cat., 80 °C | CH4 (4.4) | 100 [ |
Pt@CdS/TiO2 | gas bubbling-assisted membrane reduction-precipitation | 300 W Xe lamp | G.P. (CO2 + water vapor), 20 mg cat., 0.1 MPa, 20 °C | CO (0.7) CH4 (36.8) | 90.1 [ |
TiO2/CuInS2 | electrostatic self-assembly, hydrothermal, calcination | 350 W Xe lamp | L.P. (10 mL deionized water; 0.12 g NaHCO3 + 0.25 mL 2 mol/L H2SO4), 50 mg cat. | CH4 (2.5) CH3OH (0.86) | 74.4 [ |
TiO2/CdS | anodization-calcination, successive ionic layer adsorption and reaction | 300 W Xe lamp | L.P. (84 mg NaHCO3 + 0.3 mL 4 mol L?1 HCl), 4 cm2 cat pieces | CH4 (11.9 mmol·h-1·m-2) | 100 [ |
TiO2/C3N4/Ti3C2 | hydrothermal-induced solvent-confined monomicelle self-assembly, electrostatic self-assembly | 350 W Xe lamp | L.P. (0.84 mg NaHCO3 + 0.3 mL 2 mol L?1 H2SO4), 30 mg cat. | CO (4.39) CH4 (1.20) | 21.47 [ |
MOFs/TiO2 | hydrothermal, solvothermal | 350 W Xe lamp | L.P. (5 mL ultra-pure water), 1 mg cat., 45 °C | CO (11) CH4 (1.1) | 9.0 [ |
TiO2-PdH0.43 | Solvothermal | 300 W Xe lamp with UV light | L.P. (1 mL H2O), 15 cat., 0.15 MPa | CO (3.92) CH4 (16.41) | 73.4 [ |
MoS2/TiO2/ graphene | hummers, hydrothermal & photodeposition | 350 W Xe lamp | L.P. (4 mL D.I. water), cat. 40 °C | CO (92.33) CH4 (1.693) C3H8 (1.155) | 1.8 [ |
Table 2 Records in literature of TiO2 for photocatalytic CO2 reduction.
Photocatalyst | Synthesis method | Light source | Reaction condition | Yield of product (μmol·g-1·h-1) | Sel. to CH4 (%) |
---|---|---|---|---|---|
Hollow anatase TiO2 | solvothermal | 300 W Xe lamp | G.P., 50 mg cat., 0.06 MPa | CH4 (1.72) | 100 [ |
Porous TiO2 (B) | micro-wave-assisted solvothermal | 300 W Xe light | L.P. (84 mg NaHCO3 + 0.3 mL 2 mol L?1 H2SO4), 100 mg cat., 80 °C | CH4 (0.77), CH3OH (0.27) | 74.03 [ |
0D TiO2 nanotubes | hydrothermal | 300 W Xe lamp | L.P. (100 mL DI water), 50 mg cat., 101 kPa, 25 °C | CH4 (19.31) | 100 [ |
F-TiO2-x | template, hydrothermal | 300 W Xe lamp (AM 1.5) | L.P. (1 mL UP H2O), 50 mg cat.; 10 kPa, 40 °C | CO (6.52) CH4 (4.31) | 60.2 [ |
N-TiO2 | hydrothermal | 300 W Xe lamp | L.P. (0.12 g NaHCO3 + 0.3 mL 4 mol L?1 HCl) 100 mg cat. | CH3OH (0.36) | 0 [ |
Mo/TiO2 | one-step hydrothermal | 300 W Xe lamp | G.P. (20 mL CO2), L.P. (20 μL H2O), 298 K | CO (8.2), CH4 (9.8) | 54.4 [ |
Co/TiO2 (Co:Ti=0.15) | in situ grow&cal. | 300 W Xe lamp | L.P. (3 mL H2O), 100 mg cat., 80 kPa | CO (0.34), CH4 (0.18) | 34.6 [ |
Eu/TiO2 | sol-gel | 300 W Xe lamp | L.P. (100 mL H2O), 50 mg cat., 101 kPa, 25 °C | CO (4.77), CH4 (7.28) | 60.41 [ |
Ag/TiO2 | in situ growth, calcination | 300 W Xe lamp (AM 1.5) | G.P. (CO2 + 0.5% water vapor) cat. plates, 25 °C | CH4 (4.93) | 100 [ |
Black TiO2@Cu | atomic layer deposition | 300 W Xe lamp | L.P. (1 mL H2O), 10 mg cat., 20 °C | CO (23.25), CH4 (4.3) | 15.6 [ |
Ag-Mo-TiO2 | impregnation, photodeposition | mercury lamp (365 nm) | G.P. (CO2 + 4.7% water vapor) 10 mg cat., 45 °C | CH4 (37.18) | 100 [ |
CuO-TiO2 | in situ growth, calcination | mercury lamp | L.P. (30 mL methanol), 30 mg cat., 25 °C | CH3OOCH (1600) | 0 [ |
brookite TiO2/g-C3N4 | in situ grow & calcination | 300 W Xe lamp | L.P. (1.5 g Na2CO3 + 5 mL 4 nol/L H2SO4), 60 mg cat. | (λ > 400 nm) CO (0.84) CH4 (5.21) UV-vis light CO (1.27) CH4 (6.49) | 86.15 [ 79.7 [ |
TiO2-x/W18O49 | template, calcination, alkaline hydrothermal | optical fiber lamp | G.P. (CO2 gas with a flow rate of 0.42 mL min?1), 10 mg cat., 80 °C | CO (0.54) | 0 [ |
Photocatalyst | Synthesis method | Light source | Reaction condition | Yield of products (μmol g-1 h-1) | Sel. to CH4 (%) |
TiO2/ZnIn2S4 | template, in situ growth | 300 W Xe lamp | L.P. (10 mL deionized water; 1 mmol NaHCO3 + 0.3 mL 2 mol L?1 H2SO4), 25 mg cat., 80 °C | CO (9.28) CH4 (4.26) CH3OH (4.78) | 23.25 [ |
Pt-Cu2O/TiO2 | solvothermal, co-deposition | 300 W Xe lamp | L.P. (10 mL deionized water) 20 mg cat. positioned on a plate, 71 kPa, 20 °C | CO (0.05) CH4 (1.42) | 96.6 [ |
TiO2/N‐doped graphene | solvothermal, calcination | 300 W Xe lamp | L.P. (10 mL deionized water; 0.084 g NaHCO3 + 0.3 mL 2 mol L?1 H2SO4), 20 mg cat. | CO (8.68) CH4 (3.76) CH3OH (5.67) | 20.76 [ |
Au/TiO2/BiVO4 | hydrothermal, wet chemical | 300 W Xe lamp | L.P. (10 mL deionized water), 200 mg cat. | CO (2.5) CH4 (7.5) | 75 [ |
TiO2/polydopamine | template, and calcination | 300 W Xe lamp | L.P. (10 mL deionized water; 0.084 g NaHCO3 + 0.3 mL 2 mol L?1 H2SO4), 50 mg cat. | CH4 (1.4) CH3OH (0.26) | 83.33 [ |
TiO2/CsPbBr3 | electrostatic self-assembly, solvothermal | 300 W Xe lamp | L.P. (30 mL acetonitrile+100 μL water) 10 mg cat. | CO (3.97) | 100 [ |
TiO2/MXene Ti3C2 | chemical etching, calcination | 300 W Xe arc lamp | L.P. (84 mg NaHCO3 + 0.3 mL 4 mol L?1 HCl), 50 mg cat., 80 °C | CH4 (4.4) | 100 [ |
Pt@CdS/TiO2 | gas bubbling-assisted membrane reduction-precipitation | 300 W Xe lamp | G.P. (CO2 + water vapor), 20 mg cat., 0.1 MPa, 20 °C | CO (0.7) CH4 (36.8) | 90.1 [ |
TiO2/CuInS2 | electrostatic self-assembly, hydrothermal, calcination | 350 W Xe lamp | L.P. (10 mL deionized water; 0.12 g NaHCO3 + 0.25 mL 2 mol/L H2SO4), 50 mg cat. | CH4 (2.5) CH3OH (0.86) | 74.4 [ |
TiO2/CdS | anodization-calcination, successive ionic layer adsorption and reaction | 300 W Xe lamp | L.P. (84 mg NaHCO3 + 0.3 mL 4 mol L?1 HCl), 4 cm2 cat pieces | CH4 (11.9 mmol·h-1·m-2) | 100 [ |
TiO2/C3N4/Ti3C2 | hydrothermal-induced solvent-confined monomicelle self-assembly, electrostatic self-assembly | 350 W Xe lamp | L.P. (0.84 mg NaHCO3 + 0.3 mL 2 mol L?1 H2SO4), 30 mg cat. | CO (4.39) CH4 (1.20) | 21.47 [ |
MOFs/TiO2 | hydrothermal, solvothermal | 350 W Xe lamp | L.P. (5 mL ultra-pure water), 1 mg cat., 45 °C | CO (11) CH4 (1.1) | 9.0 [ |
TiO2-PdH0.43 | Solvothermal | 300 W Xe lamp with UV light | L.P. (1 mL H2O), 15 cat., 0.15 MPa | CO (3.92) CH4 (16.41) | 73.4 [ |
MoS2/TiO2/ graphene | hummers, hydrothermal & photodeposition | 350 W Xe lamp | L.P. (4 mL D.I. water), cat. 40 °C | CO (92.33) CH4 (1.693) C3H8 (1.155) | 1.8 [ |
Fig. 9. Scheme of five different TiO2 heterojunctions. (a) Type-I; (b) type-II; (c) p-n heterojunction; (d) direct Z-scheme; (e) indirect Z-scheme; (f) S-scheme. D: electron donor; A: electron acceptor.
Fig. 10. TEM (a) and HRTEM (b) images of 3DOM CeO2/TiO2. (c) Schematic illustration of 3DOM CeO2/TiO2 under simulated visible light irradiation for CO2 photoreduction. Reprinted with permission from Ref. [121]. Copyright 2021, American Chemical Society.
Fig. 11. (a) Schematic illustration of photocatalytic HCOOH formation from CO2 over InP/[MCE]s under simulated visible light irradiation. (b) Photocatalytic production analysis via Isotope tracer. Reprinted with permission from Ref. [143]. Copyright 2011, Journal of the American Chemical Society.
Fig. 12. (a) High-resolution XP spectra measured in dark or under irradiation of UV light. (a) Ti 2p; (b) O 1s; (c) Br 3d. The electrostatic potentials of anatase TiO2 (d), rutile TiO2 (e) and CsPdBr3 (f). (g) Possible photocatalytic mechanism of CsPdBr3/TiO2 under visible light irradiation. (h) Transient adsorption photoluminescent spectra for TiO2 and CsPdBr3/TiO2 under the excitation wavelength of 450 and 520 nm, respectively. Reprinted with permission [113]. Copyright 2020, The authors.
Fig. 13. (a) AFM image of CdS/pyrene-alttriphenylamine. PT composite; Surface potential under dark (b) and surface potential under illumination (c). (d) Distribution of surface potential in the region A and B under dark and illumination, respectively. (e) The schematic illustration of photoirradiation KPFM. Reprinted with permission from Ref. [154]. Copyright 2021, Wiley-VCH.
Fig. 15. SEM image (a) and TEM image (b) of Ag@TiO2. (c) CH4 evolution in the reaction cell over time under AM1.5 solar simulator irradiation. (d) Proposed mechanism of CO2 photoconversion to CH4 by Core-Shell Ag@TiO2. Reprinted with permission from Ref. [103]. Copyright 2019, American Chemical Society.
Fig. 16. Photocatalytic activity of CO2 into CH4 (a), and (b) over different Er1 modified carbon nitride. (c) The calculated free-energy diagram for CO2 reduction to CO and CH4 and on the adsorption configurations of intermediates over HD-Er1/CN-NT. Reproduced with permission [72]. Copyright 2020, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fig. 17. (a) Schematic illustration of the basic mechanism of the TiO2 photocatalytic process. (b) Comparison of the photocatalytic activity of the samples with common photocatalysts under visible light, calculated according to the amounts evolved in 6 h. Reprinted with permission from Ref. [101]. Copyright 2015, the Royal Society of Chemistry.
Fig. 20. (a) The simulated state of CO2 adsorption on the basic oxide (001) surfaces. Total adsorption energy (b) and adsorption energy (c) broken down into strain and bonded components for CO2 adsorption on the basic oxide (MgO, SrO, CaO, and BaO) surfaces. (d) Adsorption energies for intermediate species CO2, COOH, and CO on TiO2, 0.5 ML SrO/TiO2, and 1 ML SrO/TiO2. Reprinted with permission from Ref. [228]. Copyright 2016, Royal Society of Chemistry.
Fig. 21. A schematic illustration for a photoelectrochemical setup for CO2 reduction. Several paths are included in the reaction: (1) excitation, (2) charge carrier transfer, (3) electrons flow from the working electrode to the counter electrode, (4) O2 evolution with holes, (5) CO2 adsorption, and (6) CO2 reduction.
Fig. 22. Schematic illustration of a three-electrode CO2 reduction configuration of a PEC cell. (a) A semiconductor serving as a photocathode. (b) A semiconductor serving as a photoanode. (c) Semiconductors serving as both a photocathode and a photoanode.
Reaction | Potential (V) vs. NHE at pH = 7 | |
---|---|---|
Oxidation potentials of H2O | ||
H2O + 2h+ → 1/2O2 + 2H+ | 0.82 | (1.1) |
H2O + h+ → •OH + 2H+ | 2.27 | (1.2) |
Production of C1 products | ||
CO2 + e- → CO2• | -1.90 | (1.3) |
CO2 + 2H+ + 2e- → HCOOH | -0.61 | (1.4) |
CO2 + 2H+ + 2e- → CO + H2O | -0.53 | (1.5) |
CO2 + 4H+ + 4e- → HCHO + H2O | -0.48 | (1.6) |
CO2 + 6H+ + 6e- → CH3OH + 2H2O | -0.38 | (1.7) |
CO2 + 8H+ + 8e- → CH4 + 2H2O | -0.24 | (1.8) |
Production of C2 products | ||
CO2 + 9H+ + 12e- → C2H5OH + 12OH- | -0.33 | (1.9) |
3CO2 + 13H2O + 18e- → C3H7OH + 18OH- | -0.32 | (1.10) |
2CO2 + 8H2O +12e- → C2H4 + 12OH- | -0.34 | (1.11) |
2CO2 + 2H+ + 2e- → H2C2O4 | -0.80 | (1.12) |
2CO2 + 14H+ + 14e- → C2H6 + 4 H2O | -0.27 | (1.13) |
Reduction of potentials of H+ | ||
2H+ + 2e- → H2 | -0.41 | (1.10) |
Table 3 The possible reactions in the reduction of CO2 and corresponding potentials (vs. NHE. 25 °C, 1 atm).
Reaction | Potential (V) vs. NHE at pH = 7 | |
---|---|---|
Oxidation potentials of H2O | ||
H2O + 2h+ → 1/2O2 + 2H+ | 0.82 | (1.1) |
H2O + h+ → •OH + 2H+ | 2.27 | (1.2) |
Production of C1 products | ||
CO2 + e- → CO2• | -1.90 | (1.3) |
CO2 + 2H+ + 2e- → HCOOH | -0.61 | (1.4) |
CO2 + 2H+ + 2e- → CO + H2O | -0.53 | (1.5) |
CO2 + 4H+ + 4e- → HCHO + H2O | -0.48 | (1.6) |
CO2 + 6H+ + 6e- → CH3OH + 2H2O | -0.38 | (1.7) |
CO2 + 8H+ + 8e- → CH4 + 2H2O | -0.24 | (1.8) |
Production of C2 products | ||
CO2 + 9H+ + 12e- → C2H5OH + 12OH- | -0.33 | (1.9) |
3CO2 + 13H2O + 18e- → C3H7OH + 18OH- | -0.32 | (1.10) |
2CO2 + 8H2O +12e- → C2H4 + 12OH- | -0.34 | (1.11) |
2CO2 + 2H+ + 2e- → H2C2O4 | -0.80 | (1.12) |
2CO2 + 14H+ + 14e- → C2H6 + 4 H2O | -0.27 | (1.13) |
Reduction of potentials of H+ | ||
2H+ + 2e- → H2 | -0.41 | (1.10) |
Anode | Light source | Product | Reaction rate | Selectivity |
---|---|---|---|---|
FeS2/TiO2 NTs | 500 W Xe lamp (λ ≥ 420 nm) | CH3OH | 91.7 μmol h-1 L-1 | 100% [ |
Cu3(BTC)2@TiO2 | 300 W Xe lamp (< 400 nm) | CH4 | 56.6 μmol cm-2 h-1 | 100% [ |
TiO2 | Xe-arc lamp 320-410 nm | HCOOH, CH3COOH, C2H5COOH, CH3OH, CH3CH2OH | 5040 nmol cm-2 h-1 | HCOOH 59% [ |
TiO2 (TNT) | Xe-arc lamp (320-410 nm) | HCOOH, CH3OH, CH3COOH, CH3CH2OH, C2H5COOH | 4340 nmol cm-2 h-1 | HCOOH 40% [ |
InP/TiO2 NTs | 500 W Xe lamp (λ > 420 nm) | CH3OH | 295 μmol cm-2 L-1 | 100% [ |
n-TiO2-TNT | 150 W Xe lamp | CH4, CO | 120 nmol cm-2 h-1 | CH4 86% [ |
TiO2/Pt | Xe lamp (AM 1.5) | HCOOH | 200 nmol cm-2 h-1 | 100% [ |
TiO2-ZIF-8 | 125 W mercury vapor lamp | CH3CH2OH, CH3OH | 0.6 mmol L-1 | CH3CH2OH 50% [ |
CdSeTe NSs/TiO2 NTs | 500 W Xe lamp (λ > 420 nm) | CH3OH | 1166.77 μmol L-1 | 100% [ |
Cu-RGO-TiO2 | 150 W Xe lamp (AM1.5) | CH3OH, HCOOH | 255 μmol h-1 cm-2 | CH3OH57% [ |
Au@TNT | AM 1.5 G | CH3OH, CH3CH2OH | 2550 μmol h-1 | CH3OH78% [ |
Au/N-doped TiO2 | 300-W Xe lamp | CH3COOH, CO | 233 nmol h-1 | carbon 91.5% [ |
TiO2 | 300 W Hg lamp | CO, HCOOH | 6150 ppm | CO 98% [ |
TiO2 film | 400 W Xe lamp | HCOOH | 168.8 nmol h-1 | 100% [ |
RuOx/TiO2/Ta/N | visible light (λ > 400 nm) | CO | 39 nmol cm-2 | 100% [ |
TiO2 thin film | AM 1.5 G | HCOOH, CO | 27.1 μmol h-1 | HCOOH 91% [ |
Argon-treated TiO2 | AM 1.5 G | HCOOH, CO | 108.2 mmol g-1 h-1 | HCOOH 96.5% [ |
Ti3+/TiO2 | UV Lamp (254 nm) | CO, CH4 | CO FE, 50% | CO 82% [ |
Ti/TiO2-CuP | 300 W Xe lamp | CH3OH, CH3CH2OH | CH3OH 0.35 mmol L-1 | CH3OH, 91.4% [ |
TiO2 NRs | AM 1.5 G | CO, CH4 | 22 μmol·cm-2 | CO 71% [ |
Ce/CdS QDs/TiO2 NTs | 150 W Xe lamp | HCOOH | 106.7 nmol·cm-2 | 100% [ |
Table 4 Records in literature of TiO2 for photoelectrochemical CO2 reduction.
Anode | Light source | Product | Reaction rate | Selectivity |
---|---|---|---|---|
FeS2/TiO2 NTs | 500 W Xe lamp (λ ≥ 420 nm) | CH3OH | 91.7 μmol h-1 L-1 | 100% [ |
Cu3(BTC)2@TiO2 | 300 W Xe lamp (< 400 nm) | CH4 | 56.6 μmol cm-2 h-1 | 100% [ |
TiO2 | Xe-arc lamp 320-410 nm | HCOOH, CH3COOH, C2H5COOH, CH3OH, CH3CH2OH | 5040 nmol cm-2 h-1 | HCOOH 59% [ |
TiO2 (TNT) | Xe-arc lamp (320-410 nm) | HCOOH, CH3OH, CH3COOH, CH3CH2OH, C2H5COOH | 4340 nmol cm-2 h-1 | HCOOH 40% [ |
InP/TiO2 NTs | 500 W Xe lamp (λ > 420 nm) | CH3OH | 295 μmol cm-2 L-1 | 100% [ |
n-TiO2-TNT | 150 W Xe lamp | CH4, CO | 120 nmol cm-2 h-1 | CH4 86% [ |
TiO2/Pt | Xe lamp (AM 1.5) | HCOOH | 200 nmol cm-2 h-1 | 100% [ |
TiO2-ZIF-8 | 125 W mercury vapor lamp | CH3CH2OH, CH3OH | 0.6 mmol L-1 | CH3CH2OH 50% [ |
CdSeTe NSs/TiO2 NTs | 500 W Xe lamp (λ > 420 nm) | CH3OH | 1166.77 μmol L-1 | 100% [ |
Cu-RGO-TiO2 | 150 W Xe lamp (AM1.5) | CH3OH, HCOOH | 255 μmol h-1 cm-2 | CH3OH57% [ |
Au@TNT | AM 1.5 G | CH3OH, CH3CH2OH | 2550 μmol h-1 | CH3OH78% [ |
Au/N-doped TiO2 | 300-W Xe lamp | CH3COOH, CO | 233 nmol h-1 | carbon 91.5% [ |
TiO2 | 300 W Hg lamp | CO, HCOOH | 6150 ppm | CO 98% [ |
TiO2 film | 400 W Xe lamp | HCOOH | 168.8 nmol h-1 | 100% [ |
RuOx/TiO2/Ta/N | visible light (λ > 400 nm) | CO | 39 nmol cm-2 | 100% [ |
TiO2 thin film | AM 1.5 G | HCOOH, CO | 27.1 μmol h-1 | HCOOH 91% [ |
Argon-treated TiO2 | AM 1.5 G | HCOOH, CO | 108.2 mmol g-1 h-1 | HCOOH 96.5% [ |
Ti3+/TiO2 | UV Lamp (254 nm) | CO, CH4 | CO FE, 50% | CO 82% [ |
Ti/TiO2-CuP | 300 W Xe lamp | CH3OH, CH3CH2OH | CH3OH 0.35 mmol L-1 | CH3OH, 91.4% [ |
TiO2 NRs | AM 1.5 G | CO, CH4 | 22 μmol·cm-2 | CO 71% [ |
Ce/CdS QDs/TiO2 NTs | 150 W Xe lamp | HCOOH | 106.7 nmol·cm-2 | 100% [ |
Fig. 25. (a) A schematic illustration of the PEC cell with an a-Si/TiO2/Au photocathode and a BiVO4/FeOOH/NiOOH photoanode for CO2 reduction to syngas. (b) J-V curves for the photoanode and photocathode in a three-electrode configuration. Syngas production using a two-electrode configuration. (c) ST-4Au||BiVO4. (d) ST-7Au||BiVO4. Reproduced with permission [271]. Copyright 2019, Energy & Environmental Science.
Fig. 26. In situ Raman spectra for PEC CO2 conversion using Zn0.015-doped Cu2O (a), and Cu2O (b). Reproduced with permission [230]. Copyright 2021 Science China Press.
Fig. 27. The most favorable adsorption energies of Zn0.015-doped Cu2O (a,b) and Cu2O (c,d). Reprinted with permission from Ref. [230]. Copyright 2021, Science China Press.
Fig. 28. Reaction pathway based on the in situ Raman spectroscopy and first-principles simulations. Reprinted with permission from Ref. [230] Copyright 2021, Science China Press.
Catalyst | Preparation | System | Light source | Reaction temperature (°C) | Product | Selectivity to CH4 (%) | Ref. |
---|---|---|---|---|---|---|---|
TiN@TiO2@In2O3-x (OH)y | hydrothermal | vapor-solid | 300 W Xe lamp | 150 | CO | 0 | [ |
TiO2-graphene | solvothermal | vapor-solid | 300 W Xe lamp | 116.4 | CO, CH4 | 95.3 | [ |
Pd NPs/TiO2 | hydrothermal | vapor-solid | 500 W Hg lamp (λ > 254 nm) | 500 | CO | 0 | [ |
AuNPs/TiO2 | solvothermal and deposition/precipitation method | vapor-solid | 375 W IR or UV | 181 | CO, CH4 | 60 | [ |
Pt/D-TiO2-x | hydrothermal | vapor-liquid-solid | 300 W Xe lamp | 120 | CH4, CO | 87.5 | [ |
Ov-TiO2 | hydrothermal | vapor-liquid-solid | 150 W Xe lamp | 120 | CH4, CO | 55 | [ |
Ov-TiO2 | hydrothermal and calcination method | vapor-solid | UV-light | 120 | CO | 0 | [ |
TiO2-x/CoOx | impregnation and calcination | vapor-liquid-solid | 150 W UV lamp | 120 | CO, CH4 | 88.33 | [ |
Cu3(BTC)2@TiO2 | hydrothermal | vapor-liquid-solid | 300 W Xe lamp (λ < 400nm) | 40 | CH4 | 100 | [ |
CoO/Co/TiO2 | impregnation | vapor-liquid-solid | 300 W Xe lamp | 120 | CH3OH | 0 | [ |
CuS/TiO2 | hydrothermal | vapor-liquid-solid | 300 W Xe lamp | 138 | CO | 0 | [ |
TiO2 photonic crystals | template-free anodization calcination method | vapor-liquid-solid | 300 W Xe arc lamp | 22 | CH4 | 100 | [ |
Ni/TiO2 | MOF-template method | vapor-solid | 375W IR lamp | 207 | CO, CH4 | 99.6 | [ |
Bi/AgBiS2/P25 | solvothermal | vapor-liquid-solid | 300 W Xe lamp | 50 | CO, CH4 | 73.17 | [ |
Table 5 Records in literature of TiO2 for photothermal CO2 reduction.
Catalyst | Preparation | System | Light source | Reaction temperature (°C) | Product | Selectivity to CH4 (%) | Ref. |
---|---|---|---|---|---|---|---|
TiN@TiO2@In2O3-x (OH)y | hydrothermal | vapor-solid | 300 W Xe lamp | 150 | CO | 0 | [ |
TiO2-graphene | solvothermal | vapor-solid | 300 W Xe lamp | 116.4 | CO, CH4 | 95.3 | [ |
Pd NPs/TiO2 | hydrothermal | vapor-solid | 500 W Hg lamp (λ > 254 nm) | 500 | CO | 0 | [ |
AuNPs/TiO2 | solvothermal and deposition/precipitation method | vapor-solid | 375 W IR or UV | 181 | CO, CH4 | 60 | [ |
Pt/D-TiO2-x | hydrothermal | vapor-liquid-solid | 300 W Xe lamp | 120 | CH4, CO | 87.5 | [ |
Ov-TiO2 | hydrothermal | vapor-liquid-solid | 150 W Xe lamp | 120 | CH4, CO | 55 | [ |
Ov-TiO2 | hydrothermal and calcination method | vapor-solid | UV-light | 120 | CO | 0 | [ |
TiO2-x/CoOx | impregnation and calcination | vapor-liquid-solid | 150 W UV lamp | 120 | CO, CH4 | 88.33 | [ |
Cu3(BTC)2@TiO2 | hydrothermal | vapor-liquid-solid | 300 W Xe lamp (λ < 400nm) | 40 | CH4 | 100 | [ |
CoO/Co/TiO2 | impregnation | vapor-liquid-solid | 300 W Xe lamp | 120 | CH3OH | 0 | [ |
CuS/TiO2 | hydrothermal | vapor-liquid-solid | 300 W Xe lamp | 138 | CO | 0 | [ |
TiO2 photonic crystals | template-free anodization calcination method | vapor-liquid-solid | 300 W Xe arc lamp | 22 | CH4 | 100 | [ |
Ni/TiO2 | MOF-template method | vapor-solid | 375W IR lamp | 207 | CO, CH4 | 99.6 | [ |
Bi/AgBiS2/P25 | solvothermal | vapor-liquid-solid | 300 W Xe lamp | 50 | CO, CH4 | 73.17 | [ |
Fig. 31. An overview of the methods to improve the photothermal activity of TiO2 that involves the creation of surface frustrated Lewis pairs, decoration of specific photothermal co-catalysts, plasmonic nanoparticles and conventional co-catalysts.
Fig. 32. (a) Illustration of the mechanism toward the enhanced photocatalytic CO2 reduction over Pt/MgAl-LDO/TiO2 with H2O vapor. (b) HRTEM images of Pt/MgAl-LDO/TiO2. (c) IR spectra of CO2 and adsorption on TiO2 and MgAl-LDO/TiO2. Reproduced with permission [308]. Copyright 2018 Elsevier Inc.
Fig. 33. CO generation rate on different composition of photocatalysts (a) and the most active sample ncIn2O3-x(OH)y supported on different substrates (b). (c) Proposed activation mechanism for the CO2 reduction reaction. Reproduced with permission [287]. Copyright 2021 American Chemical Society.
Fig. 34. Charge density difference of the key intermediates on the catalyst surfaces. CO* (a), HCOOH* (b), HCHO* (c), and CH3OH* (d) on TiO2 and CO* (e), HCOOH* (f), HCHO* (g), and CH3OH* (h) on Au/MgO-aTiO2; (i) Illustration of the reaction mechanism on the catalyst surface. Reprinted with permission from Ref. [314]. Copyright 2021, American Chemical Society.
Fig. 35. Optimized structure of the stable configuration of anatase (101) surface (a) and Pd-loaded anatase (101) surface (b). DOS for anatase (101) (c) and Pd-loaded anatase (101) (d). Reprinted with permission from Ref. [289]. Copyright 2018, American Chemical Society.
Fig. 36. (a) PEC reduction of CO2 at Ti/TiO2NT-CuP in 0.1 mol L-1 Na2SO4 saturated with CO2 under UV-vis irradiation. (b) Different bias voltage different setup for CH3OH and C2H5OH formation at bias potential of -0.80 V. Reprinted with permission from Ref. [258]. Copyright 2022 National Academy of Sciences.
|
[1] | Hui Gao, Gong Zhang, Dongfang Cheng, Yongtao Wang, Jing Zhao, Xiaozhi Li, Xiaowei Du, Zhi-Jian Zhao, Tuo Wang, Peng Zhang, Jinlong Gong. Steering electrochemical carbon dioxide reduction to alcohol production on Cu step sites [J]. Chinese Journal of Catalysis, 2023, 52(9): 187-195. |
[2] | Wen Zhang, Cai-Cai Song, Jia-Wei Wang, Shu-Ting Cai, Meng-Yu Gao, You-Xiang Feng, Tong-Bu Lu. Bidirectional host-guest interactions promote selective photocatalytic CO2 reduction coupled with alcohol oxidation in aqueous solution [J]. Chinese Journal of Catalysis, 2023, 52(9): 176-186. |
[3] | Abhishek R. Varma, Bhushan S. Shrirame, Sunil K. Maity, Deepti Agrawal, Naglis Malys, Leonardo Rios-Solis, Gopalakrishnan Kumar, Vinod Kumar. Recent advances in fermentative production of C4 diols and their chemo-catalytic upgrading to high-value chemicals [J]. Chinese Journal of Catalysis, 2023, 52(9): 99-126. |
[4] | Mingming Song, Xianghai Song, Xin Liu, Weiqiang Zhou, Pengwei Huo. Enhancing photocatalytic CO2 reduction activity of ZnIn2S4/MOF-808 microsphere with S-scheme heterojunction by in situ synthesis method [J]. Chinese Journal of Catalysis, 2023, 51(8): 180-192. |
[5] | Jiaming Li, Yuan Li, Xiaotian Wang, Zhixiong Yang, Gaoke Zhang. Atomically dispersed Fe sites on TiO2 for boosting photocatalytic CO2 reduction: Enhanced catalytic activity, DFT calculations and mechanistic insight [J]. Chinese Journal of Catalysis, 2023, 51(8): 145-156. |
[6] | Xiu-Qing Qiao, Chen Li, Zizhao Wang, Dongfang Hou, Dong-Sheng Li. TiO2-x@C/MoO2 Schottky junction: Rational design and efficient charge separation for promoted photocatalytic performance [J]. Chinese Journal of Catalysis, 2023, 51(8): 66-79. |
[7] | Zhaochun Liu, Xue Zong, Dionisios G. Vlachos, Ivo A. W. Filot, Emiel J. M. Hensen. A computational study of electrochemical CO2 reduction to formic acid on metal-doped SnO2 [J]. Chinese Journal of Catalysis, 2023, 50(7): 249-259. |
[8] | Min Lin, Meilan Luo, Yongzhi Liu, Jinni Shen, Jinlin Long, Zizhong Zhang. 1D S-scheme heterojunction of urchin-like SiC-W18O49 for enhancing photocatalytic CO2 reduction [J]. Chinese Journal of Catalysis, 2023, 50(7): 239-248. |
[9] | Defa Liu, Bin Sun, Shuojie Bai, Tingting Gao, Guowei Zhou. Dual co-catalysts Ag/Ti3C2/TiO2 hierarchical flower-like microspheres with enhanced photocatalytic H2-production activity [J]. Chinese Journal of Catalysis, 2023, 50(7): 273-283. |
[10] | Huijie Li, Manzhou Chi, Xing Xin, Ruijie Wang, Tianfu Liu, Hongjin Lv, Guo-Yu Yang. Highly selective photoreduction of CO2 catalyzed by the encapsulated heterometallic-substituted polyoxometalate into a photo-responsive metal-organic framework [J]. Chinese Journal of Catalysis, 2023, 50(7): 343-351. |
[11] | Xuan Li, Xingxing Jiang, Yan Kong, Jianju Sun, Qi Hu, Xiaoyan Chai, Hengpan Yang, Chuanxin He. Interface engineering of a GaN/In2O3 heterostructure for highly efficient electrocatalytic CO2 reduction to formate [J]. Chinese Journal of Catalysis, 2023, 50(7): 314-323. |
[12] | Sang Eon Jun, Sungkyun Choi, Jaehyun Kim, Ki Chang Kwon, Sun Hwa Park, Ho Won Jang. Non-noble metal single atom catalysts for electrochemical energy conversion reactions [J]. Chinese Journal of Catalysis, 2023, 50(7): 195-214. |
[13] | Meng Zhao, Jing Xu, Shuyan Song, Hongjie Zhang. Core/yolk-shell nanoreactors for tandem catalysis [J]. Chinese Journal of Catalysis, 2023, 50(7): 83-108. |
[14] | Huizhen Li, Yanlei Chen, Qing Niu, Xiaofeng Wang, Zheyuan Liu, Jinhong Bi, Yan Yu, Liuyi Li. The crystalline linear polyimide with oriented photogenerated electron delivery powering CO2 reduction [J]. Chinese Journal of Catalysis, 2023, 49(6): 152-159. |
[15] | Zizi Li, Jia-Wei Wang, Yanjun Huang, Gangfeng Ouyang. Enhancing CO2 photoreduction via the perfluorination of Co(II) phthalocyanine catalysts in a noble-metal-free system [J]. Chinese Journal of Catalysis, 2023, 49(6): 160-167. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||