Chinese Journal of Catalysis ›› 2025, Vol. 77: 153-170.DOI: 10.1016/S1872-2067(25)64782-6
• Articles • Previous Articles Next Articles
Guipeng Zhang, Yan Bin, Yanxin Wang, Jinzhu Chen*()
Received:
2025-05-08
Accepted:
2025-06-30
Online:
2025-10-18
Published:
2025-10-05
Contact:
*E-mail: chenjz@jnu.edu.cn (J. Chen).
Supported by:
Guipeng Zhang, Yan Bin, Yanxin Wang, Jinzhu Chen. Remote hydrogen-spillover effect on catalytic transnitrilation for biomass-based nitrile synthesis[J]. Chinese Journal of Catalysis, 2025, 77: 153-170.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(25)64782-6
Fig. 1. Ni/Nb2O5: TEM images (a,b), TEM-EDS (c,d), and elemental-mapping (e-g). Pt@ZSM-5: TEM images (h,i), TEM-EDS (j,k), and elemental-mapping (l-o).
Fig. 2. Structural characterization. (a) N2 adsorption-desorption isotherms with pore size distribution curves. (b) Ni 2p XPS of Ni/Nb2O5. (c) Nb 3d XPS of Ni/Nb2O5 and Nb2O5. (d) O 1s XPS of Ni/Nb2O5 and Nb2O5. (e) XRD patterns of Pt@ZSM-5. (f) Pt 4f XPS of Pt@ZSM-5.
Sample | SBETa (m2 g-1) | Smicrob (m2 g-1) | Sextc (m2 g-1) | Average pore sized (nm) | Vtotale (cm3 g-1) | Vmicrof/Vextg (cm3 g-1) |
---|---|---|---|---|---|---|
Nb2O5 | 98 | 76 | 22 | 4.0 | 0.10 | 0.04/0.06 |
7.6%-Ni/Nb2O5 | 202 | 0 | 202 | 17 | 0.17 | 0/0.17 |
2.7%-Pt@ZSM-5 | 393 | 388 | 5 | 4.8 | 0.47 | 0.15/0.32 |
Table 1 Structural parameters of the Nb2O5, Ni/Nb2O5 and Pt@ZSM-5.
Sample | SBETa (m2 g-1) | Smicrob (m2 g-1) | Sextc (m2 g-1) | Average pore sized (nm) | Vtotale (cm3 g-1) | Vmicrof/Vextg (cm3 g-1) |
---|---|---|---|---|---|---|
Nb2O5 | 98 | 76 | 22 | 4.0 | 0.10 | 0.04/0.06 |
7.6%-Ni/Nb2O5 | 202 | 0 | 202 | 17 | 0.17 | 0/0.17 |
2.7%-Pt@ZSM-5 | 393 | 388 | 5 | 4.8 | 0.47 | 0.15/0.32 |
Fig. 3. 1a/2a-transnitrilation over various catalysts. Reaction conditions: catalyst (Nb2O5, 7.6%-Ni/Nb2O5 and 2.7%-Pt@ZSM-5, 10 mg respectively), 2a (3.0 mL), 1a (0.10 mmol), N2 (1.5 MPa), 190 °C, 6.0 h. aUnder 10%-H2/N2 (1.5 MPa) instead of N2 (1.5 MPa).
Fig. 4. 1a/2a-transnitrilation over Ni/Nb2O5-Pt@ZSM-5: product-distribution against reaction-time under N2 for (a) and 10%-H2/N2 for (b), product-distribution against reaction-temperature under N2 for (c) and 10%-H2/N2 for (d), the effect of Ni/Nb2O5:Pt@ZSM-5 mass ratio (e) and catalyst loading level (f) on product-distribution. Reaction conditions: 7.6%-Ni/Nb2O5 10 mg, 2.7%-Pt@ZSM-5 10 mg, 2a 3.0 mL, 1a 0.10 mmol, 190 °C, N2 or 10%-H2/N2 1.5 MPa, 6.0 h. Specified reaction time for panels (a) and (b), specified reaction temperature for panels (c) and (d), specified Ni/Nb2O5:Pt@ZSM-5 mass ratio for panel (e), specified catalyst loading-level for panel (f).
Fig. 5. (a) H2-TPR profiles of investigated samples. FT-IR spectra of adsorbed probe-molecules on Ni/Nb2O5-Pt@ZSM-5 surface respectively under N2 and 10%-H2/N2: pyridine (b), phenylacetonitrile (c), and acetic acid (d).
Scheme 2. (a) Remote H-spillover induced migration of active species (proton/electron pair, vacancy and -OH group) on the surface of reducible Ni/Nb2O5. (b) Remote H-spillover effect on the surface acidity of Nb2O5.
Fig. 6. FT-IR spectra of adsorbed probe molecules on Nb2O5-Pt@ZSM-5 surface respectively under N2 and 10%-H2/N2: pyridine (a), phenylacetonitrile (b), and acetic acid (c). Raman spectra of samples pretreated with N2 and H2: Ni/Nb2O5 (d) and Nb2O5 (e). (f) O2-TPD profiles of Ni/Nb2O5 and Nb2O5. Photographs of H-spillover for investigated WO3 (g), WO3-Ni/Nb2O5 (h), WO3-Pt@ZSM-5 (i), WO3-Ni/Nb2O5-Pt@ZSM-5 (j), and WO3-Nb2O5-Pt@ZSM-5 (k) samples.
Scheme 3. Control experiments. Reaction conditions: 7.6%-Ni/Nb2O5 10 mg, 2.7%-Pt@ZSM-5 10 mg, 190 °C, 6.0 h, 10%-H2/N2 1.5 MPa. 1a 0.10 mmol and 2a 3.0 mL for panel (a); 1a 0.10 mmol, 8a 0.50 mmol and toluene 3.0 mL for panel (b); 6a 0.10 mmol and 2a 3.0 mL for panel (c); 7a 0.10 mmol and 2a 3.0 mL for panel (d).
Run | T (°C) | k1′ × 10 (h-1) | Ea,1′ (kJ mol-1) | lnA1′ (h-1) | k3′ (h-1) | Ea,3′ (kJ mol-1) | lnA3′ (h-1) |
---|---|---|---|---|---|---|---|
1b | 170 | (2.25 ± 0.01) | 53.8 ± 2.4 | 13.12 ± 0.66 | 1.04 ± 0.01 | 36.6 ± 2.1 | 9.95 ± 0.55 |
2b | 180 | (3.21 ± 0.01) | 53.8 ± 2.4 | 13.12 ± 0.66 | 1.23 ± 0.01 | 36.6 ± 2.1 | 9.95 ± 0.55 |
3b | 190 | (4.12 ± 0.01) | 53.8 ± 2.4 | 13.12 ± 0.66 | 1.58 ± 0.01 | 36.6 ± 2.1 | 9.95 ± 0.55 |
4b | 200 | (5.79 ± 0.02) | 53.8 ± 2.4 | 13.12 ± 0.66 | 1.92 ± 0.02 | 36.6 ± 2.1 | 9.95 ± 0.55 |
5c | 170 | (5.31 ± 0.03) | 34.6 ± 1.8 | 8.78 ± 0.49 | 1.13 ± 0.02 | 35.3 ± 2.1 | 9.68 ± 0.56 |
6c | 180 | (6.83 ± 0.01) | 34.6 ± 1.8 | 8.78 ± 0.49 | 1.34 ± 0.01 | 35.3 ± 2.1 | 9.68 ± 0.56 |
7c | 190 | (8.15 ± 0.01) | 34.6 ± 1.8 | 8.78 ± 0.49 | 1.64 ± 0.01 | 35.3 ± 2.1 | 9.68 ± 0.56 |
8c | 200 | (9.70 ± 0.02) | 34.6 ± 1.8 | 8.78 ± 0.49 | 2.08 ± 0.03 | 35.3 ± 2.1 | 9.68 ± 0.56 |
Table 2 Kinetic parameters of 1a/2a-transnitrilation network as shown in Scheme 4a.
Run | T (°C) | k1′ × 10 (h-1) | Ea,1′ (kJ mol-1) | lnA1′ (h-1) | k3′ (h-1) | Ea,3′ (kJ mol-1) | lnA3′ (h-1) |
---|---|---|---|---|---|---|---|
1b | 170 | (2.25 ± 0.01) | 53.8 ± 2.4 | 13.12 ± 0.66 | 1.04 ± 0.01 | 36.6 ± 2.1 | 9.95 ± 0.55 |
2b | 180 | (3.21 ± 0.01) | 53.8 ± 2.4 | 13.12 ± 0.66 | 1.23 ± 0.01 | 36.6 ± 2.1 | 9.95 ± 0.55 |
3b | 190 | (4.12 ± 0.01) | 53.8 ± 2.4 | 13.12 ± 0.66 | 1.58 ± 0.01 | 36.6 ± 2.1 | 9.95 ± 0.55 |
4b | 200 | (5.79 ± 0.02) | 53.8 ± 2.4 | 13.12 ± 0.66 | 1.92 ± 0.02 | 36.6 ± 2.1 | 9.95 ± 0.55 |
5c | 170 | (5.31 ± 0.03) | 34.6 ± 1.8 | 8.78 ± 0.49 | 1.13 ± 0.02 | 35.3 ± 2.1 | 9.68 ± 0.56 |
6c | 180 | (6.83 ± 0.01) | 34.6 ± 1.8 | 8.78 ± 0.49 | 1.34 ± 0.01 | 35.3 ± 2.1 | 9.68 ± 0.56 |
7c | 190 | (8.15 ± 0.01) | 34.6 ± 1.8 | 8.78 ± 0.49 | 1.64 ± 0.01 | 35.3 ± 2.1 | 9.68 ± 0.56 |
8c | 200 | (9.70 ± 0.02) | 34.6 ± 1.8 | 8.78 ± 0.49 | 2.08 ± 0.03 | 35.3 ± 2.1 | 9.68 ± 0.56 |
Fig. 8. Substrate scope of the transnitrilation reaction. Reaction conditions: 7.6%-Ni/Nb2O5 10 mg, 2.7%-Pt@ZSM-5 10 mg, 2a 3.0 mL, 1 0.10 mmol, 190 °C, 6.0 h, 10%-H2/N2 1.5 MPa. 1 Conversions (% in brackets) and 3 yields (%) were obtained by HPLC analysis.a 210 °C was used. b Determined by GC analysis.
Fig. 9. 1a/2a-transnitrilation over Ni/Nb2O5-Pt@ZSM-5 under H2/N2: hot-filtration (a) and catalyst reusability (b). Reaction conditions: 7.6%-Ni/Nb2O5 10 mg, 2.7%-Pt@ZSM-5 10 mg, 2a 3.0 mL, 1a 0.10 mmol, 190 °C, 6 h, 10%-H2/N2 1.5 MPa.
|
[1] | Li Zheng, Zeng Ying, Dong Yuanyuan, Lv Hongjin, Yang Guo-Yu. Metal/H+ sites modulation in the decatungstate+Pd/C catalytic system for photocatalytic generation of furfuryl ethyl ether [J]. Chinese Journal of Catalysis, 2025, 75(8): 137-146. |
[2] | Qisong Yi, Lu Lin, Huawei Geng, Shaohua Chen, Yuanchao Shao, Ping He, Zhifeng Liu, Haimei Xu, Tiehong Chen, Yuanshuai Liu, Valentin Valtchev. Benefits of H-ZSM-5 zeolite from fluoride-mediated acidic synthesis for liquid-phase conversion of cyclohexanol [J]. Chinese Journal of Catalysis, 2025, 74(7): 97-107. |
[3] | Wanying Liang, Guangyue Xu, Yao Fu. Accurate restricted transition-state shape selective hydrogenation of furfural over zeolite confined Cu catalyst [J]. Chinese Journal of Catalysis, 2025, 74(7): 71-81. |
[4] | Guohao Na, Hongshun Zheng, Mingpeng Chen, Huachuan Sun, Yuewen Wu, Dequan Li, Yun Chen, Boran Zhao, Bo Zhao, Tong Zhou, Tianwei He, Yuxiao Zhang, Jianhong Zhao, Yumin Zhang, Jin Zhang, Feng Liu, Hao Cui, Qingju Liu. In-situ Pt reduction induced topological transformation of NiFe-MOF for industrial seawater splitting [J]. Chinese Journal of Catalysis, 2025, 72(5): 211-221. |
[5] | Meng Liu, Caixia Miao, Yumeng Fo, Wenxuan Wang, Yao Ning, Shengqi Chu, Weiyu Song, Ying Zhang, Jian Liu, Zhijie Wu, Wenhao Luo. Chelating-agent-free incorporation of isolated Ni single-atoms within BEA zeolite for enhanced biomass hydrogenation [J]. Chinese Journal of Catalysis, 2025, 71(4): 308-318. |
[6] | Wenbing Yu, Xiaoqin Si, Mengjie Li, Zhenggang Liu, Rui Lu, Fang Lu. Catalytic conversion of biomass waste to methane without external hydrogen source [J]. Chinese Journal of Catalysis, 2025, 71(4): 246-255. |
[7] | Yitong Wang, Chaofeng Zhang, Cheng Cai, Caoxing Huang, Xiaojun Shen, Hongming Lou, Changwei Hu, Xuejun Pan, Feng Wang, Jun Xie. Advances in humins formation mechanism, inhibition strategies, and value-added applications [J]. Chinese Journal of Catalysis, 2025, 71(4): 25-53. |
[8] | Tan Ji Siang, Peipei Zhang, Binghui Chen, Wee-Jun Ong. Surface defect engineering of ZnCoS in ZnCdS with twin crystal structure for visible-light-driven H2 production coupled with benzyl alcohol oxidation [J]. Chinese Journal of Catalysis, 2025, 69(2): 84-98. |
[9] | Kun Lu, Qian Liu, Liyu Chen, Jilong Wang, Zhenxuan Yuan, Xiao Kong, Yunxing Bai, Jingang Jiang, Yejun Guan, Sicong Ma, Hao Xu, Weixin Huang, Zhipan Liu, Peng Wu. Origin of Brönsted acidity in germanosilicates from neighboring Ge-hydroxyl groups [J]. Chinese Journal of Catalysis, 2025, 77(10): 110-122. |
[10] | Lulu Sun, Shiyang Liu, Taifeng Liu, Dongqiang Lei, Nengchao Luo, Feng Wang. Engineering the coordination structure of Cu for enhanced photocatalytic production of C1 chemicals from glucose [J]. Chinese Journal of Catalysis, 2024, 63(8): 234-243. |
[11] | Lujie Liu, Ben Liu, Yoshinao Nakagawa, Sibao Liu, Liang Wang, Mizuho Yabushita, Keiichi Tomishige. Recent progress on bimetallic catalysts for the production of fuels and chemicals from biomass and plastics by hydrodeoxygenation [J]. Chinese Journal of Catalysis, 2024, 62(7): 1-31. |
[12] | Zhaohui Chen, Jun Deng, Yanmei Zheng, Wenjun Zhang, Lin Dong, Zupeng Chen. Modulation of ketyl radical reactivity to mediate the selective synthesis of coupling and carbonyl compounds [J]. Chinese Journal of Catalysis, 2024, 61(6): 135-143. |
[13] | Hongyu Qu, Wende Hu, Xiangcheng Li, Rui Xu, Xiao Han, Junjie Li, Yiqing Lu, Yingchun Ye, Chuanming Wang, Zhendong Wang, Weimin Yang. Efficient hydrogenolysis of 5-hydroxymethylfurfural to 2,5-dimethylfuran over Ni-C3N4 catalysts with ultra-low Ni loading [J]. Chinese Journal of Catalysis, 2024, 60(5): 253-261. |
[14] | Wenjing Bao, Chao Feng, Shuyan Ma, Dengwei Yan, Cong Zhang, Changle Yue, Chongze Wang, Hailing Guo, Jiqian Wang, Daofeng Sun, Yunqi Liu, Yukun Lu. Controlled construction of Co3S4@CoMoS yolk-shell sphere for efficient hydrodesulfurization promoted by hydrogen spillover effect [J]. Chinese Journal of Catalysis, 2024, 57(2): 154-170. |
[15] | Meiyun Zhang, Penghua Che, Hong Ma, Xin Liu, Shujing Zhang, Yang Luo, Jie Xu. Dual-metal synergy unlocking ROS-free catalysis for rapid aerobic oxidation of 5-hydroxymethylfurfural at room temperature [J]. Chinese Journal of Catalysis, 2024, 67(12): 144-156. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||