Chinese Journal of Catalysis ›› 2024, Vol. 62: 1-31.DOI: 10.1016/S1872-2067(24)60054-9
• Reviews • Next Articles
Lujie Liua, Ben Liub, Yoshinao Nakagawab,*(), Sibao Liuc, Liang Wanga, Mizuho Yabushitab, Keiichi Tomishigeb,d,*(
)
Received:
2024-04-16
Accepted:
2024-05-18
Online:
2024-07-18
Published:
2024-07-10
Contact:
E-mail: About author:
Yoshinao Nakagawa (Tohoku University) received his Ph.D. in 2005 from the Graduate School of Engineering, the University of Tokyo. After 4 years of postdoctoral research in the University of Tokyo, he joined the research group of Keiichi Tomishige at University of Tsukuba. He moved to Tohoku University and became an assistant professor in 2010. Since 2013, he has been an associate professor. His current research interests are selective catalytic oxidations and reductions, especially those of biomass-related compounds.† Present address: Department of Chemistry, Fudan University, Shanghai 200433, China.
Supported by:
Lujie Liu, Ben Liu, Yoshinao Nakagawa, Sibao Liu, Liang Wang, Mizuho Yabushita, Keiichi Tomishige. Recent progress on bimetallic catalysts for the production of fuels and chemicals from biomass and plastics by hydrodeoxygenation[J]. Chinese Journal of Catalysis, 2024, 62: 1-31.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(24)60054-9
Entry | Catalyst | P(H2)/MPa | Temp./K | Conv./% | Target product [selectivity/%] | Average rate gtarget product gNM‒1 h‒1 | Initial rate gtarget product gNM‒1 h‒1 | Note | Ref. |
---|---|---|---|---|---|---|---|---|---|
1 | Ir-ReOx/SiO2 (4 wt% Ir, Re/Ir = 1) + H2SO4 | 8 | 393 | 81 | 1,3-PrD [ | 5.7 | 18 | highest 1,3-PrD formation rate until 2018 | [ |
2 | Ir-ReOx/SiO2 (4 wt% Ir, Re/Ir = 1) + HZSM-5 | 8 | 393 | >99.9 | propane [ | 1.1 | — | total HDO | [ |
3 | Ir-ReOx/SiO2 (20 wt% Ir, Re/Ir = 0.34) | 8 | 393 | 69 | 1,3-PrD [ | 7.4 | 22 | improved activity by high surface concentration of active metals | [ |
4 | Ir-ReOx/TiO2 (4 wt% Ir, Re/Ir = 0.24) | 8 | 393 | 69 | 1,3-PrD [ | 17 | 52 | small surface area support; highest activity among Ir-based catalysts | [ |
5 | Ir-FeOx/TiO2 (5 wt% Ir, Fe/Ir=0.25) | 8 | 453 | >99.9 | 2-PrOH [ | 0.028 | — | first catalyst with high selectivity in 1,2-diols to 2-mono-ols; small surface area support | [ |
8 | 453 | 29 | 1,2-PrD [ | — | 0.4 | ||||
6 | Ir-Fe-Mo/BN (20 wt% Ir, Fe/Ir = 0.13, Mo/Ir = 0.08) | 8 | 453 | 32 | 1,2-PrD [ | — | 2.5 | highly efficient-trimetallic alloy catalyst for 1,2-diols to 2-mono-ols; small surface area support | [ |
7 | Pt/WOx/AlOOH (1.8 wt% Pt, 8 wt% W) | 5 | 453 | 100 | 1,3-PrD [ | 2.3 | — | highest 1,3-PrD yield until 2022 | [ |
8 | Au-Pt/WO3/Al2O3 (0.1 wt% Au, 2 wt% Pt, 7.5 wt% W) | 5 | 453 | 78 | 1,3-PrD [ | 1.7 | — | activity increase by Au addition (ca. two-fold increase) | [ |
9 | Pt/meso-WOx (2 wt% Pt) | 1 | 413 | 60 | 1,3-PrD [ | 0.7 | — | single/pseudo-single atom Pt catalyst under low H2 pressure of 1 MPa | [ |
1 | 433 | 16 | 1,3-PrD [ | — | 3.8 | ||||
10 | Pt-AlOx/WO3 (0.4 wt% Pt, 0.2 wt% Al) | 3 | 453 | 90 | 1,3-PrD [ | 7.5 | — | most effective among WOx-supported ones | [ |
11 | Pt-WOx/t-ZrO2 (1.9 wt% Pt, ~7.6 wt% W) | 8 | 413 | 76 | 1,3-PrD [ | 5.1 | — | most effective among ZrO2-supported ones | [ |
12 | Pt/W-SBA-15 (3 wt% Pt, W/Si=1/640) | 4 | 423 | 87 | 1,3-PrD [ | 1.7 | — | first report of effective Pt-W catalyst using silica-based support and small W amount | [ |
13 | Pt/WOx/T-Ta2O5 (0.68 wt% Pt, 0.51 wt% W) | 5 | 433 | 87 | 1,3-PrD [ | 19 | — | highest 1,3-PrD formation rate | [ |
14 | Pt/Nb14W3O44 (3 wt% Pt) | 8 | 423 | 100 | 1,3-PrD [ | 17 | 30 | highest 1,3-PrD yield & good activity | [ |
15 | Pt-WOx/SiO2 (4 wt% Pt, W/Pt=0.25) | 8 | 413 | 100 | 1,3-PrD [ | 2.5 | 6.5 | highest 1,3-PrD yield among catalysts using conventional stable support | [ |
7 | 453 | 100 | 1-PrOH [ | 3.8 | — | overhydrogenolysis of 1-PrOH does not occur | [ | ||
16 | Ru/C (5 wt% Ru) + Amberlyst 15 | 8 | 393 | 79 | 1,2-PrD [ | 0.13 | — | typical system of Ru + acid | [ |
17 | Ru-ReOx/SiO2 (3.2 wt% Ru, 3.6 wt% Re) | 8 | 433 | 52 | 1,2-PrD [ | 20 | — | activity increase and suppression of C-C dissociation by Re; similar catalyst used for 1,2-PrD to mixture of PrOHs | [ |
18 | Ru-MoOx/CNTs (2 wt% Ru, 5 wt% Mo) | 4 | 473 | 47 | 1,2-PrD [ | 39 | — | suppression of C-C dissociation by Mo | [ |
19 | Ru-WOx/C (5 wt% Ru, 2 wt% W) | 5 | 423 | 73 | 1,2-PrD [ | 3.2 | — | very high suppression of C-C dissociation by W | [ |
20 | Rh-ReOx/SiO2 (4 wt% Rh, Re/Rh = 0.5) | 8 | 393 | 100 | 1-PrOH [ | 11 | — | high activity at low temperature; low regioselectivity in diol formation | [ |
Table 1 Selected catalyst systems for glycerol hydrogenolysis over noble metal catalysts.
Entry | Catalyst | P(H2)/MPa | Temp./K | Conv./% | Target product [selectivity/%] | Average rate gtarget product gNM‒1 h‒1 | Initial rate gtarget product gNM‒1 h‒1 | Note | Ref. |
---|---|---|---|---|---|---|---|---|---|
1 | Ir-ReOx/SiO2 (4 wt% Ir, Re/Ir = 1) + H2SO4 | 8 | 393 | 81 | 1,3-PrD [ | 5.7 | 18 | highest 1,3-PrD formation rate until 2018 | [ |
2 | Ir-ReOx/SiO2 (4 wt% Ir, Re/Ir = 1) + HZSM-5 | 8 | 393 | >99.9 | propane [ | 1.1 | — | total HDO | [ |
3 | Ir-ReOx/SiO2 (20 wt% Ir, Re/Ir = 0.34) | 8 | 393 | 69 | 1,3-PrD [ | 7.4 | 22 | improved activity by high surface concentration of active metals | [ |
4 | Ir-ReOx/TiO2 (4 wt% Ir, Re/Ir = 0.24) | 8 | 393 | 69 | 1,3-PrD [ | 17 | 52 | small surface area support; highest activity among Ir-based catalysts | [ |
5 | Ir-FeOx/TiO2 (5 wt% Ir, Fe/Ir=0.25) | 8 | 453 | >99.9 | 2-PrOH [ | 0.028 | — | first catalyst with high selectivity in 1,2-diols to 2-mono-ols; small surface area support | [ |
8 | 453 | 29 | 1,2-PrD [ | — | 0.4 | ||||
6 | Ir-Fe-Mo/BN (20 wt% Ir, Fe/Ir = 0.13, Mo/Ir = 0.08) | 8 | 453 | 32 | 1,2-PrD [ | — | 2.5 | highly efficient-trimetallic alloy catalyst for 1,2-diols to 2-mono-ols; small surface area support | [ |
7 | Pt/WOx/AlOOH (1.8 wt% Pt, 8 wt% W) | 5 | 453 | 100 | 1,3-PrD [ | 2.3 | — | highest 1,3-PrD yield until 2022 | [ |
8 | Au-Pt/WO3/Al2O3 (0.1 wt% Au, 2 wt% Pt, 7.5 wt% W) | 5 | 453 | 78 | 1,3-PrD [ | 1.7 | — | activity increase by Au addition (ca. two-fold increase) | [ |
9 | Pt/meso-WOx (2 wt% Pt) | 1 | 413 | 60 | 1,3-PrD [ | 0.7 | — | single/pseudo-single atom Pt catalyst under low H2 pressure of 1 MPa | [ |
1 | 433 | 16 | 1,3-PrD [ | — | 3.8 | ||||
10 | Pt-AlOx/WO3 (0.4 wt% Pt, 0.2 wt% Al) | 3 | 453 | 90 | 1,3-PrD [ | 7.5 | — | most effective among WOx-supported ones | [ |
11 | Pt-WOx/t-ZrO2 (1.9 wt% Pt, ~7.6 wt% W) | 8 | 413 | 76 | 1,3-PrD [ | 5.1 | — | most effective among ZrO2-supported ones | [ |
12 | Pt/W-SBA-15 (3 wt% Pt, W/Si=1/640) | 4 | 423 | 87 | 1,3-PrD [ | 1.7 | — | first report of effective Pt-W catalyst using silica-based support and small W amount | [ |
13 | Pt/WOx/T-Ta2O5 (0.68 wt% Pt, 0.51 wt% W) | 5 | 433 | 87 | 1,3-PrD [ | 19 | — | highest 1,3-PrD formation rate | [ |
14 | Pt/Nb14W3O44 (3 wt% Pt) | 8 | 423 | 100 | 1,3-PrD [ | 17 | 30 | highest 1,3-PrD yield & good activity | [ |
15 | Pt-WOx/SiO2 (4 wt% Pt, W/Pt=0.25) | 8 | 413 | 100 | 1,3-PrD [ | 2.5 | 6.5 | highest 1,3-PrD yield among catalysts using conventional stable support | [ |
7 | 453 | 100 | 1-PrOH [ | 3.8 | — | overhydrogenolysis of 1-PrOH does not occur | [ | ||
16 | Ru/C (5 wt% Ru) + Amberlyst 15 | 8 | 393 | 79 | 1,2-PrD [ | 0.13 | — | typical system of Ru + acid | [ |
17 | Ru-ReOx/SiO2 (3.2 wt% Ru, 3.6 wt% Re) | 8 | 433 | 52 | 1,2-PrD [ | 20 | — | activity increase and suppression of C-C dissociation by Re; similar catalyst used for 1,2-PrD to mixture of PrOHs | [ |
18 | Ru-MoOx/CNTs (2 wt% Ru, 5 wt% Mo) | 4 | 473 | 47 | 1,2-PrD [ | 39 | — | suppression of C-C dissociation by Mo | [ |
19 | Ru-WOx/C (5 wt% Ru, 2 wt% W) | 5 | 423 | 73 | 1,2-PrD [ | 3.2 | — | very high suppression of C-C dissociation by W | [ |
20 | Rh-ReOx/SiO2 (4 wt% Rh, Re/Rh = 0.5) | 8 | 393 | 100 | 1-PrOH [ | 11 | — | high activity at low temperature; low regioselectivity in diol formation | [ |
Fig. 4. Catalytic performance of the Ir-ReOx/SiO2 catalyst with nominal Ir loading amount varied from 4 wt% to 40 wt%. The Re/Ir ratio of the impregnated precursor amount was 1 (nominal Re/Ir ratio). Reaction conditions: 4 g of glycerol, 2 g of H2O, catalyst amount varied to keep total nominal Ir amount of 31 μmol, 8 MPa, 393 K, 4 h. Reprinted with permission from Ref. [33]. Copyright (2019) Elsevier.
Fig. 5. Glycerol hydrogenolysis over Ir-ReOx catalysts (4 wt% Ir, Re/Ir = 0.25, nominal) on various supports (A), and effect of Ir loading amount (Re/Ir = 0.25, nominal) on glycerol hydrogenolysis (B). Reaction conditions: catalyst amount varied to keep total nominal Ir amount of 31 μmol, 4 g of glycerol, 2 g of H2O, 8 MPa, 393 K, 8 h for (A) or 4 h for (B). Reprinted with permission from Ref. [50]. Copyright 2019, American Chemical Society.
Catalyst (reduction method, reduction temperature/K) | Ir amount /wt% | Re/Ir ratio | DCO/% | dTEM/nm | Coverage a/% | Valence of Ir | Valence of Re | |||
---|---|---|---|---|---|---|---|---|---|---|
XPS | XANES | XPS | XANES | |||||||
Ir-ReOx/SiO2 (G,b 473) | 4 | 0.83d | 16 | 2.0 | 70 | 0 | 0 | 0‒+4 | +2.8‒3.1 | |
Ir-ReOx/SiO2 (G,b 473) | 20 | 0.34d | 18 | — | 47 | — | 0 | — | +2.7 | |
(L,c 473) | 18 | 3.2 | 54 | — | 0 | — | +1.1 | |||
Ir-ReOx/TiO2 (G,b 573) | 4 | 0.30d | 34 | 1.8 | 62 | 0.7 | 0.5 | 3.2 | +2.7 | |
0.24e | 33 | 1.9 | 62 | 0.7 | 0.5 | 3.2 | +3.1 |
Table 2 Summary of characterization results of Ir-ReOx based catalysts after various types of reduction treatment [33,50,66].
Catalyst (reduction method, reduction temperature/K) | Ir amount /wt% | Re/Ir ratio | DCO/% | dTEM/nm | Coverage a/% | Valence of Ir | Valence of Re | |||
---|---|---|---|---|---|---|---|---|---|---|
XPS | XANES | XPS | XANES | |||||||
Ir-ReOx/SiO2 (G,b 473) | 4 | 0.83d | 16 | 2.0 | 70 | 0 | 0 | 0‒+4 | +2.8‒3.1 | |
Ir-ReOx/SiO2 (G,b 473) | 20 | 0.34d | 18 | — | 47 | — | 0 | — | +2.7 | |
(L,c 473) | 18 | 3.2 | 54 | — | 0 | — | +1.1 | |||
Ir-ReOx/TiO2 (G,b 573) | 4 | 0.30d | 34 | 1.8 | 62 | 0.7 | 0.5 | 3.2 | +2.7 | |
0.24e | 33 | 1.9 | 62 | 0.7 | 0.5 | 3.2 | +3.1 |
Catalyst | Ir amount /wt% | Re/Ir ratio | Shells | CN | R/nm |
---|---|---|---|---|---|
Ir-ReOx/SiO2 a | 4 | 0.83 | Re-O | 1.4 | 0.202 |
Re-Ir (or -Re) | 6.2 | 0.268 | |||
Ir-ReOx/SiO2 b | 20 | 0.34 | Re-O | 0.8 | 0.214 |
Re-Ir (or -Re) | 8.6 | 0.268 | |||
Ir-ReOx/TiO2 c | 4 | 0.24 | Re-O | 0.6 | 0.211 |
Re-Ir (or -Re) | 8.8 | 0.264 |
Table 3 Curve fitting results of Re L3-edge EXAFS spectra of Ir-ReOx catalysts after glycerol hydrogenolysis [33,50,66].
Catalyst | Ir amount /wt% | Re/Ir ratio | Shells | CN | R/nm |
---|---|---|---|---|---|
Ir-ReOx/SiO2 a | 4 | 0.83 | Re-O | 1.4 | 0.202 |
Re-Ir (or -Re) | 6.2 | 0.268 | |||
Ir-ReOx/SiO2 b | 20 | 0.34 | Re-O | 0.8 | 0.214 |
Re-Ir (or -Re) | 8.6 | 0.268 | |||
Ir-ReOx/TiO2 c | 4 | 0.24 | Re-O | 0.6 | 0.211 |
Re-Ir (or -Re) | 8.8 | 0.264 |
Fig. 6. TEM images and model structures of Ir-ReOx catalysts. Reprinted with permission from Refs. [33,50,66]. Copyright 2012, American Chemical Society; Copyright 2019, Elsevier; Copyright 2019, American Chemical Society.
Catalyst | Re/Ir ratio | Condition | Reaction order |
---|---|---|---|
4 wt%-Ir Ir-ReOx/SiO2 | 0.83 | 20 wt%-67 wt% glycerol aq., 8 MPa H2, 393 K | ~0.0 (glycerol) |
67 wt% glycerol aq., 2-8 MPa H2, 393 K | ~1.0 (H2) | ||
20 wt%-Ir Ir-ReOx/SiO2 | 0.34 | 20 wt%-67 wt% glycerol aq., 8 MPa H2, 393 K | 0.03 (glycerol) |
67 wt% glycerol aq., 2-8 MPa H2, 393 K | 1.1 (H2) | ||
4 wt%-Ir Ir-ReOx/TiO2 | 0.24 | 40 wt%-80 wt% glycerol aq., 8 MPa H2, 393 K | 0.2 (glycerol) |
67 wt% glycerol aq., 2-8 MPa H2, 393 K | 0.9 (H2) |
Table 4 Reaction orders in glycerol hydrogenolysis over Ir-ReOx-based catalysts [32,33,50].
Catalyst | Re/Ir ratio | Condition | Reaction order |
---|---|---|---|
4 wt%-Ir Ir-ReOx/SiO2 | 0.83 | 20 wt%-67 wt% glycerol aq., 8 MPa H2, 393 K | ~0.0 (glycerol) |
67 wt% glycerol aq., 2-8 MPa H2, 393 K | ~1.0 (H2) | ||
20 wt%-Ir Ir-ReOx/SiO2 | 0.34 | 20 wt%-67 wt% glycerol aq., 8 MPa H2, 393 K | 0.03 (glycerol) |
67 wt% glycerol aq., 2-8 MPa H2, 393 K | 1.1 (H2) | ||
4 wt%-Ir Ir-ReOx/TiO2 | 0.24 | 40 wt%-80 wt% glycerol aq., 8 MPa H2, 393 K | 0.2 (glycerol) |
67 wt% glycerol aq., 2-8 MPa H2, 393 K | 0.9 (H2) |
Fig. 7. Reaction mechanism of glycerol hydrogenolysis to 1,3-PrD over Ir-ReOx catalysts via direct concerted hydride attack mechanism [48,67,72,73]. Reprinted with permission from Ref. [41]. Copyright 2013, Elsevier.
Fig. 8. Reaction mechanisms of glycerol hydrogenolysis to 1,3-PrD over Ir-ReOx catalysts via direct dehydroxylation and protonation-dehydration mechanism [75] (A), and dehydration-hydrogenation mechanism on the Ir-Re alloy surface [76] (B). Reprinted with permission from Refs. [75,76]. Copyright 2019, American Chemical Society, and Copyright 2022, Royal Society of Chemistry, respectively.
Catalyst | Substrate | t/h | Conv./% | C-based main products (selectivity/%) |
---|---|---|---|---|
Irc-r-FeOx/TiO2 a | 1,2-PrD | 24 | 14.5 | 2-PrOH (56.0), 1-PrOH (24.6) |
72 b | 97.1 | 2-PrOH (54.2), 1-PrOH (22.8) | ||
Glycerol | 24 | 29.2 | 1,2-PrD (79.4), 2-PrOH (1.5), 1-PrOH (8.6) | |
42 b | 93.7 | 1,2-PrD (66.7), 2-PrOH (4.7), 1-PrOH (13.1) | ||
144 | >99.9 | 2-PrOH (30.4), 1-PrOH (32.1) | ||
Ir-FeOx/BN | 1,2-PrD | 24 | 11.5 | 2-PrOH (62.6), 1-PrOH (17.0) |
Glycerol | 24 | 28.5 | 1,2-PrD (83.9), 2-PrOH (1.0), 1-PrOH (8.6) |
Table 5 Hydrogenolysis of glycerol and 1,2-PrD over TiO2- and BN-supported Ir-FeOx catalysts (5 wt% Ir, Fe/Ir = 0.25) [36,37].
Catalyst | Substrate | t/h | Conv./% | C-based main products (selectivity/%) |
---|---|---|---|---|
Irc-r-FeOx/TiO2 a | 1,2-PrD | 24 | 14.5 | 2-PrOH (56.0), 1-PrOH (24.6) |
72 b | 97.1 | 2-PrOH (54.2), 1-PrOH (22.8) | ||
Glycerol | 24 | 29.2 | 1,2-PrD (79.4), 2-PrOH (1.5), 1-PrOH (8.6) | |
42 b | 93.7 | 1,2-PrD (66.7), 2-PrOH (4.7), 1-PrOH (13.1) | ||
144 | >99.9 | 2-PrOH (30.4), 1-PrOH (32.1) | ||
Ir-FeOx/BN | 1,2-PrD | 24 | 11.5 | 2-PrOH (62.6), 1-PrOH (17.0) |
Glycerol | 24 | 28.5 | 1,2-PrD (83.9), 2-PrOH (1.0), 1-PrOH (8.6) |
Catalyst | Fe/Ir ratio | Particle size/nm | Valence of Ir (XANES) | Valence of Fe (XANES) Fe3+/Fe2+/Fe0 | Shells | CN | R/nm | |
---|---|---|---|---|---|---|---|---|
dXRD | dTEM | |||||||
Irc-r-FeOx/TiO2 | 0.25 | 3.4 | 3.4 | 0.7 | 9/26/65 | Fe-O | 1.4 | 0.197 |
Fe-Ir | 4.8 | 0.263 | ||||||
1 | 3.6 | 3.4 | 1.9 | 21/54/25 | Fe-O | 2.3 | 0.199 | |
Fe-Ir | 2.5 | 0.268 | ||||||
Fe-(O)-Fe | 1.4 | 0.287 | ||||||
Ir-FeOx/BN | 0.25 | 2.4 | 1.7 | 0.6 | 1/23/76 | Fe-O | 0.4 | 0.201 |
Fe-Ir | 5.1 | 0.262 |
Table 6 Summary of characterization results of Ir-FeOx (5 wt% Ir) catalysts after the reaction [36,37].
Catalyst | Fe/Ir ratio | Particle size/nm | Valence of Ir (XANES) | Valence of Fe (XANES) Fe3+/Fe2+/Fe0 | Shells | CN | R/nm | |
---|---|---|---|---|---|---|---|---|
dXRD | dTEM | |||||||
Irc-r-FeOx/TiO2 | 0.25 | 3.4 | 3.4 | 0.7 | 9/26/65 | Fe-O | 1.4 | 0.197 |
Fe-Ir | 4.8 | 0.263 | ||||||
1 | 3.6 | 3.4 | 1.9 | 21/54/25 | Fe-O | 2.3 | 0.199 | |
Fe-Ir | 2.5 | 0.268 | ||||||
Fe-(O)-Fe | 1.4 | 0.287 | ||||||
Ir-FeOx/BN | 0.25 | 2.4 | 1.7 | 0.6 | 1/23/76 | Fe-O | 0.4 | 0.201 |
Fe-Ir | 5.1 | 0.262 |
Fig. 10. TEM images and EDX analysis, and model structures of Irc-r-FeOx/TiO2 (A) [36], and Ir-FeOx/BN (B) during the reaction [37], 5 wt% Ir, Fe/Ir = 0.25 for both catalysts. Reprinted with permission from Refs. [36,37]. Copyright 2022, American Chemical Society, and Copyright 2023, American Chemical Society, respectively.
Fig. 12. Model structures of Pt/WOx/T-Ta2O5 (0.68 wt% Pt, 0.51 wt% W) (A) [58] and Pt/Nb14W3O44 (3 wt% Pt) (B). Reprinted with permission from Ref. [59]. Copyright 2023, John Wiley and Sons. Note: Pt-WOx interaction is enhanced by atomically-dispersed Ptδ+ supported on WOx-modified tantalum oxide with high surface concentration (A), and unique crystallographic shear structure of W-O-Nb (B).
W/Pt ratio | Shells | CN | R/nm | Conv. a /% | Selectivity to 1,3-PrD a/% |
---|---|---|---|---|---|
0.063 | W-Pt (or -W) | 5.5 | 0.269 | <2 | — |
W-O | 1.7 | 0.193 | |||
W=O | 1.4 | 0.173 | |||
0.13 | W-Pt (or -W) | 3.6 | 0.268 | 9 | 56 |
W-O | 1.3 | 0.193 | |||
W=O | 1.5 | 0.173 | |||
0.25 | W-Pt (or -W) | 2.8 | 0.264 | 56 | 65 |
W-O | 1.6 | 0.195 | |||
W=O | 1.3 | 0.175 | |||
0.5 | W-Pt (or -W) W-O W=O | 2.7 | 0.263 | 8 | 56 |
2.3 | 0.198 | ||||
1.4 | 0.179 | ||||
1 | W-Pt (or -W) | 2.4 | 0.264 | <2 | — |
W-O | 2.6 | 0.198 | |||
W=O | 1.4 | 0.178 |
Table 7 Curve fitting results of W L3-edge EXAFS spectra of Pt-WOx/SiO2 (4 wt% Pt) catalysts after C-O hydrogenolysis reaction [89].
W/Pt ratio | Shells | CN | R/nm | Conv. a /% | Selectivity to 1,3-PrD a/% |
---|---|---|---|---|---|
0.063 | W-Pt (or -W) | 5.5 | 0.269 | <2 | — |
W-O | 1.7 | 0.193 | |||
W=O | 1.4 | 0.173 | |||
0.13 | W-Pt (or -W) | 3.6 | 0.268 | 9 | 56 |
W-O | 1.3 | 0.193 | |||
W=O | 1.5 | 0.173 | |||
0.25 | W-Pt (or -W) | 2.8 | 0.264 | 56 | 65 |
W-O | 1.6 | 0.195 | |||
W=O | 1.3 | 0.175 | |||
0.5 | W-Pt (or -W) W-O W=O | 2.7 | 0.263 | 8 | 56 |
2.3 | 0.198 | ||||
1.4 | 0.179 | ||||
1 | W-Pt (or -W) | 2.4 | 0.264 | <2 | — |
W-O | 2.6 | 0.198 | |||
W=O | 1.4 | 0.178 |
Fig. 13. Proposed structures of Pt-WOx/SiO2 catalysts (4 wt% Pt) tuned by altering W amount. Reprinted with permission from Ref. [89] with modification of showing the active site. Copyright 2021, Elsevier.
Gas/solvent (reaction system) | α-C ![]() | β-C ![]() | ||
---|---|---|---|---|
-CH2- | -CHD- | -CH2- | -CHD- | |
D2/H2O (A) | 100% | n.d. | 100% | n.d. |
H2/D2O (B) | 0% | 100% | 19% | 81% |
Table 8 Deuterium incorporation of 1,2-pentanediol (1,2-PeD) HDO over Pt-WOx/TiO2 catalyst [92].
Gas/solvent (reaction system) | α-C ![]() | β-C ![]() | ||
---|---|---|---|---|
-CH2- | -CHD- | -CH2- | -CHD- | |
D2/H2O (A) | 100% | n.d. | 100% | n.d. |
H2/D2O (B) | 0% | 100% | 19% | 81% |
Re/Ru ratio | Shells | CN | R/nm | Average valence of Re (XANES) | ReOx species |
---|---|---|---|---|---|
0.5 | Re-Ru | 2.6 | 0.267 | +1.0 | ReOx clusters (major), Re metal particles (minor) |
Re-Re | 2.1 | 0.273 | |||
Re-O | 1.7 | 0.204 | |||
1 | Re-Ru | 1.7 | 0.265 | +1.8 | ReOx clusters (minor), Re metal particles (major) |
Re-Re | 8.0 | 0.273 | |||
Re-O | 1.4 | 0.199 |
Table 9 Curve fitting results of Re L3-edge EXAFS spectra of Ru-ReOx/SiO2 (5 wt% Ru) catalyst during the reaction [98].
Re/Ru ratio | Shells | CN | R/nm | Average valence of Re (XANES) | ReOx species |
---|---|---|---|---|---|
0.5 | Re-Ru | 2.6 | 0.267 | +1.0 | ReOx clusters (major), Re metal particles (minor) |
Re-Re | 2.1 | 0.273 | |||
Re-O | 1.7 | 0.204 | |||
1 | Re-Ru | 1.7 | 0.265 | +1.8 | ReOx clusters (minor), Re metal particles (major) |
Re-Re | 8.0 | 0.273 | |||
Re-O | 1.4 | 0.199 |
Fig. 15. Model structures (A) and STEM images and EDX analysis (B) of Ru-ReOx/SiO2 during the reaction [15,98]. Reprinted with permission from Refs. [15,98]. Copyright 2022, American Chemical Society, and Copyright 2023, John Wiley and Sons, respectively.
Fig. 16. Proposed reaction mechanism of 1,2-PrD hydrogenolysis to propanols over Ru-ReOx/SiO2. Reprinted with permission from Ref. [98]. Copyright 2022, American Chemical Society.
Fig. 17. Reaction mechanism of glycerol hydrogenolysis to 1,2-PrD over Ru-WOx/C. Reprinted with permission from Ref. [65]. Copyright 2022, Royal Society of Chemistry.
Substrate | Catalyst | Temp./K | P(H2) /MPa | Conv. /% | Selectivity (main product)/% | Average rate mmoltarget product gcatal.‒1 h‒1 | Ref. |
---|---|---|---|---|---|---|---|
Erythritol | Ir-ReOx/SiO2 (4 wt% Ir, Re/Ir=1) | 373 | 8 | 47 | 25 (1,4-BuD) | 0.26 | [ |
Ir-ReOx/SiO2 (4 wt% Ir, Re/Ir=1) | 373 | 8 | 97 | 35 (1-BuOH) | 0.19 | ||
Ir-ReOx/TiO2 (4 wt% Ir, Re/Ir=0.25) | 373 | 8 | 36 | 33 (1,4-BuD) | 0.81 | ||
Pt-WOx/SiO2 (4 wt% Pt, W/Pt=0.25) | 413 | 8 | 99 | 54 (1,4-BuD) | 0.22 | [ | |
Pt-WOx/SiO2 (4 wt% Pt, W/Pt=0.25) | 453 | 7 | 100 | 57 (1-BuOH) | 0.39 | ||
Pt/W/Ti-SBA-15 (4 wt% Pt, W/Pt=0.25) | 463 | 5 | 94 | 35 (1,4-BuD) | 0.27 | [ | |
Irc-r-FeOx/TiO2 (5 wt% Ir, Fe/Ir=0.25) | 453 | 8 | 100 | 30 (2,3-BuD) | 0.03 | [ | |
Ir-FeOx/BN (5 wt% Ir, Fe/Ir=0.25) | 453 | 8 | 100 | 32 (2,3-BuD) | 0.03 | [ | |
Ir-Fe-Mo/BN (20 wt% Ir, Fe/Ir=0.13, Mo/Ir=0.08) | 453 | 8 | >99 | 36 (2,3-BuD) | 1.0 | [ | |
Ru-ReOx/TiO2 (P25, 2 wt% Ru, Re/Ru=1) | 473 | 2.5 | 100 | 55.0 (diols mixture) | 1.3 | [ | |
Rh-ReOx/ZrO2 (4 wt% Rh, Re/Rh=0.5) | 473 | 12 | 80 | 29 (diols mixture) | 1.5 | [ | |
Ru-MoOx/Mo2C (2 wt% Ru, Mo/Ru=1) | 513 | 4 | 100 | 38 (BuOHs mixture) | 0.12 | [ | |
1,4-AHERY | Pt-WOx/SiO2 (4 wt% Pt, W/Pt=0.25) | 413 | 8 | 100 | 54 (1,3-BuD) | 0.16 | [ |
Rh-MoOx/SiO2 (4 wt% Rh, Mo/Rh=0.13) | 393 | 8 | 100 | 51 (2-BuOH) | 1.0 | [ |
Table 10 Bimetallic catalysts for hydrogenolysis of erythritol and 1,4-anhydroerythritol (1,4-AHERY).
Substrate | Catalyst | Temp./K | P(H2) /MPa | Conv. /% | Selectivity (main product)/% | Average rate mmoltarget product gcatal.‒1 h‒1 | Ref. |
---|---|---|---|---|---|---|---|
Erythritol | Ir-ReOx/SiO2 (4 wt% Ir, Re/Ir=1) | 373 | 8 | 47 | 25 (1,4-BuD) | 0.26 | [ |
Ir-ReOx/SiO2 (4 wt% Ir, Re/Ir=1) | 373 | 8 | 97 | 35 (1-BuOH) | 0.19 | ||
Ir-ReOx/TiO2 (4 wt% Ir, Re/Ir=0.25) | 373 | 8 | 36 | 33 (1,4-BuD) | 0.81 | ||
Pt-WOx/SiO2 (4 wt% Pt, W/Pt=0.25) | 413 | 8 | 99 | 54 (1,4-BuD) | 0.22 | [ | |
Pt-WOx/SiO2 (4 wt% Pt, W/Pt=0.25) | 453 | 7 | 100 | 57 (1-BuOH) | 0.39 | ||
Pt/W/Ti-SBA-15 (4 wt% Pt, W/Pt=0.25) | 463 | 5 | 94 | 35 (1,4-BuD) | 0.27 | [ | |
Irc-r-FeOx/TiO2 (5 wt% Ir, Fe/Ir=0.25) | 453 | 8 | 100 | 30 (2,3-BuD) | 0.03 | [ | |
Ir-FeOx/BN (5 wt% Ir, Fe/Ir=0.25) | 453 | 8 | 100 | 32 (2,3-BuD) | 0.03 | [ | |
Ir-Fe-Mo/BN (20 wt% Ir, Fe/Ir=0.13, Mo/Ir=0.08) | 453 | 8 | >99 | 36 (2,3-BuD) | 1.0 | [ | |
Ru-ReOx/TiO2 (P25, 2 wt% Ru, Re/Ru=1) | 473 | 2.5 | 100 | 55.0 (diols mixture) | 1.3 | [ | |
Rh-ReOx/ZrO2 (4 wt% Rh, Re/Rh=0.5) | 473 | 12 | 80 | 29 (diols mixture) | 1.5 | [ | |
Ru-MoOx/Mo2C (2 wt% Ru, Mo/Ru=1) | 513 | 4 | 100 | 38 (BuOHs mixture) | 0.12 | [ | |
1,4-AHERY | Pt-WOx/SiO2 (4 wt% Pt, W/Pt=0.25) | 413 | 8 | 100 | 54 (1,3-BuD) | 0.16 | [ |
Rh-MoOx/SiO2 (4 wt% Rh, Mo/Rh=0.13) | 393 | 8 | 100 | 51 (2-BuOH) | 1.0 | [ |
Fig. 18. Scheme for HDO of erythritol and 1,4-anhydroerythritol over bimetallic catalysts. Reprinted with permission from Ref. [113]. Copyright 2020, John Wiley and Sons.
Substrate | Catalyst | Temp. /K | P(H2) /MPa | Additive /solvent | Conv. /% | Yield (main product) /%-C | Ref. |
---|---|---|---|---|---|---|---|
Xylitol | Ir-ReOx/SiO2 (4 wt% Ir, Re/Ir = 1) | 413 | 8 | HZSM-5/n-dodecane+ water | 100 | 18 (1-PeOH), 19 (2-/3-PeOHs) | [ |
Pt-WOx/SiO2 (4 wt% Pt, W/Pt = 0.25) | 453 | 7 | None/water | 100 | 30 (1-PeOH), 9 (2-PeOH), 20 (3-PeOH) | [ | |
Ru-MoOx/Mo2C (2 wt% Ru, Mo/Ru = 1) | 513 | 4 | None/water | 100 | 28 (1-PeOH), 7 (2-PeOH), 1 (3-PeOH) | [ | |
Ru/MnOx/C | 473 | 6 | None/water | 80 | 22 (glycols), 10 (glycerol) | [ | |
Xylan | Ir-ReOx/SiO2 (4 wt% Ir, Re/Ir = 2) | 413 | 6 | H2SO4/n-dodecane+ water | 97 | <1 (1-PeOH), 14 (2-PeOH), 18 (3-PeOH) | [ |
Table 11 Bimetallic catalysts for hydrogenolysis of xylitol and xylan to alcohols.
Substrate | Catalyst | Temp. /K | P(H2) /MPa | Additive /solvent | Conv. /% | Yield (main product) /%-C | Ref. |
---|---|---|---|---|---|---|---|
Xylitol | Ir-ReOx/SiO2 (4 wt% Ir, Re/Ir = 1) | 413 | 8 | HZSM-5/n-dodecane+ water | 100 | 18 (1-PeOH), 19 (2-/3-PeOHs) | [ |
Pt-WOx/SiO2 (4 wt% Pt, W/Pt = 0.25) | 453 | 7 | None/water | 100 | 30 (1-PeOH), 9 (2-PeOH), 20 (3-PeOH) | [ | |
Ru-MoOx/Mo2C (2 wt% Ru, Mo/Ru = 1) | 513 | 4 | None/water | 100 | 28 (1-PeOH), 7 (2-PeOH), 1 (3-PeOH) | [ | |
Ru/MnOx/C | 473 | 6 | None/water | 80 | 22 (glycols), 10 (glycerol) | [ | |
Xylan | Ir-ReOx/SiO2 (4 wt% Ir, Re/Ir = 2) | 413 | 6 | H2SO4/n-dodecane+ water | 97 | <1 (1-PeOH), 14 (2-PeOH), 18 (3-PeOH) | [ |
Substrate | Catalyst | Temp. /K | P(H2) /MPa | Additive /solvent | Yield (main product)/%-C | Ref. |
---|---|---|---|---|---|---|
Sorbitol | Ir-ReOx/SiO2 (4 wt% Ir, Re/Ir = 1) | 413 | 8 | None/n-dodecane+water | 36 (3-HxOH), 8 (2-HxOH), <1(1-HxOH) | [ |
Pt-WOx/SiO2 (4 wt% Pt, W/Pt = 0.25) | 453 | 8 | None/water | 36 (3-HxOH), 12 (2-HxOH), 12 (1-HxOH) | [ | |
Ru-MoOx/CMK-3 (2 wt% Ru, Mo/Ru = 1) | 523 | 4 | None/water | 7 (HxOHs), 17 (1,6-HxD) | [ | |
Ru-WOx/CNT (4 wt% Ru, W/Ru = 0.25) | 478 | 5 | Ca(OH)2/water | 35 (1,2-PrD), 26 (EG) | [ | |
Cellulose | Ir-ReOx/SiO2 (4 wt% Ir, Re/Ir = 2) | 413 | 8 | H2SO4/n-decane+water | 40 (3-HxOH), 18 (2-HxOH), 2 (1-HxOH) | [ |
Ru-WOx/Biochar (5 wt% Ru, W/Ru = 4.4) | 493 | 3 | None/water | 69 (EG) | [ | |
Ru-WOx/HZSM-5 (5 wt% Ru, W/Ru = 2.8) | 508 | 3 | None/water | 77 (Ethanol) | [ | |
Pt/WOx (2 wt% Pt) | 518 | 6 | None/water | 30 (Ethanol) | [ | |
MoOx/Pt/WOx (2 wt% Pt, Mo/Pt = 0.1) | 518 | 6 | None/water | 43 (Ethanol) |
Table 12 Bimetallic catalysts for hydrogenolysis of sorbitol and cellulose to alcohols.
Substrate | Catalyst | Temp. /K | P(H2) /MPa | Additive /solvent | Yield (main product)/%-C | Ref. |
---|---|---|---|---|---|---|
Sorbitol | Ir-ReOx/SiO2 (4 wt% Ir, Re/Ir = 1) | 413 | 8 | None/n-dodecane+water | 36 (3-HxOH), 8 (2-HxOH), <1(1-HxOH) | [ |
Pt-WOx/SiO2 (4 wt% Pt, W/Pt = 0.25) | 453 | 8 | None/water | 36 (3-HxOH), 12 (2-HxOH), 12 (1-HxOH) | [ | |
Ru-MoOx/CMK-3 (2 wt% Ru, Mo/Ru = 1) | 523 | 4 | None/water | 7 (HxOHs), 17 (1,6-HxD) | [ | |
Ru-WOx/CNT (4 wt% Ru, W/Ru = 0.25) | 478 | 5 | Ca(OH)2/water | 35 (1,2-PrD), 26 (EG) | [ | |
Cellulose | Ir-ReOx/SiO2 (4 wt% Ir, Re/Ir = 2) | 413 | 8 | H2SO4/n-decane+water | 40 (3-HxOH), 18 (2-HxOH), 2 (1-HxOH) | [ |
Ru-WOx/Biochar (5 wt% Ru, W/Ru = 4.4) | 493 | 3 | None/water | 69 (EG) | [ | |
Ru-WOx/HZSM-5 (5 wt% Ru, W/Ru = 2.8) | 508 | 3 | None/water | 77 (Ethanol) | [ | |
Pt/WOx (2 wt% Pt) | 518 | 6 | None/water | 30 (Ethanol) | [ | |
MoOx/Pt/WOx (2 wt% Pt, Mo/Pt = 0.1) | 518 | 6 | None/water | 43 (Ethanol) |
Catalyst | Substrate | Temp./K | P(H2)/MPa | Additive/solvent | Yield (main product)/%-C | Ref. |
---|---|---|---|---|---|---|
Ir-ReOx/SiO2 (4 wt% Ir, Re/Ir = 1) | xylitol | 413 | 8 | HZSM-5/n-dodecane+water | 96 (n-pentane) | [ |
Ir-ReOx/SiO2 (4 wt% Ir, Re/Ir = 2) | xylan | 463 | 6 | H2SO4+HZSM-5/n-dodecane+water | 70 (n-pentane) | [ |
Ir-ReOx/SiO2 (4 wt% Ir, Re/Ir = 1) | sorbitol | 413 | 8 | HZSM-5/n-dodecane+water | 95 (n-hexane) | [ |
Ir-ReOx/SiO2 (4 wt% Ir, Re/Ir = 2) | cellulose | 453 | 6 | H2SO4/n-decane+water | 84 (n-hexane) | [ |
Ir-WOx/SiO2 (4 wt% Ir, W/Ir = 0.06) | cellulose | 483 | 8 | HZSM-5/n-dodecane+water | 85 (C6 alkanes) | [ |
Table 13 Production of pentane and hexane over Ir-based bimetallic catalysts.
Catalyst | Substrate | Temp./K | P(H2)/MPa | Additive/solvent | Yield (main product)/%-C | Ref. |
---|---|---|---|---|---|---|
Ir-ReOx/SiO2 (4 wt% Ir, Re/Ir = 1) | xylitol | 413 | 8 | HZSM-5/n-dodecane+water | 96 (n-pentane) | [ |
Ir-ReOx/SiO2 (4 wt% Ir, Re/Ir = 2) | xylan | 463 | 6 | H2SO4+HZSM-5/n-dodecane+water | 70 (n-pentane) | [ |
Ir-ReOx/SiO2 (4 wt% Ir, Re/Ir = 1) | sorbitol | 413 | 8 | HZSM-5/n-dodecane+water | 95 (n-hexane) | [ |
Ir-ReOx/SiO2 (4 wt% Ir, Re/Ir = 2) | cellulose | 453 | 6 | H2SO4/n-decane+water | 84 (n-hexane) | [ |
Ir-WOx/SiO2 (4 wt% Ir, W/Ir = 0.06) | cellulose | 483 | 8 | HZSM-5/n-dodecane+water | 85 (C6 alkanes) | [ |
Catalyst | M'/M | Yield /% (based on C6 ring) | ||||||
---|---|---|---|---|---|---|---|---|
C15 cycloalkane | C7,C8,C9 cycloalkanes | C7,C8,C9 oxygenates (1O) | Aromatics | S-C15 oxygenates (1O) | US-C15 oxygenates (1O) | C15 oxygenates (2O) | ||
Ru-ReOx/SiO2 | 0.5 | 93 | 5 | 1 | 1 | 0 | 0 | 0 |
Pt-ReOx/SiO2 | 0.5 | 0 | 0 | 0 | <1 | <1 | <1 | <1 |
Pd-ReOx/SiO2 | 0.5 | <1 | 0 | <1 | 1 | <1 | <1 | <1 |
Ir-ReOx/SiO2 | 0.5 | <1 | 0 | <1 | <1 | <1 | <1 | <1 |
Rh-ReOx/SiO2 | 0.5 | 32 | 2 | 1 | <1 | 3 | 1 | <1 |
Ru-MoOx/SiO2 | 0.5 | 2 | 1 | 2 | <1 | 5 | 1 | 1 |
Ru-WOx/SiO2 | 0.5 | 6 | 2 | 2 | <1 | 6 | <1 | 1 |
Ru/SiO2 | 0 | <1 | 1 | 3 | 1 | 1 | 1 | 1 |
Ru-ReOx/SiO2 | 0.05 | 31 | 4 | 2 | <1 | 45 | 0 | 4 |
Ru-ReOx/SiO2 | 0.13 | 73 | 5 | 1 | <1 | 18 | 0 | <1 |
Ru-ReOx/SiO2 | 0.25 | 90 | 5 | 1 | <1 | 1 | 0 | <1 |
Ru-ReOx/SiO2 | 1 | 46 | 3 | 2 | <1 | 44 | 0 | <1 |
ReOx/SiO2 | — | <1 | <1 | <1 | <1 | <1 | <1 | <1 |
Ru/SiO2+ReOx/SiO2 | — | 1 | <1 | 1 | <1 | 1 | 2 | 1 |
Table 15 Catalyst screening for HDO of PC [15].
Catalyst | M'/M | Yield /% (based on C6 ring) | ||||||
---|---|---|---|---|---|---|---|---|
C15 cycloalkane | C7,C8,C9 cycloalkanes | C7,C8,C9 oxygenates (1O) | Aromatics | S-C15 oxygenates (1O) | US-C15 oxygenates (1O) | C15 oxygenates (2O) | ||
Ru-ReOx/SiO2 | 0.5 | 93 | 5 | 1 | 1 | 0 | 0 | 0 |
Pt-ReOx/SiO2 | 0.5 | 0 | 0 | 0 | <1 | <1 | <1 | <1 |
Pd-ReOx/SiO2 | 0.5 | <1 | 0 | <1 | 1 | <1 | <1 | <1 |
Ir-ReOx/SiO2 | 0.5 | <1 | 0 | <1 | <1 | <1 | <1 | <1 |
Rh-ReOx/SiO2 | 0.5 | 32 | 2 | 1 | <1 | 3 | 1 | <1 |
Ru-MoOx/SiO2 | 0.5 | 2 | 1 | 2 | <1 | 5 | 1 | 1 |
Ru-WOx/SiO2 | 0.5 | 6 | 2 | 2 | <1 | 6 | <1 | 1 |
Ru/SiO2 | 0 | <1 | 1 | 3 | 1 | 1 | 1 | 1 |
Ru-ReOx/SiO2 | 0.05 | 31 | 4 | 2 | <1 | 45 | 0 | 4 |
Ru-ReOx/SiO2 | 0.13 | 73 | 5 | 1 | <1 | 18 | 0 | <1 |
Ru-ReOx/SiO2 | 0.25 | 90 | 5 | 1 | <1 | 1 | 0 | <1 |
Ru-ReOx/SiO2 | 1 | 46 | 3 | 2 | <1 | 44 | 0 | <1 |
ReOx/SiO2 | — | <1 | <1 | <1 | <1 | <1 | <1 | <1 |
Ru/SiO2+ReOx/SiO2 | — | 1 | <1 | 1 | <1 | 1 | 2 | 1 |
Fig. 22. Reaction network for the HDO of PC to cycloalkanes [15]. (A) Reaction profile of PC over the Ru-ReOx/SiO2 (Re/Ru ratio of 0.5). Catalyst of 0.05 g, PC pellets of 0.5 g, cyclohexane of 15 mL, 453 K, initial H2 of 3 MPa. Reaction profiles of diphenyl carbonate (B), phenol (C) and cyclohexanol (D) over the catalyst. Catalyst: 0.05 g, substrate: 0.23?0.46 × 10?2 mol, cyclopentane of 15 mL, 408 K, initial N2 of 0.5 MPa at room temperature, N2 + H2 of 4.5 MPa at 408 K. (E) Reaction pathway for the conversion of PC to cycloalkanes. Reprinted with permission from Ref. [15]. Copyright 2023, John Wiley and Sons.
Fig. 23. HDO of different real plastic wastes and their mixtures over Ru-ReOx/SiO2 + HZSM-5. Reprinted with permission from Ref. [15]. Copyright 2023, John Wiley and Sons.
Fig. 26. Proposed reaction pathway for HDO of 5,5’-(furan-2-ylmethylene)bis(2-methylfuran) into branched alkanes over bimetallic catalysts. Reprinted with permission from Ref. [40]. Copyright 2019, American Chemical Society.
Catalyst | Re/M ratio | Conv. /% | Selectivity /%-C | |||
---|---|---|---|---|---|---|
n-C18 alkane | n-C17 alkane | n-C16 alkane | Stearyl alcohol | |||
ReOx/SiO2 | — | 6 | 6 | 1 | 0 | 93 |
Ir-ReOx/SiO2 | 3 | 100 | 94 | 6 | <1 | 0 |
Ru-ReOx/SiO2 | 3 | 100 | 52 | 41 | 4 | 0 |
Pd-ReOx/SiO2 | 3 | 15 | 2 | 3 | 0 | 95 |
Pt-ReOx/SiO2 | 3 | 11 | 12 | 4 | <1 | 84 |
Rh-ReOx/SiO2 | 3 | 48 | 7 | 22 | <1 | 70 |
Ir-ReOx/SiO2 | 0.5 | 25 | 28 | 8 | <1 | 64 |
Ir-ReOx/SiO2 | 1 | 32 | 27 | 7 | <1 | 66 |
Ir-ReOx/SiO2 | 2 | 70 | 43 | 5 | <1 | 52 |
Ir-ReOx/SiO2 | 2.5 | 99 | 47 | 5 | <1 | 47 |
Rh-ReOx/SiO2 | 0.5 | 5 | 5 | 47 | 0 | 48 |
Table 16 HDO of stearic acid over different catalysts [70].
Catalyst | Re/M ratio | Conv. /% | Selectivity /%-C | |||
---|---|---|---|---|---|---|
n-C18 alkane | n-C17 alkane | n-C16 alkane | Stearyl alcohol | |||
ReOx/SiO2 | — | 6 | 6 | 1 | 0 | 93 |
Ir-ReOx/SiO2 | 3 | 100 | 94 | 6 | <1 | 0 |
Ru-ReOx/SiO2 | 3 | 100 | 52 | 41 | 4 | 0 |
Pd-ReOx/SiO2 | 3 | 15 | 2 | 3 | 0 | 95 |
Pt-ReOx/SiO2 | 3 | 11 | 12 | 4 | <1 | 84 |
Rh-ReOx/SiO2 | 3 | 48 | 7 | 22 | <1 | 70 |
Ir-ReOx/SiO2 | 0.5 | 25 | 28 | 8 | <1 | 64 |
Ir-ReOx/SiO2 | 1 | 32 | 27 | 7 | <1 | 66 |
Ir-ReOx/SiO2 | 2 | 70 | 43 | 5 | <1 | 52 |
Ir-ReOx/SiO2 | 2.5 | 99 | 47 | 5 | <1 | 47 |
Rh-ReOx/SiO2 | 0.5 | 5 | 5 | 47 | 0 | 48 |
Fig. 27. Time courses for stearic acid (A) and methyl stearate (B) conversions over Ir-ReOx/SiO2 (4 wt% Ir, Re/Ir = 3) catalyst. Reaction conditions: 0.05 g of catalyst, 0.25 g of substrate, 10 mL of cyclohexane, 2 MPa H2, 453 K. Reprinted with permission from Ref. [70]. Copyright 2018, John Wiley and Sons.
Fig. 29. Effect of reaction temperature (A) and H2 pressure (B) on HDO of lauric acid over Ru-MoOx/TiO2 (5.3 wt% Ru, Mo/Ru = 0.5) catalyst. Reaction conditions: 0.065 g of catalyst, 3.2 mmol of lauric acid, 5 mL of solvent (2-PrOH/H2O at 4, volume ratio), 7 h, 4 MPa H2 for (A), 583 K for (B). Reprinted with permission from Ref. [198]. Copyright 2022, Royal Society of Chemistry.
Substrate | Catalyst | Reaction conditions | Conv. /% | Amine yield /% | Ref. |
---|---|---|---|---|---|
Hexanamide | Ru-WOx/MgAl2O4 (4 wt% Ru, W/Ru = 8) | 473 K, 5 MPa H2, 0.5 MPa NH3, 16 h, cyclopentyl methyl ether (CPME) solvent | >99 | 83 | [ |
CyCONH2 | >99 | 80 | |||
CyCONH2 | Ru-WOx/SiO2 (2 wt% Ru, 1 wt% W) | 433 K, 5 MPa H2, 12 h, 1,2-dimethoxyethane (DME) solvent | 94 | 78 | [ |
Ru-MoOx/SiO2 (2 wt% Ru, 0.2 wt% Mo) | 433 K, 5 MPa H2, 12 h, DME solvent | 90 | 73 | [ | |
Rh-MoOx/SiO2 (4 wt% Rh, Mo/Rh = 1) +CeO2 | 413 K, 8 MPa H2, 4 h, DME solvent | >95 | 63 | [ |
Table 17 Typical bimetallic catalysts for the HDO of selected primary amides.
Substrate | Catalyst | Reaction conditions | Conv. /% | Amine yield /% | Ref. |
---|---|---|---|---|---|
Hexanamide | Ru-WOx/MgAl2O4 (4 wt% Ru, W/Ru = 8) | 473 K, 5 MPa H2, 0.5 MPa NH3, 16 h, cyclopentyl methyl ether (CPME) solvent | >99 | 83 | [ |
CyCONH2 | >99 | 80 | |||
CyCONH2 | Ru-WOx/SiO2 (2 wt% Ru, 1 wt% W) | 433 K, 5 MPa H2, 12 h, 1,2-dimethoxyethane (DME) solvent | 94 | 78 | [ |
Ru-MoOx/SiO2 (2 wt% Ru, 0.2 wt% Mo) | 433 K, 5 MPa H2, 12 h, DME solvent | 90 | 73 | [ | |
Rh-MoOx/SiO2 (4 wt% Rh, Mo/Rh = 1) +CeO2 | 413 K, 8 MPa H2, 4 h, DME solvent | >95 | 63 | [ |
|
[1] | Hongyu Qu, Wende Hu, Xiangcheng Li, Rui Xu, Xiao Han, Junjie Li, Yiqing Lu, Yingchun Ye, Chuanming Wang, Zhendong Wang, Weimin Yang. Efficient hydrogenolysis of 5-hydroxymethylfurfural to 2,5-dimethylfuran over Ni-C3N4 catalysts with ultra-low Ni loading [J]. Chinese Journal of Catalysis, 2024, 60(5): 253-261. |
[2] | Yan Zeng, Hui Wang, Huiru Yang, Chao Juan, Dan Li, Xiaodong Wen, Fan Zhang, Ji-Jun Zou, Chong Peng, Changwei Hu. Ni nanoparticle coupled surface oxygen vacancies for efficient synergistic conversion of palmitic acid into alkanes [J]. Chinese Journal of Catalysis, 2023, 47(4): 229-242. |
[3] | Dawang Chu, Yingying Xin, Chen Zhao. Production of bio-ethanol by consecutive hydrogenolysis of corn-stalk cellulose [J]. Chinese Journal of Catalysis, 2021, 42(5): 844-854. |
[4] | Dongdong Wang, Wanbing Gong, Jifang Zhang, Miaomiao Han, Chun Chen, Yunxia Zhang, Guozhong Wang, Haimin Zhang, Huijun Zhao. Encapsulated Ni-Co alloy nanoparticles as efficient catalyst for hydrodeoxygenation of biomass derivatives in water [J]. Chinese Journal of Catalysis, 2021, 42(11): 2027-2037. |
[5] | Jia Wang, Man Yang, Aiqin Wang. Selective hydrogenolysis of glycerol to 1,3-propanediol over Pt-W based catalysts [J]. Chinese Journal of Catalysis, 2020, 41(9): 1311-1319. |
[6] | Nian Lei, Zhili Miao, Fei Liu, Hua Wang, Xiaoli Pan, Aiqin Wang, Tao Zhang. Understanding the deactivation behavior of Pt/WO3/Al2O3 catalyst in the glycerol hydrogenolysis reaction [J]. Chinese Journal of Catalysis, 2020, 41(8): 1261-1267. |
[7] | Arif Ali, Chen Zhao. Ru nanoparticles supported on hydrophilic mesoporous carbon catalyzed low-temperature hydrodeoxygenation of microalgae oil to alkanes at aqueous-phase [J]. Chinese Journal of Catalysis, 2020, 41(8): 1174-1185. |
[8] | Nhung N. Duong, Darius Aruho, Bin Wang, Daniel E. Resasco. Hydrodeoxygenation of anisole over different Rh surfaces [J]. Chinese Journal of Catalysis, 2019, 40(11): 1721-1730. |
[9] | Chaojun Yang, Fan Zhang, Nian Lei, Man Yang, Fei Liu, Zhili Miao, Yongnan Sun, Xiaochen Zhao, Aiqin Wang. Understanding the promotional effect of Au on Pt/WO3 in hydrogenolysis of glycerol to 1,3-propanediol [J]. Chinese Journal of Catalysis, 2018, 39(8): 1366-1372. |
[10] | Chuang Li, Bo He, Yu Ling, Chi-Wing Tsang, Changhai Liang. Glycerol hydrogenolysis to n-propanol over Zr-Al composite oxide-supported Pt catalysts [J]. Chinese Journal of Catalysis, 2018, 39(6): 1121-1128. |
[11] | Man Yang, Xiaochen Zhao, Yujing Ren, Jia Wang, Nian Lei, Aiqin Wang, Tao Zhang. Pt/Nb-WOx for the chemoselective hydrogenolysis of glycerol to 1,3-propanediol: Nb dopant pacifying the over-reduction of WOx supports [J]. Chinese Journal of Catalysis, 2018, 39(6): 1027-1037. |
[12] | Jun Yang, Yupeng Chang, Weili Dai, Guangjun Wu, Naijia Guan, Landong Li. Bimetallic Cr-In/H-SSZ-13 for selective catalytic reduction of nitric oxide by methane [J]. Chinese Journal of Catalysis, 2018, 39(5): 1004-1011. |
[13] | Doudou Ding, Xingyan Xu, Pengfei Tian, Xianglin Liu, Jing Xu, Yifan Han. Promotional effects of Sb on Pd-based catalysts for the direct synthesis of hydrogen peroxide at ambient pressure [J]. Chinese Journal of Catalysis, 2018, 39(4): 673-681. |
[14] | Haojie Wang, Chun Chen, Haimin Zhang, Guozhong Wang, Huijun Zhao. An efficient and reusable bimetallic Ni3Fe NPs@C catalyst for selective hydrogenation of biomass-derived levulinic acid to γ-valerolactone [J]. Chinese Journal of Catalysis, 2018, 39(10): 1599-1607. |
[15] | Fangfang Gao, Hailong Liu, Xun Hu, Jing Chen, Zhiwei Huang, Chungu Xia. Selective hydrogenolysis of furfuryl alcohol to 1,5-and 1,2-pentanediol over Cu-LaCoO3 catalysts with balanced Cu0-CoO sites [J]. Chinese Journal of Catalysis, 2018, 39(10): 1711-1723. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||