Chinese Journal of Catalysis ›› 2021, Vol. 42 ›› Issue (5): 844-854.DOI: 10.1016/S1872-2067(20)63709-3
• Articles • Previous Articles
Dawang Chu, Yingying Xin, Chen Zhao*()
Received:
2020-06-01
Accepted:
2020-06-01
Online:
2021-05-18
Published:
2021-01-29
Contact:
Chen Zhao
About author:
* Tel/Fax: +86-21-62231392; E-mail: czhao@chem.ecnu.edu.cnSupported by:
Dawang Chu, Yingying Xin, Chen Zhao. Production of bio-ethanol by consecutive hydrogenolysis of corn-stalk cellulose[J]. Chinese Journal of Catalysis, 2021, 42(5): 844-854.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(20)63709-3
Feedstock | Catalyst | Yield (%) | ||
---|---|---|---|---|
Cellulose | Lignin | Hemicellulose | ||
Corn stalk | Blank | 49.8 | 8.7 | Dissolved |
Corn stalk | 0.1% NaOH | 49.2 | Dissolved | Dissolved |
Corn stalk | 0.5 g HUSY | 46.2 | 7.2 | Dissolved |
Corn stalk | 0.5 g ZSM-5 | 51.4 | 9.2 | Dissolved |
Corn stalk | 0.1% HCl | 35.0 | 6.6 | Dissolved |
Sawdust | Blank | 51.9 | 18.8 | Dissolved |
Sawdust | 0.1% HCl | 10.0 | 19.1 | Dissolved |
Corn cob | Blank | 53.3 | 6.6 | Dissolved |
Corn cob | 0.1% HCl | 24.6 | 14.7 | Dissolved |
Table 1 Cellulose extraction from corn stalk, corncob, and wood chips using the high-boiling-point solvent (1,4-BDO) method.
Feedstock | Catalyst | Yield (%) | ||
---|---|---|---|---|
Cellulose | Lignin | Hemicellulose | ||
Corn stalk | Blank | 49.8 | 8.7 | Dissolved |
Corn stalk | 0.1% NaOH | 49.2 | Dissolved | Dissolved |
Corn stalk | 0.5 g HUSY | 46.2 | 7.2 | Dissolved |
Corn stalk | 0.5 g ZSM-5 | 51.4 | 9.2 | Dissolved |
Corn stalk | 0.1% HCl | 35.0 | 6.6 | Dissolved |
Sawdust | Blank | 51.9 | 18.8 | Dissolved |
Sawdust | 0.1% HCl | 10.0 | 19.1 | Dissolved |
Corn cob | Blank | 53.3 | 6.6 | Dissolved |
Corn cob | 0.1% HCl | 24.6 | 14.7 | Dissolved |
Entry | Feedstock | Catalyst | Conc. (wt%) | Conv. (C %) | Yield (C %) | ||||
---|---|---|---|---|---|---|---|---|---|
EG | 1,2-PDO | 1,2-BDO | Sorbitol | Others | |||||
1 | Cellulose | 5%Ni-50%WOx/SiO2 | 1 | 100 | 30.3 | 2.3 | 2.7 | 3.2 | 9.1 |
2 | Cellulose | 10%Ni-50%WOx/SiO2 | 1 | 100 | 70.6 | 5.2 | 1.8 | 3.3 | 5.3 |
3 | Cellulose | 15%Ni-50%WOx/SiO2 | 1 | 100 | 72.0 | 4.1 | 3.6 | 5.8 | 7.1 |
4 | Cellulose | 25%Ni-50%WOx/SiO2 | 1 | 100 | 47.1 | 1.8 | 2.0 | 19.9 | 10.8 |
5 | Cellulose | 50%Ni-50%WOx/SiO2 | 1 | 100 | 33.8 | 2.0 | 3.3 | 28.3 | 12.5 |
6 | Cellulose | 15%Ni-50%WOx/SiO2 | 0.5 | 100 | 71.8 | 4.1 | 3.3 | 7.2 | 6.6 |
7 | Cellulose | 15%Ni-50%WOx/SiO2 | 5 | 100 | 70.5 | 5.4 | 6.6 | 3.6 | 6.0 |
8 | Cellulose | 15%Ni-50%WOx/SiO2 | 10 | 100 | 55.2 | 8.6 | 10.6 | 11.3 | 7.1 |
9 | Cellulose * | 15%Ni-50%WOx/SiO2 | 1 | 100 | 72.4 | 1.5 | 2.6 | 8.0 | 7.5 |
10 | Cellulose * | 15%Ni-50%WOx/SiO2 | 1 | 100 | 52.4 | 18.1 | 10.5 | 7.1 | 4.9 |
11 | Cellulose * | 15%Ni-50%WOx/SiO2 | 1 | 100 | 37.0 | 2.3 | 8.6 | 4.5 | 20.9 |
Table 2 Product distributions of cellulose conversion over Ni-W/SiO2 catalysts.
Entry | Feedstock | Catalyst | Conc. (wt%) | Conv. (C %) | Yield (C %) | ||||
---|---|---|---|---|---|---|---|---|---|
EG | 1,2-PDO | 1,2-BDO | Sorbitol | Others | |||||
1 | Cellulose | 5%Ni-50%WOx/SiO2 | 1 | 100 | 30.3 | 2.3 | 2.7 | 3.2 | 9.1 |
2 | Cellulose | 10%Ni-50%WOx/SiO2 | 1 | 100 | 70.6 | 5.2 | 1.8 | 3.3 | 5.3 |
3 | Cellulose | 15%Ni-50%WOx/SiO2 | 1 | 100 | 72.0 | 4.1 | 3.6 | 5.8 | 7.1 |
4 | Cellulose | 25%Ni-50%WOx/SiO2 | 1 | 100 | 47.1 | 1.8 | 2.0 | 19.9 | 10.8 |
5 | Cellulose | 50%Ni-50%WOx/SiO2 | 1 | 100 | 33.8 | 2.0 | 3.3 | 28.3 | 12.5 |
6 | Cellulose | 15%Ni-50%WOx/SiO2 | 0.5 | 100 | 71.8 | 4.1 | 3.3 | 7.2 | 6.6 |
7 | Cellulose | 15%Ni-50%WOx/SiO2 | 5 | 100 | 70.5 | 5.4 | 6.6 | 3.6 | 6.0 |
8 | Cellulose | 15%Ni-50%WOx/SiO2 | 10 | 100 | 55.2 | 8.6 | 10.6 | 11.3 | 7.1 |
9 | Cellulose * | 15%Ni-50%WOx/SiO2 | 1 | 100 | 72.4 | 1.5 | 2.6 | 8.0 | 7.5 |
10 | Cellulose * | 15%Ni-50%WOx/SiO2 | 1 | 100 | 52.4 | 18.1 | 10.5 | 7.1 | 4.9 |
11 | Cellulose * | 15%Ni-50%WOx/SiO2 | 1 | 100 | 37.0 | 2.3 | 8.6 | 4.5 | 20.9 |
Fig. 1. (a) Production distribution for cellulose conversion over 15%Ni-50%WOx/SiO2 as a function of time. (b) Catalyst reusability test. Reaction conditions: 1.0 g cellulose, 0.2 g catalyst, and 100 mL H2O, and 4.0 MPa H2 at a stirring rate of 800 rpm at 245 °C for 2 h.
Entry | Catalyst | Preparation method | Reaction time (h) | Conv. (C%) | Selectivity (C%) | Ethanol yield (C%) | |
---|---|---|---|---|---|---|---|
Acetaldehyde | Ethanol | ||||||
1 | 20%Cu/SiO2 | AE | 3 | 13.4 | 24.6 | 34.3 | 4.6 |
2 | 20%Cu-2%Ni/SiO2 | AE | 3 | 35.3 | 5.7 | 73.4 | 25.9 |
3 | 20%Cu-2%Ni/SiO2 | AE | 10 | 62.3 | 7.1 | 76.1 | 47.4 |
4 | 20%Cu-2%Ni/SiO2 | HT | 3 | 26.6 | 10.2 | 60.2 | 16.0 |
5 | 20%Cu-2%Ni/SiO2 | HT | 10 | 55.2 | 3.4 | 77.4 | 42.7 |
6 | 20%Cu-2%Co/SiO2 | AE | 3 | 30.7 | 7.2 | 67.1 | 20.6 |
7 | 20%Cu-2%Co/SiO2 | AE | 10 | 49.8 | 5.0 | 65.3 | 32.5 |
8 | 20%Cu-2%Co/SiO2 | HT | 3 | 24.7 | 8.1 | 59.1 | 14.6 |
9 | 20%Cu-2%Co/SiO2 | HT | 10 | 55.0 | 6.0 | 72.4 | 39.8 |
10 | 20%Cu-2%Mo/SiO2 | HT | 3 | 30.1 | 6.0 | 68.4 | 20.6 |
11 | 20%Cu-2%Mo/SiO2 | HT | 10 | 60.7 | 7.6 | 74.3 | 45.1 |
12 | 20%Cu-2%B/SiO2 | HT | 3 | 24.0 | 1.3 | 74.2 | 17.8 |
13 | 20%Cu-2%B/SiO2 | HT | 10 | 47.4 | 2.1 | 78.1 | 37.0 |
14 | 1%Ag-20%Cu/SiO2 | AE* | 3 | 13.3 | 11.3 | 56.4 | 7.5 |
15 | 1%Au-20%Cu/SiO2 | AE* | 3 | 28.7 | 8.7 | 64.5 | 18.5 |
16 | 1%Ru-20%Cu/SiO2 | AE* | 3 | 21.2 | 23.6 | 51.4 | 10.9 |
17 | 1%Au-(20%Cu-2%Co)/SiO2 | AE* | 3 | 29.7 | 6.7 | 69.4 | 20.6 |
18 | 1%Au-(20%Cu-2%Ni)/SiO2 | AE* | 3 | 39.7 | 4.3 | 74.1 | 29.4 |
19 | 1%Au-(20%Cu-2%Ni)/SiO2 | AE* | 10 | 73.1 | 5.0 | 85.1 | 62.2 |
Table 3 Results of the hydrogenolysis of EG to ethanol over modified Cu/SiO2 catalysts in the aqueous phase.
Entry | Catalyst | Preparation method | Reaction time (h) | Conv. (C%) | Selectivity (C%) | Ethanol yield (C%) | |
---|---|---|---|---|---|---|---|
Acetaldehyde | Ethanol | ||||||
1 | 20%Cu/SiO2 | AE | 3 | 13.4 | 24.6 | 34.3 | 4.6 |
2 | 20%Cu-2%Ni/SiO2 | AE | 3 | 35.3 | 5.7 | 73.4 | 25.9 |
3 | 20%Cu-2%Ni/SiO2 | AE | 10 | 62.3 | 7.1 | 76.1 | 47.4 |
4 | 20%Cu-2%Ni/SiO2 | HT | 3 | 26.6 | 10.2 | 60.2 | 16.0 |
5 | 20%Cu-2%Ni/SiO2 | HT | 10 | 55.2 | 3.4 | 77.4 | 42.7 |
6 | 20%Cu-2%Co/SiO2 | AE | 3 | 30.7 | 7.2 | 67.1 | 20.6 |
7 | 20%Cu-2%Co/SiO2 | AE | 10 | 49.8 | 5.0 | 65.3 | 32.5 |
8 | 20%Cu-2%Co/SiO2 | HT | 3 | 24.7 | 8.1 | 59.1 | 14.6 |
9 | 20%Cu-2%Co/SiO2 | HT | 10 | 55.0 | 6.0 | 72.4 | 39.8 |
10 | 20%Cu-2%Mo/SiO2 | HT | 3 | 30.1 | 6.0 | 68.4 | 20.6 |
11 | 20%Cu-2%Mo/SiO2 | HT | 10 | 60.7 | 7.6 | 74.3 | 45.1 |
12 | 20%Cu-2%B/SiO2 | HT | 3 | 24.0 | 1.3 | 74.2 | 17.8 |
13 | 20%Cu-2%B/SiO2 | HT | 10 | 47.4 | 2.1 | 78.1 | 37.0 |
14 | 1%Ag-20%Cu/SiO2 | AE* | 3 | 13.3 | 11.3 | 56.4 | 7.5 |
15 | 1%Au-20%Cu/SiO2 | AE* | 3 | 28.7 | 8.7 | 64.5 | 18.5 |
16 | 1%Ru-20%Cu/SiO2 | AE* | 3 | 21.2 | 23.6 | 51.4 | 10.9 |
17 | 1%Au-(20%Cu-2%Co)/SiO2 | AE* | 3 | 29.7 | 6.7 | 69.4 | 20.6 |
18 | 1%Au-(20%Cu-2%Ni)/SiO2 | AE* | 3 | 39.7 | 4.3 | 74.1 | 29.4 |
19 | 1%Au-(20%Cu-2%Ni)/SiO2 | AE* | 10 | 73.1 | 5.0 | 85.1 | 62.2 |
Fig. 3. (a) Product distribution in the conversion of EG over 1%Au-(20%Cu-2%Ni)/SiO2 as a function of time; (b) Recycling tests. Reaction conditions: 100 mL 20 wt% EG aqueous solution, 2.0 g catalysts, and 4.0 MPa H2 at a stirring rate of 800 rpm at 300 °C.
Fig. 4. Characterization of 20%Cu/SiO2, 20%Cu-2%Ni/SiO2, 1%Au-20%Cu/SiO2, and 1%Au-(20%Cu-2%Ni)/SiO2 using TEM (a), XRD (b), CO-DRIFTS (c), XPS (d), EPR (e), and Cu LMM (f) measurements.
Fig. 5. (a) Results for the hydrogenolysis of EG to ethanol over Au-Cu-Ni/SiO2 catalysts synthesized using three different methods; (b) Typical images of the impregnation of Au onto three CuNi/SiO2 precursors; (c) IR spectra of reduced Cu-Ni/SiO2 impregnated with AuCl3.
Cumulative concentration (wt%) | Conv. (C%) | Yield (C%) | ||||
---|---|---|---|---|---|---|
EG | 1,2-PDO | 1,2-BDO | Sorbitol | Others | ||
10 | 100 | 57.7 | 5.6 | 4.5 | 11.3 | 7.1 |
15 | 100 | 58.1 | 4.4 | 3.2 | 12.7 | 8.4 |
20 | 100 | 56.5 | 6.8 | 5.9 | 10.6 | 7.7 |
25 | 100 | 57.3 | 6.0 | 5.3 | 10.4 | 6.3 |
30 | 100 | 56.5 | 7.5 | 6.2 | 13.1 | 5.9 |
Table 4 Results from the hydrogenolysis of cellulose to EG and the further hydrogenolysis of EG to ethanol.
Cumulative concentration (wt%) | Conv. (C%) | Yield (C%) | ||||
---|---|---|---|---|---|---|
EG | 1,2-PDO | 1,2-BDO | Sorbitol | Others | ||
10 | 100 | 57.7 | 5.6 | 4.5 | 11.3 | 7.1 |
15 | 100 | 58.1 | 4.4 | 3.2 | 12.7 | 8.4 |
20 | 100 | 56.5 | 6.8 | 5.9 | 10.6 | 7.7 |
25 | 100 | 57.3 | 6.0 | 5.3 | 10.4 | 6.3 |
30 | 100 | 56.5 | 7.5 | 6.2 | 13.1 | 5.9 |
WHSV(min-1) | Distribution of product yields (C%) | ||||
---|---|---|---|---|---|
EG | Methanol | Ethanol | Propanol | Others | |
0.02 | 18.8 | 7.2 | 35.8 | 8.6 | 17.5 |
Table 5 Hydrogenolysis of EG to ethanol
WHSV(min-1) | Distribution of product yields (C%) | ||||
---|---|---|---|---|---|
EG | Methanol | Ethanol | Propanol | Others | |
0.02 | 18.8 | 7.2 | 35.8 | 8.6 | 17.5 |
|
[1] | Yue Liu, Wei Zhang, Haichao Liu. Unraveling the active states of WO3-based catalysts in the selective conversion of cellulose to glycols [J]. Chinese Journal of Catalysis, 2023, 46(3): 56-63. |
[2] | Yiwei Fan, Helong Li, Shihao Su, Jinlei Chen, Chunquan Liu, Shuizhong Wang, Xiangya Xu, Guoyong Song. Integration of Ru/C and base for reductive catalytic fractionation of triploid poplar [J]. Chinese Journal of Catalysis, 2022, 43(3): 802-810. |
[3] | Kaiyi Su, Huifang Liu, Chaofeng Zhang, Feng Wang. Photocatalytic conversion of waste plastics to low carbon number organic products [J]. Chinese Journal of Catalysis, 2022, 43(3): 589-594. |
[4] | Fangwei Gu, Haichao Liu. Hydroxyl radicals-mediated oxidative cleavage of the glycosidic bond in cellobiose by copper catalysts and its application to low-temperature depolymerization of cellulose [J]. Chinese Journal of Catalysis, 2020, 41(7): 1073-1080. |
[5] | WANG Shuai, LIU Haichao. Catalytic Upgrading of Lignocellulosic Biomass into Liquid Fuels and Chemicals [J]. Chinese Journal of Catalysis, 2019, 40(s1): 178-186. |
[6] | Xuejuan Cao, Huai Liu, Junnan Wei, Xing Tang, Xianhai Zeng, Yong Sun, Tingzhou Lei, Geng Zhao, Lu Lin. Effective production of γ-valerolactone from biomass-derived methyl levulinate over CuOx-CaCO3 catalyst [J]. Chinese Journal of Catalysis, 2019, 40(2): 192-203. |
[7] | Shilin Cao, Pei Xu, Yongzheng Ma, Xiaoxiao Yao, Yuan Yao, Minhua Zong, Xuehui Li, Wenyong Lou. Recent advances in immobilized enzymes on nanocarriers [J]. Chinese Journal of Catalysis, 2016, 37(11): 1814-1823. |
[8] | Weiping Deng, Hongxi Zhang, Laiqi Xue, Qinghong Zhang, Ye Wang. Selective activation of the C-O bonds in lignocellulosic biomass for the efficient production of chemicals [J]. Chinese Journal of Catalysis, 2015, 36(9): 1440-1460. |
[9] | Xiaochen Zhao, Jinming Xu, Aiqin Wang, Tao Zhang. Porous carbon in catalytic transformation of cellulose [J]. Chinese Journal of Catalysis, 2015, 36(9): 1419-1427. |
[10] | Filoklis D. Pileidis, Maham Tabassum, Sam Coutts, Maria-Magdalena Titirici. Esterification of levulinic acid into ethyl levulinate catalysed by sulfonated hydrothermal carbons [J]. Chinese Journal of Catalysis, 2014, 35(6): 929-936. |
[11] | Fanlu Meng, Lin Li, Zhong Wu, Haixia Zhong, Jianchen Li, Junmin Yan. Facile preparation of N-doped carbon nanofiber aerogels from bacterial cellulose as an efficient oxygen reduction reaction electrocatalyst [J]. Chinese Journal of Catalysis, 2014, 35(6): 877-883. |
[12] | Mingyuan Zheng, Jifeng Pang, Aiqin Wang, Tao Zhang. One-pot catalytic conversion of cellulose to ethylene glycol and other chemicals:From fundamental discovery to potential commercialization [J]. Chinese Journal of Catalysis, 2014, 35(5): 602-613. |
[13] | Jianzhong Yin, Liudan Hao, Wen Yu, Enjun Wang, Mengjiao Zhao, Qinqin Xu, Yifan Liu. Enzymatic hydrolysis enhancement of corn lignocellulose by supercritical CO2 combined with ultrasound pretreatment [J]. Chinese Journal of Catalysis, 2014, 35(5): 763-769. |
[14] | Zujin Yang, Hongbing Ji. Synergistic effect of hydrogen bonding mediated selective synthesis of benzaldehyde in water [J]. Chinese Journal of Catalysis, 2014, 35(4): 590-598. |
[15] | Likun Zhou, Jifeng Pang, Aiqin Wang, Tao Zhang. Catalytic conversion of Jerusalem artichoke stalk to ethylene glycol over a combined catalyst of WO3 and Raney Ni [J]. Chinese Journal of Catalysis, 2013, 34(11): 2041-2046. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||