催化学报 ›› 2021, Vol. 42 ›› Issue (3): 490-500.DOI: 10.1016/S1872-2067(20)63667-1

• 论文 • 上一篇    下一篇

单源MOF衍生具有三维有序大孔结构的氮掺杂碳包覆铁-氮合金复合材料用于高效氧还原

吕雅茹, 翟雪静, 王珊, 徐虹, 王锐#(), 臧双全*()   

  1. 郑州大学化学学院,绿色催化中心,河南郑州450001
  • 收稿日期:2020-05-22 接受日期:2020-06-26 出版日期:2021-03-18 发布日期:2021-01-23
  • 通讯作者: 王锐,臧双全
  • 作者简介:*电话:(0371)67780029;电子信箱:zangsqzg@zzu.edu.cn;
  • 基金资助:
    国家杰出青年科学基金(21825106);国家自然科学基金(21671175);河南省高校科技创新人才支持计划(164100510005);河南省高校科技创新团队支持计划(19IRTSTHN022)

3D-ordered macroporous N-doped carbon encapsulating Fe-N alloy derived from a single-source metal-organic framework for superior oxygen reduction reaction

Ya-Ru Lv, Xue-Jing Zhai, Shan Wang, Hong Xu, Rui Wang#(), Shuang-Quan Zang*()   

  1. Green Catalysis Center,College of Chemistry,Zhengzhou University,Zhengzhou 450001,Henan,China
  • Received:2020-05-22 Accepted:2020-06-26 Online:2021-03-18 Published:2021-01-23
  • Contact: Rui Wang,Shuang-Quan Zang
  • About author:*Tel:+86-371-67780029;E-mail:zangsqzg@zzu.edu.cn;
  • Supported by:
    National Science Fund for Distinguished Young Scholars(21825106);National Natural Science Foundation of China(21671175);Program for Science & Technology Innovation Talents in Universities of Henan Province(164100510005);Program for Innovative Research Team (in Science and Technology) in Universities of Henan Province and Zhengzhou University.(19IRTSTHN022)

摘要:

氧还原反应在一些能源转换系统如金属-空气电池中起着至关重要的作用. 目前贵金属基材料(Pt/C)被认为是最有效的氧还原电催化剂,然而价格昂贵和储量有限等因素限制了它的商业化应用,因此探索高效的非贵金属氧还原电催化剂具有重要的意义. 近年来,负载过渡金属铁的多孔碳催化剂由于独特的结构和优异的氧还原催化活性成为替代铂基催化剂最有潜力的候选者. 该类材料的合成通常采用直接煅烧含有氮源、碳源和铁盐的混合前驱体的制备方法,但是热解时材料的多孔结构以及活性位点的均匀分布很难得到有效的控制. 近年来,金属有机框架(MOFs)由于其多孔结构和组成可控等优点而经常被用作自牺牲模板来制备负载铁基纳米材料的多孔碳催化剂,并表现出优异的电催化活性. 目前以MOF为前驱体制备高活性的载铁氮掺杂碳复合材料通常需要引入额外的氮源或铁源,因此选择氮含量丰富的铁基MOF材料作为单源前驱体制备载铁氮掺杂多孔碳复合材料具有重要的意义. 除此之外,具有多级孔隙率的催化剂可以改善反应时的传质过程,同时有序交联的网络结构能够提供连续的电子传输.
本文报道了一种简单可控的制备具有三维有序大孔结构的载铁氮掺杂多孔碳复合催化剂的合成方法,该材料表现出优异的电催化氧气还原性能和优异的催化稳定性. 首先,以氮含量丰富的双氰胺和吡嗪配体所构筑的Fe-MOF作为前驱体,利用具有均一尺寸的聚苯乙烯微球作为造孔剂,合成得到了具有三维有序大孔结构的Fe-MOF前驱体,然后通过高温煅烧该单源前驱体制备得到具有三维有序大孔结构的氮掺杂多孔碳包覆铁-氮合金的复合型催化剂(3DOM Fe/Fe-NA@NC).
扫描电镜和透射电镜结果表明,材料内形成了有序交联的大孔结构; 氮气吸附测试表明,刻蚀之后材料的比表面积明显增加,结合分级多孔特性可以共同促进催化反应的传质过程. 粉末X射线衍射结果证实了多孔碳材料中铁和铁-氮合金物种的成功合成. 电化学测试结果表明,在0.1 M KOH电解液中,3DOM Fe/Fe-NA@NC-800催化剂表现出优于Pt/C的氧还原活性,其半波电位(E1/2)为0.88 V,大于商业Pt/C的半波电位(E1/2 = 0.85 V). 同时,3DOM Fe/Fe-NA@NC-800表现出更加优异的稳定性,经过20000 s测试后,其电流保持率为94%,而Pt/C只保持了78%. 关于活性位点探究的对比实验证明在所制备的复合材料中,铁物种作为高效的活性位点参与了电催化氧还原反应,与氮掺杂多孔碳之间的协同作用共同主导了3DOM Fe/Fe-NA@NC优异的氧还原活性. 得益于其优异的氧还原活性,将其作为阴极活性材料组装为锌-空气电池进一步探究了其在实际应用中的可行性. 本结果拓宽了高效的铁基催化剂的类型,同时也为制备封装非贵金属的多孔碳基催化剂提供了实验指导和理论依据.

关键词: 金属有机框架, 单源前驱体, 氧还原反应, 铁-氮合金

Abstract:

Fe-N compounds with excellent electrocatalytic oxygen reduction activity are considered to be one of the most promising non-precious metal materials for fuel cells. Fe-N compounds with excellent electrocatalytic oxygen reduction activity are considered to be one of the most promising non-precious metal materials for fuel cells,which focuses on the Fe-N4 single-atom catalysts and the iron nitride materials (such as Fe2N and Fe3N). A hybridized catalyst having a hierarchical porous structure with regular macropores could enable the desired mass transfer efficiency in the catalytic process. In this study,we have constructed a new type of hybrid catalyst having iron and iron-nitrogen alloy nanoparticles (Fe-N austenite,termed as Fe-NA) embedded in the three-dimensional ordered macroporous N-doped carbon (3DOM Fe/Fe-NA@NC) by direct pyrolysis of single-source dicyandiamide-based iron metal-organic frameworks. The as-synthesized composites preserve the hierarchical porous carbon framework with ordered macropores and high specific surface area,incorporating the uniformly dispersed iron/iron-nitrogen austenite nanoparticles. Thereby,the striking architectural configuration embedded with highly active catalytic species delivers a superior oxygen reduction activity with a half-wave potential of 0.88 V and a subsequent superior Zn-air battery performance with high open-circuit voltage and continuous stability as compared to those using a commercial 20% Pt/C catalyst.

Key words: Metal-organic framework, Single-source precursor, Oxygen reduction reaction, Iron-nitrogen alloy