催化学报 ›› 2021, Vol. 42 ›› Issue (5): 844-854.DOI: 10.1016/S1872-2067(20)63709-3

• 论文 • 上一篇    

玉米秸秆连续氢解制备生物乙醇

褚大旺, 辛莹莹, 赵晨*()   

  1. 华东师范大学化学与分子工程学院, 上海市绿色化学与化学过程重点实验室, 上海200062
  • 收稿日期:2020-06-01 接受日期:2020-06-01 出版日期:2021-05-18 发布日期:2021-01-29
  • 通讯作者: 赵晨
  • 基金资助:
    国家重点研发计划(2016YFB0701100);国家自然科学基金(21573075)

Production of bio-ethanol by consecutive hydrogenolysis of corn-stalk cellulose

Dawang Chu, Yingying Xin, Chen Zhao*()   

  1. Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
  • Received:2020-06-01 Accepted:2020-06-01 Online:2021-05-18 Published:2021-01-29
  • Contact: Chen Zhao
  • About author:* Tel/Fax: +86-21-62231392; E-mail: czhao@chem.ecnu.edu.cn
  • Supported by:
    National Key Research and Development Program of China(2016YFB0701100);National Natural Science Foundation of China(21573075)

摘要:

目前由纤维素制生物乙醇的工艺主要由生物酶解法实现, 但酶解法的效率低且经济性差; 此外, 生物酶发酵每产生1 mol乙醇的同时副产1 mol CO2, 导致原子经济性低. 本文开发了一种通过连续氢解玉米秸秆纤维素转化为高浓度生物乙醇(6.1%)的工艺. 首先使用绿色溶剂(80 wt% 1,4-丁二醇)在不破坏木质素结构的前提下, 提取玉米秸秆中的高纯度纤维素; 再在浆态床反应器中通过Ni-WOx/SiO2催化剂将10 wt%纤维素水悬浮液转化为多元醇混合物(其中乙二醇占比58%). 经过连续进样, 纤维素质量浓度累积达30 wt%, 乙二醇产物浓度达到17 wt%. 随后, 多元醇混合物被泵入固定床反应器进行选择性断C-O键反应, 在改进的水热稳定Cu催化剂上转化为乙醇(转化率75%, 选择性84%).

纤维素转化为生物乙醇的过程反应至少包含四步基元步骤. 首先, 在高温水热环境中纤维素水解为葡萄糖, 葡萄糖在WOx表面经Retro-aldol反应C-C键断裂生成乙醇醛. 随后, Ni催化剂将乙醇醛加氢为乙二醇, 接着在固定床反应器上, 乙二醇在NiAu修饰的Cu+/Cu0活性位点上选择性断裂C-O键生成乙醇. 在乙二醇选择性氢解为乙醇过程中, 催化剂Au-Cu-Ni/SiO2表现出优异的水热稳定性和活性. XRD结果表明, 金属Ni的引入有效地减小Cu纳米粒子的尺寸和增加Cu颗粒的分散, HRTEM图像更加直观的验证这一点. H2-TPR结果发现, Ni的引入使CuO的还原温度提高了20 °C, 表明金属-载体的相互作用增强. 同时发现, 催化剂合成过程中氯金酸浸渍在还原后的CuNi/SiO2催化剂的活性最高. 紫外吸收光谱表明, 溶液中的Au3+与催化剂表面的Cu发生置换反应, 而非单纯的附着于催化剂表面. CO-DRIFTS结果表明, 在Au修饰过的Cu-Ni/SiO2表面使得Cu+-CO的红外吸收峰降低, 主要是由于Au部分覆盖催化剂表面Cu+吸附位点造成的. XPS结果表明, Au的引入使得催化剂表面的Cu+/Cu0不容易被空气氧化, 形成更为稳定的(Au-Cu+)-Cu0活性中心, 增强了催化剂Cu活性中心的水热耐受性. 本文提供了一条有竞争力的水相转化秸秆为高浓度生物乙醇的途径.

关键词: 玉米秸秆, 纤维素, 水相氢解, 生物乙醇, Ni-WOx催化剂, Cu0-Cu+物种, C-C键断裂

Abstract:

Current bio-ethanol production entails the enzymatic depolymerization of cellulose, but this process shows low efficiency and poor economy. In this work, we developed a consecutive aqueous hydrogenolysis process for the conversion of corn-stalk cellulose to produce a relatively high concentration of bio-ethanol (6.1 wt%) without humin formation. A high yield of cellulose (ca. 50 wt%) is extracted from corn stalk using a green solvent (80 wt% 1,4-butanediol) without destroying the structure of the lignin. The first hydrothermal hydrogenolysis step uses a Ni-WOx/SiO2 catalyst to convert the high cumulative concentration of cellulose (30 wt%) into a polyol mixture with a 56.5 C% yield of ethylene glycol (EG). The original polyol mixture is then subjected to subsequent selective aqueous-phase hydrogenolysis of the C-O bond to produce bioethanol (75% conversion, 84 C% selectivity) over the modified hydrothermally stable Cu catalysts. The added Ni component favors the good dispersion of Cu nanoparticles, and the incorporated Au3+ helps to stabilize the active Cu0-Cu+ species. This multi-functional catalytic process provides an economically competitive route for the production of cellulosic ethanol from raw lignocellulose.

Key words: Corn-stalk, Cellulose, Aqueous-phase hydrogenolysis, Bio-ethanol, Ni-WOx catalyst, Cu0-Cu+ species, C-C bond cleavage