催化学报 ›› 2021, Vol. 42 ›› Issue (7): 1160-1167.DOI: 10.1016/S1872-2067(20)63745-7

• 论文 • 上一篇    下一篇

过渡金属原子对掺杂g-CN单层作为高效氮电催化剂性能

黄斌a,b, 吴亦凡c, 陈碧波a, 钱勇a, 周耐根c,#(), 李能b,d,e,*()   

  1. a东华理工大学核资源与环境国家重点实验室, 江西南昌330031
    b武汉理工大学建筑硅酸盐材料国家重点实验室, 湖北武汉430070
    c南昌大学材料科学与工程学院, 江西南昌330031
    d武汉理工大学深圳研究所, 广东深圳518000
    e郑州大学材料科学与工程学院国家低碳与环境材料国际合作研究中心(CDLCEM), 河南郑州450001
  • 收稿日期:2020-09-01 接受日期:2020-11-26 出版日期:2021-07-18 发布日期:2020-12-10
  • 通讯作者: 周耐根,李能
  • 基金资助:
    高等学校学科创新引智计划(111项目)(B18038);深圳市科创委基础研究(JCYJ20190809120015163);霍英东高等学校青年教师教育基金(161008);湖北省杰青项目(2020CFA087);江西省教育厅基金(GJJ180365);东华理工大学核资源与环境重点实验室基金(NRE1411)

Transition-metal-atom-pairs deposited on g-CN monolayer for nitrogen reduction reaction: Density functional theory calculations

Bin Huanga,b, Yifan Wuc, Bibo Chena, Yong Qiana, Naigen Zhouc,#(), Neng Lib,d,e,*()   

  1. aState Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330031, Jiangxi, China
    bState Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, Hubei, China
    cSchool of Materials Science and Engineering, Nanchang University, Nanchang 330031, Jiangxi, China
    dShenzhen Research Institute of Wuhan University of Technology, Shenzhen 518000, Guangdong, China
    eState Center for International Cooperation on Designer Low-Carbon & Environmental Materials (CDLCEM), School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, Henan, China
  • Received:2020-09-01 Accepted:2020-11-26 Online:2021-07-18 Published:2020-12-10
  • Contact: Naigen Zhou,Neng Li
  • About author:# E-mail: ngzhou@ncu.edu.cn
    * E-mail: lineng@whut.edu.cn;
  • Supported by:
    Overseas Expertise Introduction Project (111 project) for Discipline Innovation of China(B18038);Basic Research Program of Shenzhen(JCYJ20190809120015163);Fok Ying-Tong Education Foundation for Young Teachers in the Higher Education Institutions of China(161008);Key R&D Program of Hubei Province(2020CFA087);Foundation of Jiangxi Educational Committee(GJJ180365);Foundation of Stat Key Laboratory of Nuclear Resources and Environment(NRE1411)

摘要:

由于氨是药物、肥料和树脂等领域的基础, 氨合成一直广受关注. 工业中主要通过Haber-Bosch反应制备氨, 反应需要在高温高压下进行. 因此, 探索其它氨合成技术对减轻能源消耗和缓解温室效应具有重大意义. 在溶液条件下, 采用水作为氢质子源, 电化学还原氮合成氨方法受到了极大关注. 然而, 大多数电催化剂难以活化氮气分子且电催化氮气还原过程中存在副反应竞争, 因此, 研发高效的电催化材料仍然是一个重要研究领域. 研究人员探索了多种电催化材料, 其中, 双原子对催化剂成为电催化领域的研究热点. 与单原子催化剂相比, 双原子对催化剂不仅具有低配位的金属原子, 而且可以通过调节额外分散的金属原子来改善多数电催化反应性能. 作为一种新型碳氮材料, 二维g-CN具有高表面积、多孔结构以及出色的光学活性和热力学稳定性, 可以与金属原子对良好地适配, 是一种有潜力的基底材料. 然而, 目前有关金属双原子对负载在g-CN单层上作为电催化剂催化N2分子还原性能尚不清楚.
本文采用密度泛函理论计算研究了N2分子在过渡金属原子对(TM = Sc~Zn)掺杂g-CN单层上的吸附和活化, 根据吉布斯自由能详细地研究了电催化合成氨的电化学机理. 计算发现, 在Fe2@CN和Co2@CN催化剂上, 其决速步骤的自由能变化分别为0.47和0.78 eV. 对于Fe2@CN, N2电还原反应机制遵循末端路径, 而在Co2@CN上, 其还原过程为末端或混合路径. 由于Co2@CN对析氢反应的抑制效果较好, 因此该电催化材料体系极具竞争力. 相比于Co2@CN, Fe2@CN具有较好的氮气活化性能, 但选择性较差. 另外, N2分子与Fe2@CN和Co2@CN之间存在电荷的接受-给予过程, 这在活化惰性N2分子中氮原子间的三键上起到了关键作用. 第一性原理分子动力学模拟结果表明, Fe2@CN和Co2@CN表现出较高的结构稳定性. 因此, 本文深入探讨了过渡金属原子对掺杂g-CN单层催化剂上的氮气还原效率及机制, 为合理设计该系列的高效、低成本电催化剂提供理论依据.

关键词: 原子对催化剂, 石墨氮化碳单层, 氮还原反应, 二维材料, 密度泛函理论

Abstract:

The development of highly active DFT catalysts for an electrocatalytic N2 reduction reaction (NRR) under mild conditions is a difficult challenge. In this study, a series of atom-pair catalysts (APCs) for an NRR were fabricated using transition-metal (TM) atoms (TM = Sc-Zn) doped into g-CN monolayers. The electrochemical mechanism of APCs for an NRR has been reported by well-defined density functional theory calculations. The calculated limiting potentials were -0.47 and -0.78 V for the Fe2@CN and Co2@CN catalysts, respectively. Owing to its high suppression of hydrogen evolution reactions, Co2@CN is a superior electrocatalytic material for a N2 fixation. Stable Fe2@CN may be a strongly attractive material for an NRR with a relatively low overpotential after an improvement in the selectivity. The two-way charge transfer affirmed the donation-acceptance procedure between N2 and Fe2@CN or Co2@CN, which play a crucial role in the activation of inert N≡N bonds. This study provides an in-depth investigation into atom-pair catalysts and will open up new avenues for highly efficient g-CN-based nanostructures for an NRR.

Key words: Atom-pair catalysts, Graphitic carbon nitride monolayers, Nitrogen reduction reaction, Two-dimensional materials, Density functional theory calculations