催化学报 ›› 2022, Vol. 43 ›› Issue (9): 2363-2387.DOI: 10.1016/S1872-2067(22)64139-1
李楠a,b, 王传义a,b,*(), 章柯a, 吕海钦b, 苑明哲b,#(
), Detlef W. Bahnemanna,c,d,$(
)
收稿日期:
2022-04-11
接受日期:
2022-05-30
出版日期:
2022-09-18
发布日期:
2022-07-20
通讯作者:
王传义,苑明哲,Detlef W. Bahnemann
基金资助:
Nan Lia,b, Chuanyi Wanga,b,*(), Ke Zhanga, Haiqin Lvb, Mingzhe Yuanb,#(
), Detlef W. Bahnemanna,c,d,$(
)
Received:
2022-04-11
Accepted:
2022-05-30
Online:
2022-09-18
Published:
2022-07-20
Contact:
Chuanyi Wang, Mingzhe Yuan, Detlef W. Bahnemann
About author:
Prof. Chuanyi Wang is a distinguished professor at Shaanxi University of Science & Technology (SUST), China. Before moving to SUST in 2017, he was a distinguished professor of Chinese Academy of Sciences (CAS), serving as Director of Laboratory of Environmental Science & Technology of Xinjiang Technical Institute of Physics & Chemistry, CAS (2010‒2017). He obtained his Ph.D. degree from Institute of Photographic Chemistry of CAS in 1998, worked in Germany as an Alexander von Humboldt research fellow with Prof. Detlef W. Bahnemann from 1999 to 2000, and then worked in USA (Tufts University and Missouri University-Kansas City) as a research faculty from 2000 to 2010. Currently, Dr. Wang also serves as an associate editor or editorial board member for several international journals. His research interest covers eco-materials and environmental photocatalysis. By far, he has published over 180 papers in peer reviewed journals.Supported by:
摘要:
氮氧化物NOx会引起酸雨、光化学烟雾等环境问题, 危害人类身体健康和生存环境. 环境NOx污染中, NO约占95%. 当NO浓度低于ppm级时, 它可以长期稳定地存在于空气中. 同时, “富煤、贫油、少气”仍然是我国能源发展的基本现状, 煤炭在燃烧过程中会释放SO2, H2S, NO等多种有害物质. 中国在第75届联合国大会上提出力争2030年实现碳达峰, 2060年实现碳中和的目标. 因此, 如何降低NO等污染物及其在处理过程中的能耗已成为目前面临的重要挑战. 然而, 传统的物理或化学方法难以处理低浓度的NO, 对设备要求高且成本效益不佳. 光催化技术作为一种以半导体为催化剂, 以光为驱动力的高效环保净化技术, 能在光激发下产生活性自由基, 将低浓度的NO转化为无毒的硝酸盐或氮气, 这对优化我国能源结构, 实现碳达峰和碳中和的战略目标具有重要意义.
本文概述了目前光催化转化NO的三种方式, 即光催化氧化、光催化还原和光催化直接分解的基本原理和最新进展. 其中, 光催化氧化NO是当前的研究热点, 本文对其研究进展进行了详细总结. 人们广泛研究了使用铋基材料、石墨相氮化碳和二氧化钛等材料光催化转化NO, 相关催化材料的开发主要从提高材料光利用率和抑制电子空穴复合两方面进行, 采用的改性手段包括晶面调控、表面修饰、构建异质结和元素掺杂等. 除了催化剂本身, 湿度和光照强度等条件对催化效率的影响也很大. 此外, 实时监测光催化反应过程, 明确NO在催化剂表面的吸附、活化与转化过程, 探索催化剂的电子结构及载流子迁移路径, 掌握表面活性位点的微观结构特性, 将为开发新型高效光催化剂提供更多的科学依据. 因此, 从实验和理论出发, 详细讨论了原位红外等技术和第一性原理计算在光催化转化NO中的应用实例和应用方法, 从而更好地阐明反应机理.
本文还对当前ppb级NO处理所面临的挑战和未来发展加以展望和总结, 实验室条件和实际应用条件差距很大, 如何才能使材料在实际应用过程中具有较好且稳定的光催化效果, 早日走出实验室, 实现应用是目前面临的一大难题. 但可以预见的是, 半导体光催化技术在污染防治和生态环境保护方面将发挥越来越重要的作用.
李楠, 王传义, 章柯, 吕海钦, 苑明哲, Detlef W. Bahnemann. 光催化转化低浓度NO的进展与展望[J]. 催化学报, 2022, 43(9): 2363-2387.
Nan Li, Chuanyi Wang, Ke Zhang, Haiqin Lv, Mingzhe Yuan, Detlef W. Bahnemann. Progress and prospects of photocatalytic conversion of low-concentration NOx[J]. Chinese Journal of Catalysis, 2022, 43(9): 2363-2387.
Photocatalyst (dosage) | Irradiation condition | Reactor volume (flow rate) | NO concentration (humidity) | Maximum efficiency | Ref. | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
LaFeO3/SrTiO3 (0.1 g) | 300 W Xenon lamp, λ ≥ 420 nm (28.93 mW cm-2) | 4.5 L (3 L min-1) | 400 ppb (30 ± 5%) | 40% | [ | |||||||||
SrTiO3/SrCO3 (0.05 g) | 300 W Xenon lamp, λ ≥ 420 nm | 0.785 L | ppb | 47% | [ | |||||||||
Na0.5Bi0.5TiO3 (0.1 g) | 300 W tungsten halogen lamp, λ ≥ 420 nm | 4.5 L (4 L min-1) | 400 ppb (70%) | 200 ppb min-1 | [ | |||||||||
Pb2Bi4Ti5O18 (0.05 g) | 300 W Xenon lamp, λ ≥ 420 nm | 1 L min-1 | 500 ppb | 50.3% | [ | |||||||||
Pd/PdO/β-Bi2O3 (0.05 g) | Xenon lamp, λ ≥ 420 nm | 4.5 L | 430 ppb | 47.6% | [ | |||||||||
SrBi2Ta2O9 (0.05 g) | 300 W Xenon lamp | 0.35 L (1.7 L min-1) | 600 ppb (50%) | 51% | [ | |||||||||
BiOI/ZnWO4 (0.1 g) | 300 W Xenon lamp, λ ≥ 420 nm (35 mW cm-2) | 4.5 L | 430 ppb (30±5%) | 32.32% | [ | |||||||||
Bi2Ti2O7/CaTiO3 (0.05 g) | 300 W Xenon lamp, λ ≥ 420 nm | 4.5 L (1 L min-1) | 600 ppb | 59% | [ | |||||||||
S-scheme Bi2Ti2O7/CaTiO3 (0.05 g) | 300 W Xenon lamp, λ ≥ 420 nm | 4.5 L (1 L min-1) | 600 ppb | 77.7% | [ | |||||||||
BP/monolayer Bi2WO6 (0.08 g) | 300 W Xenon lamp | 2.26 L (1.2 L min-1) | 600 ppb (50%) | 67 % | [ | |||||||||
Bi0@Bi2WO6‒x | visible light irradiation, λ ≥ 420 nm | — | — | 53.4% | [ | |||||||||
Bi2WO6-Ovs (0.2 g) | 150 W tungsten halogen lamp, λ ≥ 420 nm | 4.5 L (2.4 L min-1) | 550 ppb | 55% | [ | |||||||||
Bi@OV-Bi2O2CO3 (0.2 g) | 150 W tungsten halogen lamp, λ ≥ 420 nm | 4.5 L (2.4 L min-1) | 500 ppb (50%) | 40.8% | [ | |||||||||
OV-Bi2O2CO3 (0.2 g) | 150 W tungsten halogen lamp, λ ≥ 420 nm | 4.5 L (2.4 L min-1) | 600 ppb | 32% | [ | |||||||||
Bi/(BiO)2CO3 (0.2 g) | 100 W tungsten halogen lamp, λ ≥ 420 nm | 4.5 L (2.4 L min-1 and 15 mL min-1) | 600 ppb (50%) | 58% | [ | |||||||||
Ag clusters-grafted (BiO)2CO3 (0.1 g) | 150 W tungsten halogen lamp, λ ≥ 420 nm (0.16 W cm-2) | 4.5 L (3.3 L min-1) | 550 ppb (60%) | 52.8% | [ | |||||||||
(BiO)2CO3-BiO2-x-graphene (0.1 g) | 300 W Xenon lamp | 4.5 L | 430 ppb (30±5%) | 54% | [ | |||||||||
Bi2O2CO3/Bi4O5Br2 (0.108 g) | 300 W Xenon lamp | 4.5 L | 430 ppb (30±5%) | 53.2% | [ | |||||||||
(BiO)2CO3/MoS2 (0.2 g) | 150 W tungsten halogen lamp, λ > 420 nm (0.16 W cm-2) | 4.5 L (2.4 L min-1 and 15 mL min-1) | 600 ppb (50%) | 57% | [ | |||||||||
Bi2O2CO3-MoS2-carbon nanofibers (0.15 g) | Xenon lamp, λ ≥ 420 nm | 1.6 L (2.4 L min-1) | 600 ppb (50%) | 68% | [ | |||||||||
Bi2O2CO3-g-C3N4 (0.1 g) | 300 W Xenon lamp, λ ≥ 420 nm | 4.5 L (3 L min-1) | 400 ppb (70%) | 35% | [ | |||||||||
(BiO)2CO3/graphene (0.1 g) | 100 W tungsten halogen lamp | 4.5 L (2.4 L min-1) | 600 ppb (70%) | 63.5% | [ | |||||||||
Bi-BiPO4 (0.1 g) | 300 W Xenon lamp | 0.40 L (1.2 L min-1) | 400 ppb | 32.8% | [ | |||||||||
Bi @Bi2O2SiO3 (0.2 g) | 150 W tungsten halogen lamp, λ ≥ 420 nm (0.16 W cm-2) | 4.5 L (2.4 L min-1 and 15 mL min-1) | 450 ppb | 50.2% | [ | |||||||||
Bi4MoO9/Bi (0.2 g) | 150 W tungsten halogen lamp, λ ≥ 420 nm | 4.5 L (2.4 L min-1 and 15 mL min-1) | 550 ppb (50%) | 57.2% | [ | |||||||||
OV Bi2MoO6 (0.2 g) | 150 W tungsten halogen lamp, λ ≥ 420 nm | 4.5 L | 500 ppb | 54% | [ | |||||||||
Bi/Bi2MoO6 (0.2 g) | 150 W tungsten halogen lamp, λ ≥ 420 nm | 4.5 L (2.4 L min-1 and 15 mL min-1) | 600 ppb (50%) | 68.1% | [ | |||||||||
P123-Bi@Bi2O3 (0.1 g) | 300 W Xenon lamp, λ ≥ 420 nm (28.50 mW cm-2) | 4.5 L (3 L min-1) | 400 ppb | 41% | [ | |||||||||
Bi@BiOCl (0.1 g) | 150 W tungsten halogen lamp, λ ≥ 420 nm | 4.5 L (2.4 L min-1 and 15 mL min-1) | 600 ppb | 67.5% | [ | |||||||||
Photocatalyst (dosage) | Irradiation condition | Reactor volume (flow rate) | NO concentration (humidity) | Maximum efficiency | Ref. | |||||||||
Bi/ BiOCl/C (0.2 g) | 150 W tungsten halogen lamp, λ ≥ 420 nm | — | ppb level | 53.0% | [ | |||||||||
BiOCl/Bi12O17Cl2 (0.2 g) | 150 W tungsten halogen lamp, λ ≥ 420 nm | 4.5 L (2.4 L min‒1) | 500 ppb (50%) | 37.2% | [ | |||||||||
Bi/GO (0.2 g) | 8 W UV lamp, λ = 280 nm | 4.5 L (2.4 L min-1 and 15 mL min‒1) | 660 ppb (50%) | 50.2% | [ | |||||||||
Bi-NPs@GO (0.2 g) | 15 W UV lamp, 280-320 nm | 4.5 L (2.4 L min-1) (A sampling rate = 1.0 L min‒1) | 500 ppb (50%) | 42.3% | [ | |||||||||
Ag/AgCl@BiOCl/Bi12O17Cl2 (0.2g) | 150 W tungsten halogen lamp, λ ≥ 420 nm | 4.5 L (2.4 L min-1) | 500 ppb (50%) | 49.5% | [ | |||||||||
CaSO4-BiOI (0.2g) | visible light region (420-780 nm) | — | — | 54.4% | [ | |||||||||
BiOI (0.15 g) | LED lamp, λ = 448 nm | 4.5 L (1 L min-1) | 600 ppb | 65% | [ | |||||||||
Bi@BiOI (0.1g) | 150 W halogen tungsten lamp, λ ≥ 420 nm | 4.5 L (2.4 L min-1 and 15 mL min-1) | 600 ppb | 40.8% | [ | |||||||||
I-doped BiOIO3/g-C3N4 (0.1g) | 300 W Xenon lamp | 2.26 L (1.2 L min-1) | 600 ppb | 57% | [ | |||||||||
Sb2WO6/g-C3N4 (0.05g) | Xenon lamp | 8.4 L | 400 ppb | 68% | [ | |||||||||
Bi4O5Br2/GO (0.15g) | 500 W Xeon lamp, 420-780nm (174 mW·cm‒2) | 2.0 L (1.8 L min-1) | 560 ppb (50%) | 51.7% | [ | |||||||||
BiOBr/C3N4 (0.1g) | 100 W tungsten halogen lamp, λ > 420 nm | 4.5 L (2.4 L min-1) | 660 ppb (40-80%) | 32.7% | [ | |||||||||
BiOBr-graphene (0.1g) | 300 W tungsten halogen lamp, λ ≥ 420 nm | 4.5 L (4 L min-1) (a sampling rate = 0.7 L min-1) | 400 ppb (70%) | 40% | [ | |||||||||
WO3/Bi4O5Br2 (0.2 g) | 500 W Xenon lamp (λ = 420-780 nm) | 2.0 L (1.8 L min-1) (a sampling rate = 1.2 L min-1) | 500 ppb (50%) | 50% | [ | |||||||||
Bi0/CeO2-δ (0.1g) | 300 W Xenon lamp, λ ≥ 420 nm | 4.5 L | 430 ppb | 43.7% | [ | |||||||||
Br-BiOCOOH (0.1g) | 150 W tungsten halogen lamp, λ ≥ 420 nm | 4.5 L (2.4 L min-1) (a sampling rate = 1.0 L min-1) | 550 ppb (60%) | 37.8% | [ | |||||||||
Bi2Sn2O7 (0.2g) | 300 W Xenon arc lamp | 4.5 L (3 L min-1) | 400 ppb (30±5%) | 37% | [ | |||||||||
Bi/g-C3N4 (0.2g) | 150 W tungsten halogen lamp, λ ≥ 420 nm | 4.5 L (2.4 L min-1) (a sampling rate = 1.0 L min-1) | 500 ppb (50%) | 54.8% | [ | |||||||||
Bi-CN (0.2g) | LED lamp, λ = 448 nm | 4.5 L (1.0 L min-1) | 600 ppb | 70.4% | [ | |||||||||
g-C3N4-Co3O4 (0.1g) | 300 W Xenon lamp | 2.26 L (1.2 L min-1) | 600 ppb | 57% | [ | |||||||||
PICN(S)GA-75 aerogel (0.08g) | 300 W Xenon lamp (simulated solar light) | 2.26 L (2.0 L min-1) | 600 ppb | 66% | [ | |||||||||
Ag/g-C3N4 (0.2g) | 300 W tungsten halogen lamp, λ = 420 nm | 4.5 L (2.4 L min-1 and 15 mL min-1) (a sampling rate = 1.0 L min-1) | 600 ppb (50%) | 54.3% | [ | |||||||||
g-C3N4/Ti3+ self-doped TiO2 | 300 W Xenon lamp, λ ≥ 420 nm | 0.85L (1.2 L min-1) | 400 ppb (50%) | 25.8% | [ | |||||||||
celestite/g-C3N4 (0.05g) | 30 W LED lamp | 0.785 L (1.0 L min-1) | 600 ppb | 67.5% | [ | |||||||||
g-C3N4 nanosheets (0.2g) | LED lamp, λ > 420 nm (0.16 W cm-2) | 4.5 L (1.0 L min-1) | 400-600 ppb | 65% | [ | |||||||||
g-C3N4/K,Na (0.2g) | 150 W tungsten halogen lamp, λ ≥ 420 nm | 4.5 L (2.4 L min-1 and 15 mL min-1) | 600 ppb (50%) | 36.8% | [ | |||||||||
Au-CMTKP-g-C3N4 | 150 W tungsten halogen lamp, λ ≥ 420 nm (0.18 W cm-2) | 40 cm × 6 cm (3.0 L min-1) | 300 ppb | 57.3% ± 0.46% | [ | |||||||||
g-C3N4-H (0.1g) | 150 W commercial tungsten halogen lamp, λ > 420 nm | 4.5 L | 600 ppb | 41.84% | [ | |||||||||
BaWO4/g-C3N4 (0.1g) | LED lights (12 W), λ > 420 nm | 4.5 L (2.4 L min-1 and 15 mL min-1) (a sampling rate = 1.0 L min-1) | 520 ppb | 42.17% | [ | |||||||||
g-C3N4 (0.05 g) | Xenon lamp, λ > 420 nm (14 W m-2) | 4.5 L (1.0 L min-1) | 600 ppb | 80% | [ | |||||||||
Sr doped g-C3N4 (0.05g) | 300 W Xenon lamp, λ > 420 nm | 0.785 L | 600 ppb | 55% | [ | |||||||||
Ca/g-C3N4 (0.2g) | 150 W tungsten halogen lamp, λ ≥ 420 nm | — | 500 ppb (50%) | 54.78% | [ | |||||||||
Au nanoparticles @g-C3N4 (0.2g) | 150 W halogen tungsten lamp, λ ≥ 420 nm | 4.5 L (2.4 L min-1) | 500 ppb | 41% | [ | |||||||||
g-C3N4 nanosheets (0.1g) | 150 W tungsten halogen lamp, λ ≥ 420 nm | 4.5 L (2.4 L min-1) | 600 ppb (50%) | 33.9% | [ | |||||||||
g-C3N4-TiO2 (0.05g) | 500 W Xenon arc lamp, 420-700 nm (35.8 mW cm-2) | 0.114 L (1.2 L min-1) (a sampling rate = 0.7 L min-1) | 400 ppb (55%) | 44% | [ | |||||||||
AgVO3-g-C3N4 (0.1g) | 300 W Xenon lamp | 2.26 L (1.2 L min-1) | 600 ppb | 65% | [ | |||||||||
PI-g-C3N4 (0.05g) | 300 W Xenon lamp, λ ≥ 420 nm | 0.785 L (1.0 L min-1) | 600 ppb | 47% | [ | |||||||||
CN-Ola (0.1g) | 150 W tungsten halogen lamp | 4.5 L | 500 ppb | 50.4% | [ | |||||||||
O-ACN-Ba (0.2g) | 150 W tungsten halogen lamp, 0.16 W cm-2 | 4.5 L | 500 ppb | 56.4% | [ | |||||||||
g-C3N4 nanosheets (0.2 g) | LED lamp, λ > 400 nm | 4.5 L | 600 ppb | 35.8% | [ | |||||||||
Photocatalyst (dosage) | Irradiation conditions | Reactor volume (flow rate) | NO concentration (humidity) | Maximum efficiency | Ref. | |||||||||
BP/CN/HKUST (0.15g) | 300 W Xenon lamp | 2.26 L (1.2 L min-1) | 600 ppb (50%) | 74% | [ | |||||||||
Defective Borate decorated Polymer-CN (0.2g) | 300W halogen lamp, 420‒700 nm | 4.5 L (2.4 mL min-1) | 500 ppb | 44.1% | [ | |||||||||
g-C3N4 (0.05g) | Xenon lamp | 1.6 L (2.4 L min-1) | 600 ppb | 68% | [ | |||||||||
g-C3N4 | metal halide lamp | 4.5 L | 1000 ppb (50%) | > 29.26% | [ | |||||||||
Hollow Porous Carbon Nitride | 20 W energy saving lamp | 1.6 L (2.4 L min-1) | 600 ppb (50%) | 64% | [ | |||||||||
g-C3N4 (0.2g) | 150 W tungsten halogen lamp (0.16 W cm-2) | 4.5 L (2.4 L min-1 and 24 mL min-1) | 550 ppb (50%) | 45% | [ | |||||||||
Type-I and Type-II g-C3N4/g-C3N4 metal-free heterostructures (0.1g) | 150 W tungsten halogen lamp, λ ≥ 420 nm | 4.5 L (2.4 L min-1) | 600 ppb (50%) | 41.3% | [ | |||||||||
α-Fe2O3/g-C3N4 (0.1g) | 300W Xenon lamp, λ ≥ 400 nm | 2.26 L (1.2 L min-1) | 600 ppb (50%) | 60.8% | [ | |||||||||
g-C3N4/SnO2 (0.2g) | 300 W Osram, λ ≥ 420 nm | 3.0 L (3.0 L min-1) (a sampling rate = 0.6 L min-1) | 500 ppb | 44.17% | [ | |||||||||
g-C3N4/Al2O3 | two 13 W domestic energy-saving lamps | 4.5 L (2.4 L min-1) | 600 ppb (50%) | 77.1% | [ | |||||||||
g-C3N4/TiO2 (0.1 g) | 300 W Xenon lamp (79 mW cm-2) | 4.5 L (3.0 L min-1) | 400 ppb | 38.9% | [ | |||||||||
TiO2-C3N5 (0.02 g) | 300 W Xenon lamp, λ > 400 nm | (0.6 L min-1 and 30 mL min-1) | 450 ppb | 67.1% | [ | |||||||||
Bi/TiO2 (0.2 g) | 150 W tungsten halogen lamp, λ ≥ 420 nm | 4.5 L (2.4 L min-1 and 15 mL min-1) | 600 ppb (50%) | 48.2% | [ | |||||||||
Ti3+/TiO2 (0.1g) | 30 W visible LED | 4.5 L (1.0 L min-1) | 600 ppb | 55.0% | [ | |||||||||
TiO2-Ovs (0.03 g) | 300 W Xenon lamp, λ ≥ 420 nm | 0.5 L (1.0 L min-1) | 600 ppb | 60% | [ | |||||||||
Fe/TiO2 (0.2g) | 30 W LED lamp, λ > 400 nm | (1.0 L min-1) | 600 ppb (50%) | 47.91% | [ | |||||||||
Fe/TiO2 (0.05g) | 500 W Xenon arc lamp, 420-700 nm (35.8 mW cm-2) | (1.2 L min-1) (a sampling rate = 0.7 L min-1) | 400 ppb (55%) | 60% | [ | |||||||||
Au/CeO2-TiO2 (0.2 g) | two tungsten halogen lamps (150 W)/ eight mercury lamps (4 W, 365 nm) | 18 L (4.0 L min-1) | 500 ppb (83%) | 85% (UV lamp) 58% (tungsten lamp) | [ | |||||||||
Au/TiO2 (0.1 g) | 300 W tungsten halogen lamp, λ ≥ 400 nm | 4.5 L (4.0 L min-1) | 400 ppb (70%) | 31% | [ | |||||||||
Ag-TiO2-x (0.05 g) | 300 W Xenon lamp, λ ≥ 420 nm | 0.785 L | 450 ppb | 45% | [ | |||||||||
Ti3+-TiO2 (0.1 g) | 300 W Xenon arclamp, λ > 420 nm | 4.5 L (3.0 L min-1) | 420 ppb | 60% | [ | |||||||||
TiO2 | Osram Ultra-vitalux 300 W (UV), (43.4 W cm-2) | 7.4 L (0.78 L min-1) | 500 ppb (50 ± 10%) | 53% | [ | |||||||||
TiO2 based Z-scheme photocatalyst (0.2 g) | LED lamp emitted manily at 448 nm | 4.5 L (1.0 L min-1) | 600 ppb | 31.2% | [ | |||||||||
Fe-based MOFs (0.1 g) | 150 W commercial xenon arc lamp, λ > 400 nm (100 mW cm-2) | 0.24 L | 350‒400 ppb (50%) | 76% | [ | |||||||||
Zn/Al -layered double hydroxides (0.5 g) | artificial sunlight (25 and 580 W m-2 for UV and visible) | 50 × 50 mm | 150 ppb and 600 ppb (50 ± 5%) | 55% | [ | |||||||||
ZnWO4 (0.1g) | 300 W Xenon lamp | 4.5 L (3.0 L min-1) (a sampling rate = 0.7 L min-1) | 400 ppb (70%) | 40% | [ | |||||||||
α-Fe2O3/SiO2 (0.5 g) | Xenon lamp (25 and 580 W/m2 for UV and visible) | (0.3 L min-1) | 150 ppb (50± 5%) | 24% | [ | |||||||||
CQDs-FeOOH (0.1 g) | 300 W Xenon lamp, λ > 420 nm | 4.5 L (3.0 L min-1) | 400 ppb | 34% | [ | |||||||||
NH2-UiO-66(Zr) (0.2 g) | 150 W tungsten lamps, λ ≥ 420 nm | (4.0 L min-1) | 550 ppb (70%) | 88% | [ | |||||||||
Ni/LDH-X (0.4 g) | 8 W commercial UV lamp | 4.5 L (2.4 mL min-1) | 500 ppb | 42.1% | [ | |||||||||
I-BiOCOOH (0.1g) | 150 W tungsten halogen lamp | 4.5 L (3.3 L min-1) (a sampling rate = 1.0 L min-1) | 550 ppb (60%) | 49.7% | [ |
Table 1 Performance summary of photocatalytic oxidation for NO removal.
Photocatalyst (dosage) | Irradiation condition | Reactor volume (flow rate) | NO concentration (humidity) | Maximum efficiency | Ref. | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
LaFeO3/SrTiO3 (0.1 g) | 300 W Xenon lamp, λ ≥ 420 nm (28.93 mW cm-2) | 4.5 L (3 L min-1) | 400 ppb (30 ± 5%) | 40% | [ | |||||||||
SrTiO3/SrCO3 (0.05 g) | 300 W Xenon lamp, λ ≥ 420 nm | 0.785 L | ppb | 47% | [ | |||||||||
Na0.5Bi0.5TiO3 (0.1 g) | 300 W tungsten halogen lamp, λ ≥ 420 nm | 4.5 L (4 L min-1) | 400 ppb (70%) | 200 ppb min-1 | [ | |||||||||
Pb2Bi4Ti5O18 (0.05 g) | 300 W Xenon lamp, λ ≥ 420 nm | 1 L min-1 | 500 ppb | 50.3% | [ | |||||||||
Pd/PdO/β-Bi2O3 (0.05 g) | Xenon lamp, λ ≥ 420 nm | 4.5 L | 430 ppb | 47.6% | [ | |||||||||
SrBi2Ta2O9 (0.05 g) | 300 W Xenon lamp | 0.35 L (1.7 L min-1) | 600 ppb (50%) | 51% | [ | |||||||||
BiOI/ZnWO4 (0.1 g) | 300 W Xenon lamp, λ ≥ 420 nm (35 mW cm-2) | 4.5 L | 430 ppb (30±5%) | 32.32% | [ | |||||||||
Bi2Ti2O7/CaTiO3 (0.05 g) | 300 W Xenon lamp, λ ≥ 420 nm | 4.5 L (1 L min-1) | 600 ppb | 59% | [ | |||||||||
S-scheme Bi2Ti2O7/CaTiO3 (0.05 g) | 300 W Xenon lamp, λ ≥ 420 nm | 4.5 L (1 L min-1) | 600 ppb | 77.7% | [ | |||||||||
BP/monolayer Bi2WO6 (0.08 g) | 300 W Xenon lamp | 2.26 L (1.2 L min-1) | 600 ppb (50%) | 67 % | [ | |||||||||
Bi0@Bi2WO6‒x | visible light irradiation, λ ≥ 420 nm | — | — | 53.4% | [ | |||||||||
Bi2WO6-Ovs (0.2 g) | 150 W tungsten halogen lamp, λ ≥ 420 nm | 4.5 L (2.4 L min-1) | 550 ppb | 55% | [ | |||||||||
Bi@OV-Bi2O2CO3 (0.2 g) | 150 W tungsten halogen lamp, λ ≥ 420 nm | 4.5 L (2.4 L min-1) | 500 ppb (50%) | 40.8% | [ | |||||||||
OV-Bi2O2CO3 (0.2 g) | 150 W tungsten halogen lamp, λ ≥ 420 nm | 4.5 L (2.4 L min-1) | 600 ppb | 32% | [ | |||||||||
Bi/(BiO)2CO3 (0.2 g) | 100 W tungsten halogen lamp, λ ≥ 420 nm | 4.5 L (2.4 L min-1 and 15 mL min-1) | 600 ppb (50%) | 58% | [ | |||||||||
Ag clusters-grafted (BiO)2CO3 (0.1 g) | 150 W tungsten halogen lamp, λ ≥ 420 nm (0.16 W cm-2) | 4.5 L (3.3 L min-1) | 550 ppb (60%) | 52.8% | [ | |||||||||
(BiO)2CO3-BiO2-x-graphene (0.1 g) | 300 W Xenon lamp | 4.5 L | 430 ppb (30±5%) | 54% | [ | |||||||||
Bi2O2CO3/Bi4O5Br2 (0.108 g) | 300 W Xenon lamp | 4.5 L | 430 ppb (30±5%) | 53.2% | [ | |||||||||
(BiO)2CO3/MoS2 (0.2 g) | 150 W tungsten halogen lamp, λ > 420 nm (0.16 W cm-2) | 4.5 L (2.4 L min-1 and 15 mL min-1) | 600 ppb (50%) | 57% | [ | |||||||||
Bi2O2CO3-MoS2-carbon nanofibers (0.15 g) | Xenon lamp, λ ≥ 420 nm | 1.6 L (2.4 L min-1) | 600 ppb (50%) | 68% | [ | |||||||||
Bi2O2CO3-g-C3N4 (0.1 g) | 300 W Xenon lamp, λ ≥ 420 nm | 4.5 L (3 L min-1) | 400 ppb (70%) | 35% | [ | |||||||||
(BiO)2CO3/graphene (0.1 g) | 100 W tungsten halogen lamp | 4.5 L (2.4 L min-1) | 600 ppb (70%) | 63.5% | [ | |||||||||
Bi-BiPO4 (0.1 g) | 300 W Xenon lamp | 0.40 L (1.2 L min-1) | 400 ppb | 32.8% | [ | |||||||||
Bi @Bi2O2SiO3 (0.2 g) | 150 W tungsten halogen lamp, λ ≥ 420 nm (0.16 W cm-2) | 4.5 L (2.4 L min-1 and 15 mL min-1) | 450 ppb | 50.2% | [ | |||||||||
Bi4MoO9/Bi (0.2 g) | 150 W tungsten halogen lamp, λ ≥ 420 nm | 4.5 L (2.4 L min-1 and 15 mL min-1) | 550 ppb (50%) | 57.2% | [ | |||||||||
OV Bi2MoO6 (0.2 g) | 150 W tungsten halogen lamp, λ ≥ 420 nm | 4.5 L | 500 ppb | 54% | [ | |||||||||
Bi/Bi2MoO6 (0.2 g) | 150 W tungsten halogen lamp, λ ≥ 420 nm | 4.5 L (2.4 L min-1 and 15 mL min-1) | 600 ppb (50%) | 68.1% | [ | |||||||||
P123-Bi@Bi2O3 (0.1 g) | 300 W Xenon lamp, λ ≥ 420 nm (28.50 mW cm-2) | 4.5 L (3 L min-1) | 400 ppb | 41% | [ | |||||||||
Bi@BiOCl (0.1 g) | 150 W tungsten halogen lamp, λ ≥ 420 nm | 4.5 L (2.4 L min-1 and 15 mL min-1) | 600 ppb | 67.5% | [ | |||||||||
Photocatalyst (dosage) | Irradiation condition | Reactor volume (flow rate) | NO concentration (humidity) | Maximum efficiency | Ref. | |||||||||
Bi/ BiOCl/C (0.2 g) | 150 W tungsten halogen lamp, λ ≥ 420 nm | — | ppb level | 53.0% | [ | |||||||||
BiOCl/Bi12O17Cl2 (0.2 g) | 150 W tungsten halogen lamp, λ ≥ 420 nm | 4.5 L (2.4 L min‒1) | 500 ppb (50%) | 37.2% | [ | |||||||||
Bi/GO (0.2 g) | 8 W UV lamp, λ = 280 nm | 4.5 L (2.4 L min-1 and 15 mL min‒1) | 660 ppb (50%) | 50.2% | [ | |||||||||
Bi-NPs@GO (0.2 g) | 15 W UV lamp, 280-320 nm | 4.5 L (2.4 L min-1) (A sampling rate = 1.0 L min‒1) | 500 ppb (50%) | 42.3% | [ | |||||||||
Ag/AgCl@BiOCl/Bi12O17Cl2 (0.2g) | 150 W tungsten halogen lamp, λ ≥ 420 nm | 4.5 L (2.4 L min-1) | 500 ppb (50%) | 49.5% | [ | |||||||||
CaSO4-BiOI (0.2g) | visible light region (420-780 nm) | — | — | 54.4% | [ | |||||||||
BiOI (0.15 g) | LED lamp, λ = 448 nm | 4.5 L (1 L min-1) | 600 ppb | 65% | [ | |||||||||
Bi@BiOI (0.1g) | 150 W halogen tungsten lamp, λ ≥ 420 nm | 4.5 L (2.4 L min-1 and 15 mL min-1) | 600 ppb | 40.8% | [ | |||||||||
I-doped BiOIO3/g-C3N4 (0.1g) | 300 W Xenon lamp | 2.26 L (1.2 L min-1) | 600 ppb | 57% | [ | |||||||||
Sb2WO6/g-C3N4 (0.05g) | Xenon lamp | 8.4 L | 400 ppb | 68% | [ | |||||||||
Bi4O5Br2/GO (0.15g) | 500 W Xeon lamp, 420-780nm (174 mW·cm‒2) | 2.0 L (1.8 L min-1) | 560 ppb (50%) | 51.7% | [ | |||||||||
BiOBr/C3N4 (0.1g) | 100 W tungsten halogen lamp, λ > 420 nm | 4.5 L (2.4 L min-1) | 660 ppb (40-80%) | 32.7% | [ | |||||||||
BiOBr-graphene (0.1g) | 300 W tungsten halogen lamp, λ ≥ 420 nm | 4.5 L (4 L min-1) (a sampling rate = 0.7 L min-1) | 400 ppb (70%) | 40% | [ | |||||||||
WO3/Bi4O5Br2 (0.2 g) | 500 W Xenon lamp (λ = 420-780 nm) | 2.0 L (1.8 L min-1) (a sampling rate = 1.2 L min-1) | 500 ppb (50%) | 50% | [ | |||||||||
Bi0/CeO2-δ (0.1g) | 300 W Xenon lamp, λ ≥ 420 nm | 4.5 L | 430 ppb | 43.7% | [ | |||||||||
Br-BiOCOOH (0.1g) | 150 W tungsten halogen lamp, λ ≥ 420 nm | 4.5 L (2.4 L min-1) (a sampling rate = 1.0 L min-1) | 550 ppb (60%) | 37.8% | [ | |||||||||
Bi2Sn2O7 (0.2g) | 300 W Xenon arc lamp | 4.5 L (3 L min-1) | 400 ppb (30±5%) | 37% | [ | |||||||||
Bi/g-C3N4 (0.2g) | 150 W tungsten halogen lamp, λ ≥ 420 nm | 4.5 L (2.4 L min-1) (a sampling rate = 1.0 L min-1) | 500 ppb (50%) | 54.8% | [ | |||||||||
Bi-CN (0.2g) | LED lamp, λ = 448 nm | 4.5 L (1.0 L min-1) | 600 ppb | 70.4% | [ | |||||||||
g-C3N4-Co3O4 (0.1g) | 300 W Xenon lamp | 2.26 L (1.2 L min-1) | 600 ppb | 57% | [ | |||||||||
PICN(S)GA-75 aerogel (0.08g) | 300 W Xenon lamp (simulated solar light) | 2.26 L (2.0 L min-1) | 600 ppb | 66% | [ | |||||||||
Ag/g-C3N4 (0.2g) | 300 W tungsten halogen lamp, λ = 420 nm | 4.5 L (2.4 L min-1 and 15 mL min-1) (a sampling rate = 1.0 L min-1) | 600 ppb (50%) | 54.3% | [ | |||||||||
g-C3N4/Ti3+ self-doped TiO2 | 300 W Xenon lamp, λ ≥ 420 nm | 0.85L (1.2 L min-1) | 400 ppb (50%) | 25.8% | [ | |||||||||
celestite/g-C3N4 (0.05g) | 30 W LED lamp | 0.785 L (1.0 L min-1) | 600 ppb | 67.5% | [ | |||||||||
g-C3N4 nanosheets (0.2g) | LED lamp, λ > 420 nm (0.16 W cm-2) | 4.5 L (1.0 L min-1) | 400-600 ppb | 65% | [ | |||||||||
g-C3N4/K,Na (0.2g) | 150 W tungsten halogen lamp, λ ≥ 420 nm | 4.5 L (2.4 L min-1 and 15 mL min-1) | 600 ppb (50%) | 36.8% | [ | |||||||||
Au-CMTKP-g-C3N4 | 150 W tungsten halogen lamp, λ ≥ 420 nm (0.18 W cm-2) | 40 cm × 6 cm (3.0 L min-1) | 300 ppb | 57.3% ± 0.46% | [ | |||||||||
g-C3N4-H (0.1g) | 150 W commercial tungsten halogen lamp, λ > 420 nm | 4.5 L | 600 ppb | 41.84% | [ | |||||||||
BaWO4/g-C3N4 (0.1g) | LED lights (12 W), λ > 420 nm | 4.5 L (2.4 L min-1 and 15 mL min-1) (a sampling rate = 1.0 L min-1) | 520 ppb | 42.17% | [ | |||||||||
g-C3N4 (0.05 g) | Xenon lamp, λ > 420 nm (14 W m-2) | 4.5 L (1.0 L min-1) | 600 ppb | 80% | [ | |||||||||
Sr doped g-C3N4 (0.05g) | 300 W Xenon lamp, λ > 420 nm | 0.785 L | 600 ppb | 55% | [ | |||||||||
Ca/g-C3N4 (0.2g) | 150 W tungsten halogen lamp, λ ≥ 420 nm | — | 500 ppb (50%) | 54.78% | [ | |||||||||
Au nanoparticles @g-C3N4 (0.2g) | 150 W halogen tungsten lamp, λ ≥ 420 nm | 4.5 L (2.4 L min-1) | 500 ppb | 41% | [ | |||||||||
g-C3N4 nanosheets (0.1g) | 150 W tungsten halogen lamp, λ ≥ 420 nm | 4.5 L (2.4 L min-1) | 600 ppb (50%) | 33.9% | [ | |||||||||
g-C3N4-TiO2 (0.05g) | 500 W Xenon arc lamp, 420-700 nm (35.8 mW cm-2) | 0.114 L (1.2 L min-1) (a sampling rate = 0.7 L min-1) | 400 ppb (55%) | 44% | [ | |||||||||
AgVO3-g-C3N4 (0.1g) | 300 W Xenon lamp | 2.26 L (1.2 L min-1) | 600 ppb | 65% | [ | |||||||||
PI-g-C3N4 (0.05g) | 300 W Xenon lamp, λ ≥ 420 nm | 0.785 L (1.0 L min-1) | 600 ppb | 47% | [ | |||||||||
CN-Ola (0.1g) | 150 W tungsten halogen lamp | 4.5 L | 500 ppb | 50.4% | [ | |||||||||
O-ACN-Ba (0.2g) | 150 W tungsten halogen lamp, 0.16 W cm-2 | 4.5 L | 500 ppb | 56.4% | [ | |||||||||
g-C3N4 nanosheets (0.2 g) | LED lamp, λ > 400 nm | 4.5 L | 600 ppb | 35.8% | [ | |||||||||
Photocatalyst (dosage) | Irradiation conditions | Reactor volume (flow rate) | NO concentration (humidity) | Maximum efficiency | Ref. | |||||||||
BP/CN/HKUST (0.15g) | 300 W Xenon lamp | 2.26 L (1.2 L min-1) | 600 ppb (50%) | 74% | [ | |||||||||
Defective Borate decorated Polymer-CN (0.2g) | 300W halogen lamp, 420‒700 nm | 4.5 L (2.4 mL min-1) | 500 ppb | 44.1% | [ | |||||||||
g-C3N4 (0.05g) | Xenon lamp | 1.6 L (2.4 L min-1) | 600 ppb | 68% | [ | |||||||||
g-C3N4 | metal halide lamp | 4.5 L | 1000 ppb (50%) | > 29.26% | [ | |||||||||
Hollow Porous Carbon Nitride | 20 W energy saving lamp | 1.6 L (2.4 L min-1) | 600 ppb (50%) | 64% | [ | |||||||||
g-C3N4 (0.2g) | 150 W tungsten halogen lamp (0.16 W cm-2) | 4.5 L (2.4 L min-1 and 24 mL min-1) | 550 ppb (50%) | 45% | [ | |||||||||
Type-I and Type-II g-C3N4/g-C3N4 metal-free heterostructures (0.1g) | 150 W tungsten halogen lamp, λ ≥ 420 nm | 4.5 L (2.4 L min-1) | 600 ppb (50%) | 41.3% | [ | |||||||||
α-Fe2O3/g-C3N4 (0.1g) | 300W Xenon lamp, λ ≥ 400 nm | 2.26 L (1.2 L min-1) | 600 ppb (50%) | 60.8% | [ | |||||||||
g-C3N4/SnO2 (0.2g) | 300 W Osram, λ ≥ 420 nm | 3.0 L (3.0 L min-1) (a sampling rate = 0.6 L min-1) | 500 ppb | 44.17% | [ | |||||||||
g-C3N4/Al2O3 | two 13 W domestic energy-saving lamps | 4.5 L (2.4 L min-1) | 600 ppb (50%) | 77.1% | [ | |||||||||
g-C3N4/TiO2 (0.1 g) | 300 W Xenon lamp (79 mW cm-2) | 4.5 L (3.0 L min-1) | 400 ppb | 38.9% | [ | |||||||||
TiO2-C3N5 (0.02 g) | 300 W Xenon lamp, λ > 400 nm | (0.6 L min-1 and 30 mL min-1) | 450 ppb | 67.1% | [ | |||||||||
Bi/TiO2 (0.2 g) | 150 W tungsten halogen lamp, λ ≥ 420 nm | 4.5 L (2.4 L min-1 and 15 mL min-1) | 600 ppb (50%) | 48.2% | [ | |||||||||
Ti3+/TiO2 (0.1g) | 30 W visible LED | 4.5 L (1.0 L min-1) | 600 ppb | 55.0% | [ | |||||||||
TiO2-Ovs (0.03 g) | 300 W Xenon lamp, λ ≥ 420 nm | 0.5 L (1.0 L min-1) | 600 ppb | 60% | [ | |||||||||
Fe/TiO2 (0.2g) | 30 W LED lamp, λ > 400 nm | (1.0 L min-1) | 600 ppb (50%) | 47.91% | [ | |||||||||
Fe/TiO2 (0.05g) | 500 W Xenon arc lamp, 420-700 nm (35.8 mW cm-2) | (1.2 L min-1) (a sampling rate = 0.7 L min-1) | 400 ppb (55%) | 60% | [ | |||||||||
Au/CeO2-TiO2 (0.2 g) | two tungsten halogen lamps (150 W)/ eight mercury lamps (4 W, 365 nm) | 18 L (4.0 L min-1) | 500 ppb (83%) | 85% (UV lamp) 58% (tungsten lamp) | [ | |||||||||
Au/TiO2 (0.1 g) | 300 W tungsten halogen lamp, λ ≥ 400 nm | 4.5 L (4.0 L min-1) | 400 ppb (70%) | 31% | [ | |||||||||
Ag-TiO2-x (0.05 g) | 300 W Xenon lamp, λ ≥ 420 nm | 0.785 L | 450 ppb | 45% | [ | |||||||||
Ti3+-TiO2 (0.1 g) | 300 W Xenon arclamp, λ > 420 nm | 4.5 L (3.0 L min-1) | 420 ppb | 60% | [ | |||||||||
TiO2 | Osram Ultra-vitalux 300 W (UV), (43.4 W cm-2) | 7.4 L (0.78 L min-1) | 500 ppb (50 ± 10%) | 53% | [ | |||||||||
TiO2 based Z-scheme photocatalyst (0.2 g) | LED lamp emitted manily at 448 nm | 4.5 L (1.0 L min-1) | 600 ppb | 31.2% | [ | |||||||||
Fe-based MOFs (0.1 g) | 150 W commercial xenon arc lamp, λ > 400 nm (100 mW cm-2) | 0.24 L | 350‒400 ppb (50%) | 76% | [ | |||||||||
Zn/Al -layered double hydroxides (0.5 g) | artificial sunlight (25 and 580 W m-2 for UV and visible) | 50 × 50 mm | 150 ppb and 600 ppb (50 ± 5%) | 55% | [ | |||||||||
ZnWO4 (0.1g) | 300 W Xenon lamp | 4.5 L (3.0 L min-1) (a sampling rate = 0.7 L min-1) | 400 ppb (70%) | 40% | [ | |||||||||
α-Fe2O3/SiO2 (0.5 g) | Xenon lamp (25 and 580 W/m2 for UV and visible) | (0.3 L min-1) | 150 ppb (50± 5%) | 24% | [ | |||||||||
CQDs-FeOOH (0.1 g) | 300 W Xenon lamp, λ > 420 nm | 4.5 L (3.0 L min-1) | 400 ppb | 34% | [ | |||||||||
NH2-UiO-66(Zr) (0.2 g) | 150 W tungsten lamps, λ ≥ 420 nm | (4.0 L min-1) | 550 ppb (70%) | 88% | [ | |||||||||
Ni/LDH-X (0.4 g) | 8 W commercial UV lamp | 4.5 L (2.4 mL min-1) | 500 ppb | 42.1% | [ | |||||||||
I-BiOCOOH (0.1g) | 150 W tungsten halogen lamp | 4.5 L (3.3 L min-1) (a sampling rate = 1.0 L min-1) | 550 ppb (60%) | 49.7% | [ |
Fig. 4. SEM images of (BiO)2CO3 (a,b) and Bi/(BiO)2CO3 (c,d). (e) Photocatalytic mechanism scheme of Bi/(BiO)2CO3 under visible light irradiation: interface transfer of electrons from (BiO)2CO3 to Bi(I) and local electromagnetic field of Bi(II). Reprinted with permission from Ref. [26]. Copyright 2014, American Chemical Society. (f) Scheme of processes occurring during visible-light-driven photocatalytic NO removal on Bi@Bi2O2SiO3-3. (g) Schematic illustration of the synergistic effects of OVs and Bi metal on the photocatalytic activity. Reprinted with permission from Ref. [35]. Copyright 2018, Elsevier.
Fig. 5. (a) Band diagrams of p-Co3O4 and n-C3N4 before and after contact and photocatalytic mechanism for NO removal by CN-CO-100 composite through p-n junction under visible-light irradiation. Reprinted with permission from Ref. [60]. Copyright 2019, Wiley-VCH. (b) Proposed photocatalytic oxidation NO mechanism for the 10% Bi-CN composite. Reprinted with permission from Ref. [59]. Copyright 2017, Dalian Institute of Chemical Physics, the Chinese Academy of Sciences. (c) Schematic synergy of the size-dependent heterojunction effect and SPR effect of Bi NPs on the photocatalytic activity. Reprinted with permission from Ref. [58]. Copyright 2017, Elsevier. (d) Schematic illustration of the fabrication of AVO-CN-GA composite Reprinted with permission from Ref. [76]. Copyright 2019, Elsevier.
Fig. 6. (a) The light dependent electrochemical current using g-C3N4 and Ns-g-C3N4 coated working electrodes. Reprinted with permission from Ref. [121]. Copyright 2017, Elsevier. (b) Mechanism of simultaneous photo-oxidation and photo-reduction on Ag-TiO2?x. Reprinted with permission from Ref. [100]. Copyright 2017, Elsevier.
Fig. 7. SEM images of Pb2Bi4Ti5O18. (a) Nanospherical; (b) Nanoparticle; (c) Rectangular; (d) Nanosheet. (e) Photocatalytic experiments of NO oxidation over Pb2Bi4Ti5O18 samples and schematic of photocatalytic reactions. Reprinted with permission from Ref. [15]. Copyright 2017, American Chemical Society.
Fig. 8. (a) BET surface areas, pore volume, pore size and optical band. (b) Photocurrent transient responses. (c) EIS Nyquist plots of BSO-x. Reprinted with permission from Ref. [57]. Copyright 2016, American Chemical Society.
Fig. 9. (a) The NO removal efficiency as a function of the (2 0 0)/(0 0 10) peak intensity ratio. (b) computational adsorption models. (c) PL spectra. (d) adsorption energy of NO. Reprinted with permission from Ref. [17]. Copyright 2022, Elsevier.
Fig. 10. UV-vis DRS (a), photoluminescence spectra (b) of CN and Au@CN. Reprinted with permission from Ref. [73]. Copyright 2019, Elsevier. (c) UV-vis DRS of pristine Bi, TiO2 and the BiNPs/TiO2 nanocomposites. Transient photocurrent densities (d), TEM image (e), HRTEM image (f) and higher magnification HRTEM image (g) of the typical Bi-Ti-50 sample. Reprinted with permission from Ref. [93]. Copyright 2016, the Royal Society of Chemistry.
Fig. 11. Schematic diagram for different types of heterojunctions. (a) Type I heterojunction; (b) Type II heterojunction; (c) Type III heterojunction; (d) Z-scheme; (e) p-n heterojunction; (f) Schottky junction. Reprinted with permission from Ref. [145]. Copyright 2020, American Chemical Society. S-scheme heterojunction (g) and Charge-transfer processes (h) in an S-scheme heterojunction. Reprinted with permission from Ref. [146]. Copyright 2020, Elsevier.
Fig. 12. (a) The change mechanism of the morphology of Sx. The red spot represent SrCO3, and the blue spot represent SrTiO3. (b) Photocatalysis mechanism of SrTiO3 decorated with SrCO3 under light irradiation. Reprinted with permission from Ref. [13]. Copyright 2018, Elsevier. (c) Constructing a 2D/2D Bi2O2CO3/Bi4O5Br2 heterostructure as a direct Z-scheme photocatalyst with enhanced photocatalytic activity for NOx removal. Reprinted with permission from Ref. [29]. Copyright 2019, Elsevier.
Fig. 13. (a) Schematic illustration of the fabrication of BOC-MoS2-CNFs, (b) Photocatalytic mechanism of NO removal by BOC-MoS2-CNFs. Reprinted with permission from Ref. [31]. Copyright 2017, Elsevier. (c) Schematic of photocatalytic reactions for the NO removal over 2D/0D g-C3N4/SnO2 S-scheme photocatalyst. Reprinted with permission from Ref. [89]. Copyright 2021, Elsevier.
Fig. 14. (a) Schematic illustration of the fabrication of a honeycomb-like CN isotype heterojunction. (b) Photocatalytic mechanism of NO removal by UT-CN samples under visible-light illumination. Reprinted with permission from Ref. [83]. Copyright 2018, American Chemical Society. (c) Illustration of type I and type II g-C3N4/ g-C3N4 heterostructures working under visible light irradiation. Reprinted with permission from Ref. [87]. Copyright 2015, the Royal Society of Chemistry.
Fig. 15. (a) A possible photocatalytic mechanism for efficient treatment of NOx and hydrogen production of BaWO4/g-C3N4 under visible light irradiation. (b) Photocatalytic activity of NO removal. (c) Solar-driven photocatalytic hydrogen-evolving rates of 7%-Ba-CN, g-C3N4 and BaWO4. Reprinted with permission from Ref. [69]. Copyright 2020, Elsevier.
Fig. 16. (a) Schematic illustration of the proposed mechanism for charge transfer and radical generation under visible-light irradiation. Reprinted with permission from Ref. [63]. Copyright 2019, Elsevier. (b) Local atomic structure around Fe. (c) HAADF-STEM images of Fe1/TiO2-HMSs (TF50) sample. Reprinted with permission from Ref. [96]. Copyright 2020, John Wiley and Sons. (d) PL spectra of BiOCOOH and Br doped BiOCOOH. Reprinted with permission from Ref. [56]. Copyright 2015, MDPI.
Fig. 17. (a) The designed reaction system for the in-situ DRIFTS signal recording system. (b) Photos of gas diagram. (c) HVC dome. (d) FT-IR spectrometer. (e) Light source. (f) A photo of in-situ DRIFTS under working; In-situ DRIFT spectra recorded during NO photocatalytic reaction over BiOSi (g) and Bi@BiOSi-3 sample (h). Reprinted with permission from Ref. [35]. Copyright 2018, Elsevier.
Fig. 18. In-situ FT-IR spectra of the adsorption process of NO + O2 for 110-BOC (a) and 001-BOC (c). The photocatalytic degradation of NO on the surface for 110-BOC (b) and 001-BOC (d) under visible light irradiation. (e) Photocatalytic NO removal curves under UV light irradiation: 110-BOC and 001-BOC. (f) photocatalytic specific reactivity calculation of 110-BOC and 001-BOC. (g) Major intermediate adsorption products on 110-BOC and 001-BOC. Reprinted with permission from Ref. [155]. Copyright 2019, the Royal Society of Chemistry. (h) FTIR spectra of BiOCl-OV during photocatalytic NO oxidation. (i) Dynamic change of the •O2?/NO3? absorbance increase along with NO absorbance peak decrease. (j) Influence of generated •O2? on the NO oxidation kinetic constants and the NO2 concentration. Reprinted with permission from Ref. [156]. Copyright 2018, American Chemical Society.
Fig. 19. (a) Electrostatic potentials, work functions on (2 0 0), (0 0 1)-BiO, and (0 0 1)-TaO of SrBi2Ta2O9 substrates. Reprinted with permission from Ref. [17]. Copyright 2022, Elsevier. (b) Relaxed structure of the first layer of Ti48O96, FeTi47O96 and FeTi48O96. Reprinted with permission from Ref. [97]. Copyright 2015, Elsevier. (c) Density of states of BiOI and BiOI with oxygen vacancies (OV-BiOI). Reprinted with permission from Ref. [48]. Copyright 2019, Dalian Institute of Chemical Physics, the Chinese Academy of Sciences. (d) NO and O2 coadsorption in BiOSi and side-Bi-BiOSi configuration. Reprinted with permission from Ref. [35]. Copyright 2018, Elsevier. (e) DFT calculated adsorption energy of several major intermediate adsorption products of the BOC, OV-BOC and Bi@OV-BOC samples; Calculated free energy of NO oxidation on BOC, OV-BOC and Bi@OV-BOC surfaces. Reprinted with permission from Ref. [24]. Copyright 2019, Elsevier.
Fig. 20. Dynamics of carriers on two crystal facets: hole mobility (a), electron mobility (b), hole diffusion length (c), reaction rates of benzyl alcohol oxidation (d), steady state fluorescence (e), hole lifetime (f). Reprinted with permission from Ref. [162]. Copyright 2018, American Chemical Society. (g) Charge difference distribution of O-ACN-Ba. Photoluminescence spectra (h), the ns-level time-resolved fluorescence spectra (i), and room temperature solid state EPR spectra (j) of CN and O-ACN-Ba-030. Reprinted with permission from Ref. [79]. Copyright 2018, Elsevier. (k) Photoluminescence spectra. (l) Room temperature solid ESR spectra in dark and under visible-light irradiation for 15 min of CN and OCN-K-CN Reprinted with permission from Ref. [86]. Copyright 2018, American Chemical Society.
|
[1] | 欧阳玲, 梁杰, 罗永嵩, 郑冬冬, 孙圣钧, 刘倩, Mohamed S. Hamdy, 孙旭平, 应斌武. 电催化合成氨的研究进展[J]. 催化学报, 2023, 50(7): 6-44. |
[2] | 刘成, 陈梦宁, 时应章, 王志文, 郭韦, 林森, 毕进红, 吴棱. 超薄ZnTi-LDH纳米片作为一种具有路易斯酸和布朗斯特酸的双功能光催化剂用于串联反应合成N-亚苄基苯胺[J]. 催化学报, 2023, 49(6): 102-112. |
[3] | 井会娟, 龙军, 李欢, 傅笑言, 肖建平. 电催化硝酸盐还原合成氨电势相关性的计算见解[J]. 催化学报, 2023, 48(5): 205-213. |
[4] | 赵志月, 蒋志伟, 黄一哲, Mebrouka Boubeche, Valentina G. Matveeva, Hector F. Garces, 罗惠霞, 严凯. 富空穴CoSi合金无溶剂无碱醇氧化[J]. 催化学报, 2023, 48(5): 175-184. |
[5] | 禹伟, 高教琪, 姚伦, 周雍进. 多形汉逊酵母细胞工厂实现甲醇生物转化合成3-羟基丙酸[J]. 催化学报, 2023, 46(3): 84-90. |
[6] | Ernest Pahuyo Delmo, 王忆安, 王菁, 朱尚乾, 李铁怀, 秦雪苹, 田一博, 赵青蓝, Juhee Jang, 王一诺, 谷猛, 张莉莉, 邵敏华. 金属有机框架-离子液体混合催化剂用于电化学还原二氧化碳生成甲烷[J]. 催化学报, 2022, 43(7): 1687-1696. |
[7] | 王立群, 闫啸, 司文平, 刘道兰, 侯兴刚, 李德军, 侯峰, 窦世学, 梁骥. 光电化学氮还原: 一种可持续的氨合成方法[J]. 催化学报, 2022, 43(7): 1761-1773. |
[8] | 陈杨屾, 阚淼, 燕帅, 张俊波, 刘坤豪, 严雅琴, 关安翔, 吕希蒙, 钱林平, 郑耿锋. 类空气浓度的二氧化碳的高效电还原[J]. 催化学报, 2022, 43(7): 1703-1709. |
[9] | 张亚萍, 徐继香, 周洁, 王磊. 金属-有机框架衍生的多功能光催化剂[J]. 催化学报, 2022, 43(4): 971-1000. |
[10] | 高海峡, 刘康, 罗涛, 陈羽, 胡俊华, 傅俊伟, 刘敏. 单原子Co位点的CO2还原反应路径:局部配位环境的影响[J]. 催化学报, 2022, 43(3): 832-838. |
[11] | 王森, 李志凯, 秦张峰, 董梅, 李俊汾, 樊卫斌, 王建国. H-ZSM-5分子筛不同孔道处的酸位在甲醇制烯烃反应中的催化作用[J]. 催化学报, 2021, 42(7): 1126-1136. |
[12] | 钟静萍, 黄科薪, 许文涛, 唐华果, Muhammad Waqas, 樊友军, 王睿翔, 陈卫, 王沂轩. 导电共聚物衍化新策略制备硫、氮共掺杂碳纳米管及其对改善PtCu纳米晶分散性与甲醇电催化氧化的促进作用[J]. 催化学报, 2021, 42(7): 1205-1215. |
[13] | 吴倩, 高庆平, 孙丽梅, 郭焕美, 台夕市, 李丹, 刘莉, 凌崇益, 孙旭平. CeO2修饰Ni3S2纳米片用于高效电催化析氧[J]. 催化学报, 2021, 42(3): 482-489. |
[14] | 马晓旭, 邱盟峯, 葛亮, 李晓岩, 李亚军, 吴莉, 鲍红丽. 酞菁铁催化烯烃自由基膦叠氮化反应: 利用叠氮快速转移合成膦叠氮的温和方法[J]. 催化学报, 2021, 42(10): 1634-1640. |
[15] | Ya-Qiong Su, Long Zhang, Valery Muravev, Emiel J. M. Hensen. 过渡金属掺杂铈中晶格氧的活化[J]. 催化学报, 2020, 41(6): 977-984. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||