催化学报 ›› 2023, Vol. 50: 6-44.DOI: 10.1016/S1872-2067(23)64464-X
欧阳玲a,b, 梁杰b, 罗永嵩b, 郑冬冬b, 孙圣钧c, 刘倩d, Mohamed S. Hamdye, 孙旭平b,c,*(), 应斌武a,*(
)
收稿日期:
2023-02-18
接受日期:
2023-05-29
出版日期:
2023-07-18
发布日期:
2023-07-25
通讯作者:
*电子信箱:
Ling Ouyanga,b, Jie Liangb, Yongsong Luob, Dongdong Zhengb, Shengjun Sunc, Qian Liud, Mohamed S. Hamdye, Xuping Sunb,c,*(), Binwu Yinga,*(
)
Received:
2023-02-18
Accepted:
2023-05-29
Online:
2023-07-18
Published:
2023-07-25
Contact:
*E-mail: About author:
Xuping Sun received his PhD degree in Changchun Institute of Applied Chemistry (CIAC), Chinese Academy of Sciences in 2006. During 2006-2009, he carried out postdoctoral researches at Konstanz University, University of Toronto, and Purdue University. In 2010, he started his independent research career as a full Professor at CIAC and then moved to Sichuan University in 2015. In 2018, he joined University of Electronic Science and Technology of China where he found the Research Center of Nanocatalysis & Sensing. He was recognized as a highly cited researcher (2018-2020) in both areas of chemistry and materials science by Clarivate Analytics. He published over 600 papers with total citations over 65000 and an h-index of 132. His research mainly focuses on rational design of nanocatalysts toward applications in electrosynthesis of green hydrogen and ammonia as well as electrochemical denitration of vehicle exhausts and industrial wastewater.摘要:
氨是一种重要的工业原料, 在化肥、染料、药品和炸药的制造中起着重要作用. 由于氨的氢容量大、能量密度高且易于运输, 被认为是一种潜在的无碳燃料. Haber-Bosch工艺实现了高附加值氨的大规模工业化生产, 但其生产条件(400‒550 ºC, 15‒30 MPa)苛刻, 且伴随着高能耗和CO2排放. 因此, 开发绿色和可持续的氨合成方法, 同时实现全球环境的可持续性势在必行. 电催化氮还原合成氨(NRR)是近年来的研究热点, 该技术可以在环境条件下进行, 且可利用电子作为绿色还原剂, 水作为质子源. 此外, 该过程具有实现分散和现场按需生产氨的巨大潜力, 支持分布式肥料生产, 从而降低运输成本. 除了N2作为氮源, 对环境有害且活性高于N2的氮物种(如NO, NO2-/NO3-)已被认为是实现环境条件下生产氨的有吸引力的氮源, 电催化NO还原(NORR)和NO2-/NO3-(NOx-)还原(NtrRR)合成氨具有应用潜力.
本文综述了近年来电催化合成氨的研究进展. 首先简要介绍了三种电催化合成氨路线(NRR, NORR和NtrRR)的研究背景和意义. 然后, 对环境条件下合成氨电催化剂的最新研究进展进行了详细讨论, 主要涉及催化机理、理论计算和电化学性能. 最后, 对人工电催化合成氨当前面临的挑战和未来的研究需求作了总结和展望, 包括: (1)注重理论计算, 通过理论计算可以预测可能的活性位点、吸附能和反应途径, 有助于快速筛选合适的催化剂, 大大降低实验成本; (2)发展先进的原位表征技术来观察电催化剂表面上的动态变化和捕获/识别反应中间体, 促进对真实反应机理的探索, 从而进一步指导催化剂的设计; (3)确保数据的准确性和可重复性; (4)合理设计有效的电催化剂. 为了进一步提高现有材料体系对氨合成的催化性能, 需要开发更高效的材料设计策略(如精确调节单原子金属的配位环境、掺杂原子/空位的类型和浓度、合理暴露特定的晶体面等), 以促进电催化剂的内在活性. 此外, 通过优化电催化剂的形态, 构建特殊的结构(如尖刺), 可以暴露丰富的活性位点, 显著提高其表观活性; (5)研究特定的电极材料时, 除材料工程外, 扩展实验条件也至关重要, 包括电解质的pH值、应用电位和氮物种初始浓度等, 可能会影响催化活性和选择性; (6)文献报道的稳定性测试通常在50 h以下, 对于工业运行(预计在高电流密度下可以稳定运行数千小时)来说, 时间太短. 因此, 未来的催化剂设计需要以更长的测试时间为目标; (7)未来研究应进一步探索真实环境下NORR/NtrRR的催化活性, 以实现更高效的氨合成; (8)应开发一种可替代的氨分离技术. 在传统的Haber-Bosch工艺中, 通过冷凝, 氨从未反应的N2和H2中分离出来, 耗能大, 因此应采用比冷凝工艺能量输入更少的分离技术; (9)从实际应用角度出发, 还应考虑综合的技术经济评估, 包括材料成本、总能源成本、设备维护成本和产品分离成本等, 以评估氨电合成的大规模可扩展性和商业可行性. 综上, 开展电催化合成氨领域的研究有望以绿色和可持续的方式缓解环境污染和未来的能源问题.
欧阳玲, 梁杰, 罗永嵩, 郑冬冬, 孙圣钧, 刘倩, Mohamed S. Hamdy, 孙旭平, 应斌武. 电催化合成氨的研究进展[J]. 催化学报, 2023, 50: 6-44.
Ling Ouyang, Jie Liang, Yongsong Luo, Dongdong Zheng, Shengjun Sun, Qian Liu, Mohamed S. Hamdy, Xuping Sun, Binwu Ying. Recent advances in electrocatalytic ammonia synthesis[J]. Chinese Journal of Catalysis, 2023, 50: 6-44.
Fig. 2. Possible reaction mechanisms for the NRR. The numbers in circles denote the order of the proton-electron transfer to the nitrogen designated by the arrow. Reprinted with permission from Ref. [45]. Copyright 2019, Elsevier.
Fig. 3. (a) FTIR spectra during the first segment from 0.4 to -0.4 V on a Rh-film electrode in a N2-saturated 0.1 mol L?1 KOH solution. (b) DEMS of H2+, N2H+, and N2H2+ on Rh/C during a scan from 0.4 to -0.4 V in a N2-saturated 0.1 mol L?1 KOH solution. (c) One possible reaction pathway for NRR on Rh surfaces. Reprinted with permission from Ref. [49]. Copyright 2020, Wiley-VCH.
Fig. 4. (a) Proposed volcano plot for NRR on late transition metals. Reprinted with permission from Ref. [50]. Copyright 2012, Royal Society of Chemistry. (b) Calculated limiting potential of NRR on transition metal oxides. Reprinted with permission from Ref. [51]. Copyright 2017, American Chemical Society. (c) Calculated limiting potential of NRR on transition metal nitrides. Reprinted with permission from Ref. [52]. Copyright 2017, American Chemical Society. (d) Volcano diagrams for NRR on M2C catalysts. Reprinted with permission from Ref. [54]. Copyright 2020, Royal Society of Chemistry. (e) Calculated limiting potential of NRR on MBenes. Reprinted with permission from Ref. [55]. Copyright 2021, Wiley-VCH. (f) Computational screening of 14 catalyst combinations in terms of ΔGmaxHER and ΔGmaxNRR vs. Bader charge of single boron in or on a 2D substrate. Reprinted with permission from Ref. [56]. Copyright 2019, American Chemical Society.
Catalyst | Cell type, electrolyte | NH3 yield | FE (%) | Potential (V vs. RHE) | Ref. | |||
---|---|---|---|---|---|---|---|---|
Ru@ZrO2/NC | H-cell, 0.1 mol L-1 HCl | 3.665 mgNH3 h-1 mgRu-1 | 15 | -0.21 | [ | |||
THH Au NRs | H-cell, 0.1 mol L-1 NaOH | 1.468 µg h-1 cm-2 | ~4 | -0.2 | [ | |||
Pd-TA | H-cell, 0.1 mol L-1 Na2SO4 | 24.12 µg h-1 mgcat.-1 | 9.49 | -0.45 | [ | |||
Ag/CPE | H-cell, 0.1 mol L-1 HCl | 4.62 × 10-11 mol s-1 cm-2 | 4.8 | -0.6 | [ | |||
Nb2O5/CC | H-cell, 0.1 mol L-1 Na2SO4 | 1.58 × 10-10 mol s-1 cm-2 | 2.26 | -0.6 | [ | |||
TiO2/Ti3C2Tx MXene | H-cell, 0.1 mol L-1 Na2SO4 | 44.17 µg h-1 mgcat.-1 | 44.68 | -0.95, -0.75 | [ | |||
np-CuMn | H-cell, 0.1 mol L-1 Na2SO4 | 28.9 µg h-1 cm-2 | 9.83 | -0.3 | [ | |||
Mn3O4@rGO/CP | H-cell, 0.1 mol L-1 Na2SO4 | 17.4 µg h-1 mgcat.-1 | 3.52 | -0.85 | [ | |||
Cr2O3/CP | H-cell, 0.1 mol L-1 Na2SO4 | 25.3 µg h-1 mgcat.-1 | 6.78 | -0.9 | [ | |||
a-VSe2‒x | H-cell, 0.5 mol L-1 LiClO4 | 65.7 µg h-1 mg-1 | 16.3 | -0.4 | [ | |||
TiO2/Ti | H-cell, 0.1 mol L-1 Na2SO4 | 9.16 × 10-11 mol s-1 cm-2 | 2.5 | -0.7 | [ | |||
d-TiO2/TM | H-cell, 0.1 mol L-1 HCl | 1.24 × 10-10 mol s-1 cm-2 | 9.17 | -0.15 | [ | |||
La-TiO2/CP | H-cell, 0.1 mol L-1 LiClO4 | 23.06 µg h-1 mgcat.-1 | 14.54 | -0.7 | [ | |||
V-TiO2/CP | H-cell, 0.5 mol L-1 LiClO4 | 17.73 µg h-1 mgcat.-1 | 15.3 | -0.5, -0.4 | [ | |||
Fe-TiO2/CP | H-cell, 0.5 mol L-1 LiClO4 | 25.47 µg h-1 mgcat.-1 | 25.6 | -0.4 | [ | |||
Mn-TiO2/CP | H-cell, 0.1 mol L-1 Na2SO4 | 20.05 µg h-1 mgcat.-1 | 11.93 | -0.5 | [ | |||
Cu-TiO2/CP | H-cell, 0.5 mol L-1 LiClO4 | 21.31 µg h-1 mgcat.-1 | 21.99 | -0.55 | [ | |||
B-TiO2/CPE | H-cell, 0.1 mol L-1 Na2SO4 | 14.4 µg h-1 mgcat.-1 | 3.4 | -0.8 | [ | |||
C-TiO2/CP | H-cell, 0.1 mol L-1 Na2SO4 | 16.22 µg h-1 mgcat.-1 | 1.84 | -0.7 | [ | |||
TiO2-rGO/CP | H-cell, 0.1 mol L-1 Na2SO4 | 15.13 µg h-1 mgcat.-1 | 3.3 | -0.9 | [ | |||
TiO2/JE-CMTs/CP | H-cell, 0.1 mol L-1 Na2SO4 | 20.03 µg h-1 mgcat.-1 | 10.76 | -0.5 | [ | |||
Zr-TiO2/CP | H-cell, 0.1 mol L-1 KOH | 8.90 µg h-1 cm-2 | 17.3 | -0.45 | [ | |||
Fe2O3-rGO/CP | H-cell, 0.5 mol L-1 LiClO4 | 22.13 µg h-1 mgcat.-1 | 5.89 | -0.5 | [ | |||
VO2/CP | H-cell, 0.1 mol L-1 Na2SO4 | 14.85 µg h-1 mgcat.-1 | 3.97 | -0.7 | [ | |||
V2O3/C-CP | H-cell, 0.1 mol L-1 Na2SO4 | 12.3 µg h-1 mgcat.-1 | 7.28 | -0.6 | [ | |||
β-FeOOH/CP | H-cell, 0.5 mol L-1 LiClO4 | 23.32 µg h-1 mgcat.-1 | 6.7 | -0.75, -0.7 | [ | |||
β-FeO(OH,F)/CP | H-cell, 0.5 mol L-1 LiClO4 | 42.38 µg h-1 mgcat.-1 | 9.02 | -0.6 | [ | |||
FeOOH QDs-GS/CP | H-cell, 0.1 mol L-1 LiClO4 | 27.3 µg h-1 mgcat.-1 | 14.6 | -0.4 | [ | |||
MoS2/CC | H-cell, 0.1 mol L-1 Na2SO4 | 8.08 × 10-11 mol s-1 cm-2 | 1.17 | -0.5 | [ | |||
DR MoS2/CPE | H-cell, 0.1 mol L-1 Na2SO4 | 29.28 µg h-1 mgcat.-1 | 8.34 | -0.4 | [ | |||
1T″′ MoS2/CC | H-cell, 0.1 mol L-1 Na2SO4 | 9.09 µg h-1 mg-1 | 13.6 | -0.3 | [ | |||
MoS2/C3N4 | H-cell, 0.1 mol L-1 LiClO4 | 18.5 μg h-1 mg-1 | 17.8 | -0.3 | [ | |||
CoS2/NS-G/CP | H-cell, 0.05 mol L-1 H2SO4 | 25.0 µg h-1 mgcat.-1 | 25.9 | -0.05 | [ | |||
CoS2@NC/CP | H-cell, 0.1 mol L-1 HCl | 17.45 µg h-1 mgcat.-1 | 4.6 | -0.15 | [ | |||
CuS-CPSs/CP | H-cell, 0.1 mol L-1 HCl | 18.18 µg h-1 mgcat.-1 | 5.63 | -0.15 | [ | |||
ZrS2 NF-Vs/CP | H-cell, 0.1 mol L-1 HCl | 30.72 µg h-1 mgcat.-1 | 10.33 | -0.35, -0.3 | [ | |||
MoN NA/CC | H-cell, 0.1 mol L-1 HCl | 3.01 × 10-10 mol s-1 cm-2 | 1.15 | -0.3 | [ | |||
VN/TM | H-cell, 0.1 mol L-1 HCl | 8.4 × 10-11 mol s-1 cm-2 | 2.25 | -0.5 | [ | |||
MV-MoN@NC | H-cell, 0.1 mol L-1 HCl | 76.9 µg h-1 mgcat.-1 | 6.9 | -0.2 | [ | |||
Mo2N/GCE | H-cell, 0.1 mol L-1 HCl | 78.4 µg h-1 mgcat.-1 | 4.5 | -0.3 | [ | |||
GDY/Co2N/CC | H-cell, 0.1 mol L-1 Na2SO4 | 219.72 µg h-1 mgcat.-1 | 58.6 | -0.2 | [ | |||
NV-W2N3 | H-cell, 0.1 mol L-1 KOH | 3.80 ± 0.32 × 10-11 mol s-1 cm-2 | 11.67 ± 0.93 | -0.2 | [ | |||
Cr3C2@CNF | H-cell, 0.1 mol L-1 HCl | 23.9 µg h-1 mgcat.-1 | 8.6 | -0.3 | [ | |||
TiC/C NFs | H-cell, 0.1 mol L-1 HCl | 14.1 µg h-1 mgcat.-1 | 5.8 | -0.5 | [ | |||
Mo2C/GCE | H-cell, 0.1 mol L-1 HCl | 95.1 µg h-1 mgcat.-1 | 8.13 | -0.3 | [ | |||
Fe3C@C | H-cell, 0.05 mol L-1 H2SO4 | 8.53 µg h-1 mgcat.-1 | 9.15 | -0.2 | [ | |||
Mo2C/C | H-cell, 0.5 mol L-1 Li2SO4 | 11.3 µg h-1 mgMo2C-1 | 7.8 | -0.3 | [ | |||
Mo3Fe3C | H-cell, 0.1 mol L-1 Li2SO4 | 72.5 µmol h-1 mgcat.-1 | 27.0 | -0.5 | [ | |||
V8C7/C-CP | H-cell, 0.1 mol L-1 HCl | 34.62 µg h-1 mgcat.-1 | 12.2 | -0.4 | [ | |||
VP/VF | H-cell, 0.1 mol L-1 HCl | 8.35 × 10-11 mol s-1 cm-2 | 22 | 0.0 | [ | |||
CoP3/CC | H-cell, 0.1 mol L-1 Na2SO4 | 3.61 × 10-11 mol s-1 cm-2 | 11.94 | -0.2 | [ | |||
Cu3P NRs | H-cell, 0.1 mol L-1 HCl | 18.9 µg h-1 mgcat.-1 | 37.8 | -0.2 | [ | |||
Cu3P-rGO/CP | H-cell, 0.1 mol L-1 HCl | 26.38 µg h-1 mgcat.-1 | 10.11 | -0.45 | [ | |||
FeP2-rGO/CP | H-cell, 0.5 mol L-1 LiClO4 | 35.26 µg h-1 mgcat.-1 | 21.99 | -0.4 | [ | |||
C18@Fe3P/CP | H-cell, 0.1 mol L-1 Na2SO4 | 1.80 × 10-10 mol s-1 cm-2 | 11.22 | -0.3 | [ | |||
C18@CoP/TM | H-cell, 0.1 mol L-1 Na2SO4 | 1.44 × 10-10 mol s-1 cm-2 | 14.03 | -0.2 | [ | |||
Bi ND/CP | H-cell, 0.1 mol L-1 HCl | 25.86 µg h-1 mgcat.-1 | 10.8 | -0.6, -0.55 | [ | |||
dendritic Cu/CP | H-cell, 0.1 mol L-1 HCl | 25.63 µg h-1 mgcat.-1 | 15.12 | -0.4 | [ | |||
Sn dendrite/SF | H-cell, 0.1 mol L-1 PBS | 5.66 × 10-11 mol s-1 cm-2 | 3.67 | -0.6 | [ | |||
Co3HHTP2/CP | H-cell, 0.5 mol L-1 LiClO4 | 22.14 µg h-1 mgcat.-1 | 3.34 | -0.4 | [ | |||
SA-Mo/NPC | H-cell, 0.1 mol L-1 KOH | 34.0 ± 3.6 μg h-1 mgcat.-1 | 14.6 ± 1.6 | -0.3 | [ | |||
FeSA-N-C/CP | H-cell, 0.1 mol L-1 KOH | 7.48 μg h-1 mg-1 | 56.55 | 0.0, 0.193 | [ | |||
NC-Cu SA | H-cell, 0.1 mol L-1 KOH | 53.3 μg h-1 mgcat.-1 | 13.8 | -0.35 | [ | |||
Y1/NC | H-cell, 0.1 mol L-1 HCl | 21.8 μg cm-1 h-1 | 12.1 | -0.1 | [ | |||
Sc1/NC | H-cell, 0.1 mol L-1 HCl | 19.2 μg cm-1 h-1 | 11.2 | -0.1 | [ | |||
W-NO/NC | H-cell, 0.5 mol L-1 LiClO4 | 12.62 μg h-1 mgcat.-1 | 8.35 | -0.7 | [ | |||
NCMs | H-cell, 0.1 mol L-1 HCl | 0.08 μg m-2 h-1 | 5.2 | -0.3, -0.2 | [ | |||
O-G/CP | H-cell, 0.1 mol L-1 HCl | 21.3 μg h-1 mgcat.-1 | 12.6 | -0.55, -0.45 | [ | |||
O-CN/CP | H-cell, 0.1 mol L-1 HCl | 20.15 μg h-1 mgcat.-1 | 4.97 | -0.6 | [ | |||
BG/CP | H-cell, 0.05 mol L-1 H2SO4 | 9.8 μg hr-1 cm-2 | 10.8 | -0.5 | [ | |||
PG/CP | H-cell, 0.5 mol L-1 LiClO4 | 32.33 μg h-1 mgcat.-1 | 20.82 | -0.65 | [ | |||
S-G/CP | H-cell, 0.1 mol L-1 HCl | 27.3 μg h-1 mgcat.-1 | 11.5 | -0.6, -0.5 | [ | |||
S-CNS/CP | H-cell, 0.1 mol L-1 Na2SO4 | 19.07 μg h-1 mgcat.-1 | 7.47 | -0.7 | [ | |||
d-FG/CP | H-cell, 0.1 mol L-1 Na2SO4 | 9.3 μg h-1 mgcat.-1 | 4.2 | -0.7 | [ | |||
BP/CP | H-cell, 0.1 mol L-1 HCl | 26.42 μg h-1 mgcat.-1 | 12.7 | -0.6 | [ | |||
BNS/CP | H-cell, 0.1 mol L-1 Na2SO4 | 13.22 μg h-1 mgcat.-1 | 4.04 | -0.8 | [ | |||
B4C/CPE | H-cell, 0.1 mol L-1 HCl | 26.57 μg h-1 mgcat.-1 | 15.95 | -0.75 | [ | |||
h-BNNS/CP | H-cell, 0.1 mol L-1 HCl | 22.4 μg h-1 mgcat.-1 | 4.7 | -0.75 | [ |
Table 1 Summary of recently reported catalysts for electrochemical NRR in aqueous electrolytes a.
Catalyst | Cell type, electrolyte | NH3 yield | FE (%) | Potential (V vs. RHE) | Ref. | |||
---|---|---|---|---|---|---|---|---|
Ru@ZrO2/NC | H-cell, 0.1 mol L-1 HCl | 3.665 mgNH3 h-1 mgRu-1 | 15 | -0.21 | [ | |||
THH Au NRs | H-cell, 0.1 mol L-1 NaOH | 1.468 µg h-1 cm-2 | ~4 | -0.2 | [ | |||
Pd-TA | H-cell, 0.1 mol L-1 Na2SO4 | 24.12 µg h-1 mgcat.-1 | 9.49 | -0.45 | [ | |||
Ag/CPE | H-cell, 0.1 mol L-1 HCl | 4.62 × 10-11 mol s-1 cm-2 | 4.8 | -0.6 | [ | |||
Nb2O5/CC | H-cell, 0.1 mol L-1 Na2SO4 | 1.58 × 10-10 mol s-1 cm-2 | 2.26 | -0.6 | [ | |||
TiO2/Ti3C2Tx MXene | H-cell, 0.1 mol L-1 Na2SO4 | 44.17 µg h-1 mgcat.-1 | 44.68 | -0.95, -0.75 | [ | |||
np-CuMn | H-cell, 0.1 mol L-1 Na2SO4 | 28.9 µg h-1 cm-2 | 9.83 | -0.3 | [ | |||
Mn3O4@rGO/CP | H-cell, 0.1 mol L-1 Na2SO4 | 17.4 µg h-1 mgcat.-1 | 3.52 | -0.85 | [ | |||
Cr2O3/CP | H-cell, 0.1 mol L-1 Na2SO4 | 25.3 µg h-1 mgcat.-1 | 6.78 | -0.9 | [ | |||
a-VSe2‒x | H-cell, 0.5 mol L-1 LiClO4 | 65.7 µg h-1 mg-1 | 16.3 | -0.4 | [ | |||
TiO2/Ti | H-cell, 0.1 mol L-1 Na2SO4 | 9.16 × 10-11 mol s-1 cm-2 | 2.5 | -0.7 | [ | |||
d-TiO2/TM | H-cell, 0.1 mol L-1 HCl | 1.24 × 10-10 mol s-1 cm-2 | 9.17 | -0.15 | [ | |||
La-TiO2/CP | H-cell, 0.1 mol L-1 LiClO4 | 23.06 µg h-1 mgcat.-1 | 14.54 | -0.7 | [ | |||
V-TiO2/CP | H-cell, 0.5 mol L-1 LiClO4 | 17.73 µg h-1 mgcat.-1 | 15.3 | -0.5, -0.4 | [ | |||
Fe-TiO2/CP | H-cell, 0.5 mol L-1 LiClO4 | 25.47 µg h-1 mgcat.-1 | 25.6 | -0.4 | [ | |||
Mn-TiO2/CP | H-cell, 0.1 mol L-1 Na2SO4 | 20.05 µg h-1 mgcat.-1 | 11.93 | -0.5 | [ | |||
Cu-TiO2/CP | H-cell, 0.5 mol L-1 LiClO4 | 21.31 µg h-1 mgcat.-1 | 21.99 | -0.55 | [ | |||
B-TiO2/CPE | H-cell, 0.1 mol L-1 Na2SO4 | 14.4 µg h-1 mgcat.-1 | 3.4 | -0.8 | [ | |||
C-TiO2/CP | H-cell, 0.1 mol L-1 Na2SO4 | 16.22 µg h-1 mgcat.-1 | 1.84 | -0.7 | [ | |||
TiO2-rGO/CP | H-cell, 0.1 mol L-1 Na2SO4 | 15.13 µg h-1 mgcat.-1 | 3.3 | -0.9 | [ | |||
TiO2/JE-CMTs/CP | H-cell, 0.1 mol L-1 Na2SO4 | 20.03 µg h-1 mgcat.-1 | 10.76 | -0.5 | [ | |||
Zr-TiO2/CP | H-cell, 0.1 mol L-1 KOH | 8.90 µg h-1 cm-2 | 17.3 | -0.45 | [ | |||
Fe2O3-rGO/CP | H-cell, 0.5 mol L-1 LiClO4 | 22.13 µg h-1 mgcat.-1 | 5.89 | -0.5 | [ | |||
VO2/CP | H-cell, 0.1 mol L-1 Na2SO4 | 14.85 µg h-1 mgcat.-1 | 3.97 | -0.7 | [ | |||
V2O3/C-CP | H-cell, 0.1 mol L-1 Na2SO4 | 12.3 µg h-1 mgcat.-1 | 7.28 | -0.6 | [ | |||
β-FeOOH/CP | H-cell, 0.5 mol L-1 LiClO4 | 23.32 µg h-1 mgcat.-1 | 6.7 | -0.75, -0.7 | [ | |||
β-FeO(OH,F)/CP | H-cell, 0.5 mol L-1 LiClO4 | 42.38 µg h-1 mgcat.-1 | 9.02 | -0.6 | [ | |||
FeOOH QDs-GS/CP | H-cell, 0.1 mol L-1 LiClO4 | 27.3 µg h-1 mgcat.-1 | 14.6 | -0.4 | [ | |||
MoS2/CC | H-cell, 0.1 mol L-1 Na2SO4 | 8.08 × 10-11 mol s-1 cm-2 | 1.17 | -0.5 | [ | |||
DR MoS2/CPE | H-cell, 0.1 mol L-1 Na2SO4 | 29.28 µg h-1 mgcat.-1 | 8.34 | -0.4 | [ | |||
1T″′ MoS2/CC | H-cell, 0.1 mol L-1 Na2SO4 | 9.09 µg h-1 mg-1 | 13.6 | -0.3 | [ | |||
MoS2/C3N4 | H-cell, 0.1 mol L-1 LiClO4 | 18.5 μg h-1 mg-1 | 17.8 | -0.3 | [ | |||
CoS2/NS-G/CP | H-cell, 0.05 mol L-1 H2SO4 | 25.0 µg h-1 mgcat.-1 | 25.9 | -0.05 | [ | |||
CoS2@NC/CP | H-cell, 0.1 mol L-1 HCl | 17.45 µg h-1 mgcat.-1 | 4.6 | -0.15 | [ | |||
CuS-CPSs/CP | H-cell, 0.1 mol L-1 HCl | 18.18 µg h-1 mgcat.-1 | 5.63 | -0.15 | [ | |||
ZrS2 NF-Vs/CP | H-cell, 0.1 mol L-1 HCl | 30.72 µg h-1 mgcat.-1 | 10.33 | -0.35, -0.3 | [ | |||
MoN NA/CC | H-cell, 0.1 mol L-1 HCl | 3.01 × 10-10 mol s-1 cm-2 | 1.15 | -0.3 | [ | |||
VN/TM | H-cell, 0.1 mol L-1 HCl | 8.4 × 10-11 mol s-1 cm-2 | 2.25 | -0.5 | [ | |||
MV-MoN@NC | H-cell, 0.1 mol L-1 HCl | 76.9 µg h-1 mgcat.-1 | 6.9 | -0.2 | [ | |||
Mo2N/GCE | H-cell, 0.1 mol L-1 HCl | 78.4 µg h-1 mgcat.-1 | 4.5 | -0.3 | [ | |||
GDY/Co2N/CC | H-cell, 0.1 mol L-1 Na2SO4 | 219.72 µg h-1 mgcat.-1 | 58.6 | -0.2 | [ | |||
NV-W2N3 | H-cell, 0.1 mol L-1 KOH | 3.80 ± 0.32 × 10-11 mol s-1 cm-2 | 11.67 ± 0.93 | -0.2 | [ | |||
Cr3C2@CNF | H-cell, 0.1 mol L-1 HCl | 23.9 µg h-1 mgcat.-1 | 8.6 | -0.3 | [ | |||
TiC/C NFs | H-cell, 0.1 mol L-1 HCl | 14.1 µg h-1 mgcat.-1 | 5.8 | -0.5 | [ | |||
Mo2C/GCE | H-cell, 0.1 mol L-1 HCl | 95.1 µg h-1 mgcat.-1 | 8.13 | -0.3 | [ | |||
Fe3C@C | H-cell, 0.05 mol L-1 H2SO4 | 8.53 µg h-1 mgcat.-1 | 9.15 | -0.2 | [ | |||
Mo2C/C | H-cell, 0.5 mol L-1 Li2SO4 | 11.3 µg h-1 mgMo2C-1 | 7.8 | -0.3 | [ | |||
Mo3Fe3C | H-cell, 0.1 mol L-1 Li2SO4 | 72.5 µmol h-1 mgcat.-1 | 27.0 | -0.5 | [ | |||
V8C7/C-CP | H-cell, 0.1 mol L-1 HCl | 34.62 µg h-1 mgcat.-1 | 12.2 | -0.4 | [ | |||
VP/VF | H-cell, 0.1 mol L-1 HCl | 8.35 × 10-11 mol s-1 cm-2 | 22 | 0.0 | [ | |||
CoP3/CC | H-cell, 0.1 mol L-1 Na2SO4 | 3.61 × 10-11 mol s-1 cm-2 | 11.94 | -0.2 | [ | |||
Cu3P NRs | H-cell, 0.1 mol L-1 HCl | 18.9 µg h-1 mgcat.-1 | 37.8 | -0.2 | [ | |||
Cu3P-rGO/CP | H-cell, 0.1 mol L-1 HCl | 26.38 µg h-1 mgcat.-1 | 10.11 | -0.45 | [ | |||
FeP2-rGO/CP | H-cell, 0.5 mol L-1 LiClO4 | 35.26 µg h-1 mgcat.-1 | 21.99 | -0.4 | [ | |||
C18@Fe3P/CP | H-cell, 0.1 mol L-1 Na2SO4 | 1.80 × 10-10 mol s-1 cm-2 | 11.22 | -0.3 | [ | |||
C18@CoP/TM | H-cell, 0.1 mol L-1 Na2SO4 | 1.44 × 10-10 mol s-1 cm-2 | 14.03 | -0.2 | [ | |||
Bi ND/CP | H-cell, 0.1 mol L-1 HCl | 25.86 µg h-1 mgcat.-1 | 10.8 | -0.6, -0.55 | [ | |||
dendritic Cu/CP | H-cell, 0.1 mol L-1 HCl | 25.63 µg h-1 mgcat.-1 | 15.12 | -0.4 | [ | |||
Sn dendrite/SF | H-cell, 0.1 mol L-1 PBS | 5.66 × 10-11 mol s-1 cm-2 | 3.67 | -0.6 | [ | |||
Co3HHTP2/CP | H-cell, 0.5 mol L-1 LiClO4 | 22.14 µg h-1 mgcat.-1 | 3.34 | -0.4 | [ | |||
SA-Mo/NPC | H-cell, 0.1 mol L-1 KOH | 34.0 ± 3.6 μg h-1 mgcat.-1 | 14.6 ± 1.6 | -0.3 | [ | |||
FeSA-N-C/CP | H-cell, 0.1 mol L-1 KOH | 7.48 μg h-1 mg-1 | 56.55 | 0.0, 0.193 | [ | |||
NC-Cu SA | H-cell, 0.1 mol L-1 KOH | 53.3 μg h-1 mgcat.-1 | 13.8 | -0.35 | [ | |||
Y1/NC | H-cell, 0.1 mol L-1 HCl | 21.8 μg cm-1 h-1 | 12.1 | -0.1 | [ | |||
Sc1/NC | H-cell, 0.1 mol L-1 HCl | 19.2 μg cm-1 h-1 | 11.2 | -0.1 | [ | |||
W-NO/NC | H-cell, 0.5 mol L-1 LiClO4 | 12.62 μg h-1 mgcat.-1 | 8.35 | -0.7 | [ | |||
NCMs | H-cell, 0.1 mol L-1 HCl | 0.08 μg m-2 h-1 | 5.2 | -0.3, -0.2 | [ | |||
O-G/CP | H-cell, 0.1 mol L-1 HCl | 21.3 μg h-1 mgcat.-1 | 12.6 | -0.55, -0.45 | [ | |||
O-CN/CP | H-cell, 0.1 mol L-1 HCl | 20.15 μg h-1 mgcat.-1 | 4.97 | -0.6 | [ | |||
BG/CP | H-cell, 0.05 mol L-1 H2SO4 | 9.8 μg hr-1 cm-2 | 10.8 | -0.5 | [ | |||
PG/CP | H-cell, 0.5 mol L-1 LiClO4 | 32.33 μg h-1 mgcat.-1 | 20.82 | -0.65 | [ | |||
S-G/CP | H-cell, 0.1 mol L-1 HCl | 27.3 μg h-1 mgcat.-1 | 11.5 | -0.6, -0.5 | [ | |||
S-CNS/CP | H-cell, 0.1 mol L-1 Na2SO4 | 19.07 μg h-1 mgcat.-1 | 7.47 | -0.7 | [ | |||
d-FG/CP | H-cell, 0.1 mol L-1 Na2SO4 | 9.3 μg h-1 mgcat.-1 | 4.2 | -0.7 | [ | |||
BP/CP | H-cell, 0.1 mol L-1 HCl | 26.42 μg h-1 mgcat.-1 | 12.7 | -0.6 | [ | |||
BNS/CP | H-cell, 0.1 mol L-1 Na2SO4 | 13.22 μg h-1 mgcat.-1 | 4.04 | -0.8 | [ | |||
B4C/CPE | H-cell, 0.1 mol L-1 HCl | 26.57 μg h-1 mgcat.-1 | 15.95 | -0.75 | [ | |||
h-BNNS/CP | H-cell, 0.1 mol L-1 HCl | 22.4 μg h-1 mgcat.-1 | 4.7 | -0.75 | [ |
Fig. 5. (a) Isosurface of deformation charge density. (b) Free energy profile for NRR on MoS2 edge site. Reprinted with permission from Ref. [91]. Copyright 2018, Wiley-VCH. (c) Free energy profile for NRR on defect-rich MoS2 basal plane. (Reprinted with permission from Ref. [92]. Copyright 2018, Wiley-VCH. (d) Optimized structures of MoS2 and MoS2/C3N4 and their potential NRR active sites. (e) Free energy diagrams for NRR on Mo1 and Mo1h sites. Reprinted with permission from Ref. [94]. Copyright 2020, American Chemical Society. S L-edge (f), C K-edge (g), and N K-edge (h) XANES spectra of CoS/NS-G, CoS2/NS-G, and NS-G. Reprinted with permission from Ref. [95]. Copyright 2019, Proceedings of the National Academy of Sciences.
Fig. 6. Contact angles for Fe3P/CP (a) and C18@Fe3P/CP (b). (c) NH3-production performance of C18@Fe3P/CP and Fe3P/CP. Reprinted with permission from Ref. [122]. Copyright 2021, Springer Nature. (d) Charge density difference of C18-thiol decorated CoP(211). (e) Comparison of electrostatic potentials of the clean and C18-thiol decorated CoP(211). (f) Performance comparison. Reprinted with permission from Ref. [123]. Copyright 2021, Royal Society of Chemistry.
Fig. 8. (a) ΔG comparison of the potential-determining step between NORR, NRR, and HER. (b) A two-dimensional activity map for ammonia production. (c) Free-energy diagrams for HER and NORR on the Cu(111) surface. Reprinted with permission from Ref. [153]. Copyright 2020, Wiley-VCH.
Catalyst | Cell type, electrolyte | NH3 yield | FE (%) | PNO (%) | Ref. |
---|---|---|---|---|---|
a-B2.6C@TiO2/Ti | H-cell, 0.1 mol L-1 Na2SO4 with 0.5 mmol L-1 Fe2+-EDTA | 3678.6 µg h-1 cm-2 | 87.6 | 10 | [ |
Cu foam | H-cell, 0.25 mol L-1 Li2SO4 | 517.1 µmol h-1 cm-2 | 93.5 | 100 | [ |
NiO/TM | H-cell, 0.1 mol L-1 Na2SO4 with 0.5 mmol L-1 Fe2+-EDTA | 2130 µg h-1 cm-2 | 90 | 10 | [ |
MoS2/GF | H-cell, 0.1 mol L-1 HCl with 0.5 mmol L-1 FeII-SB | 99.6 µmol h-1 cm-2 | 76.6 | 10 | [ |
Fe2O3/CP | H-cell, 0.1 mol L-1 Na2SO4 with 0.5 mmol L-1 Fe2+-EDTA | 78.02 µmol h-1 cm-2 | 86.73 | 10 | [ |
Cu nanoparticle | Flow-cell, 0.1 mol L-1 NaOH with 0.9 mol L-1 NaClO4 | 1806 µmol h-1 cm-2 | 66 | — | [ |
Bi NDs | H-cell, 0.1 mol L-1 Na2SO4 with 0.5 mmol L-1 Fe2+-EDTA | 1194 µg h-1 mgcat.-1 | 89.2 | 10 | [ |
Bi@C | H-cell, 0.1 mol L-1 Na2SO4 with 0.5 mmol L-1 Fe2+-EDTA | 1592.5 µg h-1 mgcat.-1 | 93 | 10 | [ |
MnO2‒x NA | H-cell, 0.2 mol L-1 Na2SO4 | 27.51 × 10-10 mol s-1 cm-2 | 82.8 | — | [ |
TiO2‒x/TP | H-cell, 0.2 mol L-1 PBS | 460.1 μg h-1 cm-2 | 92.5 | 10 | [ |
Ni2P/CP | H-cell, 0.1 mol L-1 HCl | 33.47 µmol h-1 cm-2 | 76.9 | 10 | [ |
CoP/TM | H-cell, 0.2 mol L-1 Na2SO4 | 47.22 µmol h-1 cm-2 | 88.3 | 10 | [ |
FeP/CC | H-cell, 0.2 mol L-1 PBS | 85.62 µmol h-1 cm-2 | 88.49 | 10 | [ |
Fe1/MoS2‒x | H-cell, 0.5 mol L-1 Na2SO4 | 288.2 μmol h-1 cm-1 | 82.5 | 99.99 | [ |
Co1/MoS2 | H-cell, 0.5 mol L-1 Na2SO4 | 217.6 μmol h-1 cm-1 | 87.7 | 99.99 | [ |
CoS1‒x/CP | H-cell, 0.2 mol L-1 Na2SO4 | 44.67 µmol h-1 cm-2 | 53.62 | — | [ |
HCNF/CP | H-cell, 0.2 mol L-1 Na2SO4 | 22.35 µmol h-1 cm-2 | 88.33 | 10 | [ |
g-C3N4 nanosheets | H-cell, 0.1 mol L-1 PBS | 30.7 µmol h-1 cm-2 | 45.6 | 20 | [ |
Table 2 Comparison of NH3-production performance of some recent NORR electrocatalysts.
Catalyst | Cell type, electrolyte | NH3 yield | FE (%) | PNO (%) | Ref. |
---|---|---|---|---|---|
a-B2.6C@TiO2/Ti | H-cell, 0.1 mol L-1 Na2SO4 with 0.5 mmol L-1 Fe2+-EDTA | 3678.6 µg h-1 cm-2 | 87.6 | 10 | [ |
Cu foam | H-cell, 0.25 mol L-1 Li2SO4 | 517.1 µmol h-1 cm-2 | 93.5 | 100 | [ |
NiO/TM | H-cell, 0.1 mol L-1 Na2SO4 with 0.5 mmol L-1 Fe2+-EDTA | 2130 µg h-1 cm-2 | 90 | 10 | [ |
MoS2/GF | H-cell, 0.1 mol L-1 HCl with 0.5 mmol L-1 FeII-SB | 99.6 µmol h-1 cm-2 | 76.6 | 10 | [ |
Fe2O3/CP | H-cell, 0.1 mol L-1 Na2SO4 with 0.5 mmol L-1 Fe2+-EDTA | 78.02 µmol h-1 cm-2 | 86.73 | 10 | [ |
Cu nanoparticle | Flow-cell, 0.1 mol L-1 NaOH with 0.9 mol L-1 NaClO4 | 1806 µmol h-1 cm-2 | 66 | — | [ |
Bi NDs | H-cell, 0.1 mol L-1 Na2SO4 with 0.5 mmol L-1 Fe2+-EDTA | 1194 µg h-1 mgcat.-1 | 89.2 | 10 | [ |
Bi@C | H-cell, 0.1 mol L-1 Na2SO4 with 0.5 mmol L-1 Fe2+-EDTA | 1592.5 µg h-1 mgcat.-1 | 93 | 10 | [ |
MnO2‒x NA | H-cell, 0.2 mol L-1 Na2SO4 | 27.51 × 10-10 mol s-1 cm-2 | 82.8 | — | [ |
TiO2‒x/TP | H-cell, 0.2 mol L-1 PBS | 460.1 μg h-1 cm-2 | 92.5 | 10 | [ |
Ni2P/CP | H-cell, 0.1 mol L-1 HCl | 33.47 µmol h-1 cm-2 | 76.9 | 10 | [ |
CoP/TM | H-cell, 0.2 mol L-1 Na2SO4 | 47.22 µmol h-1 cm-2 | 88.3 | 10 | [ |
FeP/CC | H-cell, 0.2 mol L-1 PBS | 85.62 µmol h-1 cm-2 | 88.49 | 10 | [ |
Fe1/MoS2‒x | H-cell, 0.5 mol L-1 Na2SO4 | 288.2 μmol h-1 cm-1 | 82.5 | 99.99 | [ |
Co1/MoS2 | H-cell, 0.5 mol L-1 Na2SO4 | 217.6 μmol h-1 cm-1 | 87.7 | 99.99 | [ |
CoS1‒x/CP | H-cell, 0.2 mol L-1 Na2SO4 | 44.67 µmol h-1 cm-2 | 53.62 | — | [ |
HCNF/CP | H-cell, 0.2 mol L-1 Na2SO4 | 22.35 µmol h-1 cm-2 | 88.33 | 10 | [ |
g-C3N4 nanosheets | H-cell, 0.1 mol L-1 PBS | 30.7 µmol h-1 cm-2 | 45.6 | 20 | [ |
Fig. 9. NH3-formation rate (a) and FENH3 (b) of various Cu and Pt electrodes. (c) Stability of Cu foam. (d) Comparison of XRD profile and SEM images for the as-prepared Cu foam and those after stability test. (e) Fourier transforms of EXAFS signals for the standard Cu foil, as-prepared Cu foam, and the Cu foam after stability test. (f) X-ray photoelectron spectroscopy for the as-prepared Cu foam and those after stability test. Reprinted with permission from Ref. [153]. Copyright 2020, Wiley-VCH.
Fig. 10. (a) Schematic diagram showing NO capture by EFeMC present in the electrolyte and its electrochemical reduction to NH3. (b) Economic estimation model. Reprinted with permission from Ref. [168]. Copyright 2020, American Chemical Society.
Fig. 11. (a) Schematic illustration of electrochemical NORR in the GDE-based system. (b) FENH3 in the GDE cell (using 1% NO) and the aqueous-phase cell (using 99.9% NO). Reprinted with permission from Ref. [170]. Copyright 2022, American Chemical Society. (c) Product selectivity of various catalysts in NO electroreduction. (d) Product selectivity of various catalysts in N2O electroreduction. (e,f) Schematic illustrations of the effect of high and low NO coverage on the metal surface for product selectivity. Reprinted with permission from Ref. [171]. Copyright 2022, American Chemical Society.
Fig. 12. (a) SEM images of Bi NDs. (b) NH3 yields and FEs of major reduction products on Bi NDs/CP. (c) Comparison of peak power densities and NH3 yields. Reprinted with permission from Ref. [173]. Copyright 2022, Elsevier. (d) SEM image of Bi@C. (e) Polarization curves for Bi@C/CP and Bi/CP. (f) NH3 yields and FEs of major reduction products on Bi@C/CP. Reprinted with permission from Ref. [174]. Copyright 2022, Springer Nature.
Fig. 13. (a) Yields and FEs of NH3 and H2 on Fe2O3/CP. (b) COHP and ICOHP. Reprinted with permission from Ref. [165]. Copyright 2022, Royal Society of Chemistry. (c) Free energy profiles of NORR on MnO2(211) and MnO2?x(211). (f) Performance comparison. Reprinted with permission from Ref. [175]. Copyright 2021, Elsevier. (e) Performance comparison. (f) Free energy profiles of NORR on TiO2(101) and TiO2?x(101). Reprinted with permission from Ref. [176]. Copyright 2023, Wiley-VCH.
Fig. 14. (a) Product distribution for MoS2/GF. (b) Pt and MoS2 were compared on the RRDE electrode. (c) Free energy landscape for NORR on MoS2(101). Reprinted with permission from Ref. [164]. Copyright 2021, Wiley-VCH. (d) NH3 yields and FEs of Co1/MoS2 and MoS2. (e) Co K-edge XANES. (f) EXAFS spectra. (g) EXAFS fitting curve of Co1/MoS2. (h) Free energy profiles of NORR on MoS2 and Co1/MoS2. Reprinted with permission from Ref. [182]. Copyright 2022, Elsevier. (i) Charge density difference of the CoS1?x(100) facet. (j) Performance comparison. Reprinted with permission from Ref. [183]. Copyright 2022, American Chemical Society.
Fig. 15. (a) Performance comparison. Reprinted with permission from Ref. [184]. Copyright 2022, Elsevier. (b) Photographs and water contact angles of the distinct electrodes and illustrations of underwater UW, UWC, and UC states. (c) Schematic illustration of the gas-liquid-solid triphase interface electrocatalysis with UWC state. Reprinted with permission from Ref. [185]. Copyright 2023, Elsevier. (d) Performance comparison. (e) Free energy diagram for NORR on a-B2.6C@TiO2(101) and (inset of f) corresponding atomic structures of intermediates. Reprinted with permission from Ref. [20]. Copyright 2022, Wiley-VCH.
Catalyst | Cell type, electrolyte | NH3 yield | FE (%) | Potential (V vs. RHE) | Ref. |
---|---|---|---|---|---|
CuO NWAs | H-cell, 0.5 mol L‒1 Na2SO4 + 200 ppm NO3- | 0.2449 mmol h-1 cm-2 | 95.8 | -0.85 | [ |
Co@TiO2/TP | H-cell, 0.1 mol L‒1 PBS + 0.1 mol L‒1 NO3- | 800.0 μmol h-1 cm-2 | 96.7 | -1.0, -0.7 | [ |
Co2AlO4/CC | H-cell, 0.1 mol L‒1 PBS + 0.1 mol L‒1 NO3- | 7.9 mg h-1 cm-2 | 92.6 | -0.9, -0.7 | [ |
Co@CC | H-cell, 0.1 mol L‒1 NaOH + 0.1 mol L‒1 NO3- | 0.60 mmol h-1 cm-2 | 93.4 | -0.8 | [ |
Co-NCNT/CP | H-cell, 0.1 mol L‒1 NaOH + 0.1 mol L‒1 NO3- | 5996 μg h-1 cm-2 | 92 | -0.6 | [ |
Co@NC | H-cell, 0.1 mol L‒1 NaOH + 0.1 mol L‒1 NO3- | 758.0 μmol h-1 mgcat.-1 | 96.5 | -0.7, -0.5 | [ |
PP-Co | H-cell, 0.1 mol L‒1 NaOH + 0.1 mol L‒1 NO3- | 1.1 mmol h-1 mgcat.-1 | 90.1 | -0.6 | [ |
Co@JDC/GF | H-cell, 0.1 mol L‒1 NaOH + 0.1 mol L‒1 NO2- | 2.8 ± 0.1 mol h-1 gCo-1 | 96.9 ± 2.1 | -1.0 | [ |
Vo-Co3O4/CC | H-cell, 0.1 mol L‒1 NaOH + 0.1 mol L‒1 NO3- | 12157 μg h-1 cm-2 | 96.8 | -0.5 | [ |
vCo-Co3O4/CC | H-cell, 0.1 mol L‒1 NaOH + 0.1 mol L‒1 NO3- | 517.5 μmol h-1 cm-2 | 97.2 | -0.6, -0.4 | [ |
Fe-Co3O4 NA/TM | H-cell, 0.1 mol L‒1 PBS + 50 mmol L‒1 NO3- | 0.624 mg h-1 mgcat.-1 | 95.5 | -0.7 | [ |
Co3O4@TiO2/TP | H-cell, 0.1 mol L‒1 NaOH + 0.1 mol L‒1 NO3- | 875 μmol h-1 cm-2 | 93.1 | -0.9, -0.7 | [ |
CoO@NCNT | H-cell, 0.1 mol L‒1 NaOH + 0.1 mol L‒1 NO3- | 9041.6 ± 370.7 μg h-1 cm-2 | 93.8 ± 1.5 | -0.6 | [ |
CoP NA/TM | H-cell, 0.1 mol L‒1 PBS + 500 ppm NO2- | 2260.7 ± 51.5 μg h-1 cm-2 | 90.0 ± 2.3 | -0.2 | [ |
CoP NAs/CFC | H-cell, 1.0 mol L‒1 NaOH + 1.0 mol L‒1 NO3- | 9.56 mol h-1 m-2 | ~100 | -0.3 | [ |
CoP-CNS | H-cell, 1.0 mol L‒1 OH- + 1.0 mol L‒1 NO3- | 8.47 mmol h-1 cm-2 | 88.6 | -1.03 | [ |
CoP/TiO2@TP | H-cell, 0.1 mol L‒1 NaOH + 0.1 mol L‒1 NO3- | 499.8 μmol h-1 cm-2 | 95.0 | -0.5, -0.3 | [ |
NiCo2O4/CC | H-cell, 0.1 mol L‒1 NaOH + 0.1 mol L‒1 NO3- | 973.2 µmol h-1 cm-2 | 99.0 | -0.6, -0.3 | [ |
ZnCo2O4/CC | H-cell, 0.1 mol L‒1 NaOH + 0.1 mol L‒1 NO3- | 634.74 µmol h-1 cm-2 | 98.33 | -0.8, -0.6 | [ |
FeCo2O4/CC | H-cell, 0.1 mol L‒1 NaOH + 20 mmol L‒1 NO3- | 4988 μg h-1 cm-2 | 95.9 | -0.5 | [ |
MnCo2O4/CC | H-cell, 0.1 mol L‒1 NaOH + 0.1 mol L‒1 NO3- | 0.67 mmol h-1 cm-2 | 97.1 | -0.7, -0.6 | [ |
Mn2CoO4/CC | H-cell, 0.1 mol L‒1 PBS + 0.1 mol L‒1 NO3- | 11.19 mg h-1 cm-2 | 98.6 | -1.0, -0.6 | [ |
CoB@TiO2/TP | H-cell, 0.1 mol L‒1 Na2SO4 + 400 ppm NO2- | 293 μmol h-1 cm-2 | 95.2 | -0.7 | [ |
Co-P/TP | H-cell, 0.2 mol L‒1 Na2SO4 + 200 ppm NO3- | 416.06 ± 7.2 μg h-1 cm-2 | 93.6 ± 3.3 | -0.6, -0.3 | [ |
CoBx | H-cell, 0.1 mol L‒1 KOH + 0.05 mol L‒1 NO3- | 0.787 ± 0.028 mmol h-1 cm-2 | 94.0 ± 1.67 | -1.3, -0.9 | [ |
Co2B@Co3O4 | H-cell, 0.1 mol L‒1 PBS + 0.1 mol L‒1 NO3- | 8.57 mg h-1 cm-2 | 97.0 | -1.0, -0.7 | [ |
Cu@JDC | H-cell, 0.1 mol L‒1 NaOH + 0.1 mol L‒1 NO2- | 523.5 µmol h-1 mgcat.-1 | 93.2 | -0.6 | [ |
Cu@TiO2/TP | H-cell, 0.1 mol L‒1 Na2SO4 + 0.1 mol L‒1 NO2- | 760.5 µmol h-1 cm-1 | 95.3 | -0.8, -0.6 | [ |
Cu3P NA/CF | H-cell, 0.1 mol L‒1 PBS + 0.1 mol L‒1 NO2- | 1626.6 ± 36.1 μg h-1 cm-2 | 91.2 ± 2.5 | -0.5 | [ |
CF@Cu2O | H-cell, 0.1 mol L‒1 PBS + 0.1 mol L‒1 NO2- | 7510.73 µg h-1 cm-1 | 94.21 | -0.6 | [ |
Cu-N-C SAC | H-cell, 0.1 mol L‒1 KOH + 0.1 mol L‒1 NO3- | 4.5 mg h-1 cm-1 | 84.7 | -1.0 | [ |
Fe3O4/SS | H-cell, 0.1 mol L‒1 NaOH + 0.1 mol L‒1 NO3- | 10145 μg h-1 cm-2 | 91.5 | -0.5 | [ |
FeOOH nanorod | H-cell, 0.1 mol L‒1 PBS + 0.1 mol L‒1 NO3- | 2419 μg h-1 cm-2 | 92 | -0.8, -0.5 | [ |
FeOOH NTA/CC | H-cell, 0.1 mol L‒1 PBS + 0.1 mol L‒1 NO2- | 11937 μg h-1 cm-2 | 94.7 | -1.1, -1.0 | [ |
FeS2@TiO2 | H-cell, 0.1 mol L‒1 NaOH + 0.1 mol L‒1 NO3- | 860.3 μmol h-1 cm-2 | 97.0 | -0.7, -0.4 | [ |
Fe2TiO5 nanofibers | H-cell, 0.1 mol L‒1 PBS + 0.1 mol L‒1 NO3- | 0.73 mmol h-1 mgcat.-1 | 87.6 | -1.0 | [ |
NFP | H-cell, 0.5 mol L‒1 Na2SO4 + 0.05 mol L‒1 NO3- | 0.0564 mmol h-1 mg-1 | 99.23 | -1.2 | [ |
Ni2P/NF | H-cell, 0.1 mol L‒1 PBS + 200 ppm NO2- | 2692.2 ± 92.1 μg h-1 cm-2 | 90.2 ± 3.0 | -0.3 | [ |
Ni@JBC | H-cell, 0.1 mol L‒1 NaOH + 0.1 mol L‒1 NO2- | 4117.3 µg h-1 mgcat.-1 | 83.41 | -0.5 | [ |
NiS2@TiO2 | H-cell, 0.1 mol L‒1 NaOH + 0.1 mol L‒1 NO2- | 591.9 µmol h-1 cm-1 | 92.1 | -0.6, -0.5 | [ |
TiO2‒x/CP | H-cell, 0.5 mol L‒1 Na2SO4 + 50 ppm NO3- | 0.045 mmol h-1 mg-1 | 85.0 | -1.6 V vs. SCE | [ |
TiO2‒x NBA/TP | H-cell, 0.1 mol L‒1 NaOH + 0.1 mol L‒1 NO2- | 7898 µg h-1 cm-1 | 92.7 | -0.7 | [ |
ITO@TiO2/TP | H-cell, 0.5 mol L‒1 LiClO4 + 0.1 mol L‒1 NO2- | 411.3 µmol h-1 cm-1 | 82.6 | -0.5 | [ |
Anatase TiO2‒x | H-cell, 0.1 mol L‒1 NaOH + 0.1 mol L‒1 NO2- | 12230.1 ± 406.9 μg h-1 cm-2 | 91.1 ± 5.5 | -0.8 | [ |
Fe-TiO2/TP | H-cell, 0.1 mol L‒1 NaOH + 0.1 mol L‒1 NO3- | 940.17 μmol h-1 cm-2 | 95.93 | -0.9, -0.5 | [ |
Co-TiO2/TP | H-cell, 0.1 mol L‒1 NaOH + 0.1 mol L‒1 NO3- | 1127 μmol h-1 cm-2 | 98.2 | -0.9, -0.5 | [ |
V-TiO2/TP | H-cell, 0.1 mol L‒1 NaOH + 0.1 mol L‒1 NO2- | 540.8 µmol h-1 cm-1 | 93.2 | -0.7, -0.6 | [ |
Ni-TiO2/TP | H-cell, 0.1 mol L‒1 NaOH + 0.1 mol L‒1 NO2- | 380.27 µmol h-1 cm-1 | 94.89 | -0.5 | [ |
P-TiO2/TP | H-cell, 0.1 mol L‒1 Na2SO4 + 0.1 mol L‒1 NO2- | 560.8 µmol h-1 cm-1 | 90.6 | -0.6 | [ |
Table 3 Comparison of the NH3-production performance of representative NtrRR electrocatalysts.
Catalyst | Cell type, electrolyte | NH3 yield | FE (%) | Potential (V vs. RHE) | Ref. |
---|---|---|---|---|---|
CuO NWAs | H-cell, 0.5 mol L‒1 Na2SO4 + 200 ppm NO3- | 0.2449 mmol h-1 cm-2 | 95.8 | -0.85 | [ |
Co@TiO2/TP | H-cell, 0.1 mol L‒1 PBS + 0.1 mol L‒1 NO3- | 800.0 μmol h-1 cm-2 | 96.7 | -1.0, -0.7 | [ |
Co2AlO4/CC | H-cell, 0.1 mol L‒1 PBS + 0.1 mol L‒1 NO3- | 7.9 mg h-1 cm-2 | 92.6 | -0.9, -0.7 | [ |
Co@CC | H-cell, 0.1 mol L‒1 NaOH + 0.1 mol L‒1 NO3- | 0.60 mmol h-1 cm-2 | 93.4 | -0.8 | [ |
Co-NCNT/CP | H-cell, 0.1 mol L‒1 NaOH + 0.1 mol L‒1 NO3- | 5996 μg h-1 cm-2 | 92 | -0.6 | [ |
Co@NC | H-cell, 0.1 mol L‒1 NaOH + 0.1 mol L‒1 NO3- | 758.0 μmol h-1 mgcat.-1 | 96.5 | -0.7, -0.5 | [ |
PP-Co | H-cell, 0.1 mol L‒1 NaOH + 0.1 mol L‒1 NO3- | 1.1 mmol h-1 mgcat.-1 | 90.1 | -0.6 | [ |
Co@JDC/GF | H-cell, 0.1 mol L‒1 NaOH + 0.1 mol L‒1 NO2- | 2.8 ± 0.1 mol h-1 gCo-1 | 96.9 ± 2.1 | -1.0 | [ |
Vo-Co3O4/CC | H-cell, 0.1 mol L‒1 NaOH + 0.1 mol L‒1 NO3- | 12157 μg h-1 cm-2 | 96.8 | -0.5 | [ |
vCo-Co3O4/CC | H-cell, 0.1 mol L‒1 NaOH + 0.1 mol L‒1 NO3- | 517.5 μmol h-1 cm-2 | 97.2 | -0.6, -0.4 | [ |
Fe-Co3O4 NA/TM | H-cell, 0.1 mol L‒1 PBS + 50 mmol L‒1 NO3- | 0.624 mg h-1 mgcat.-1 | 95.5 | -0.7 | [ |
Co3O4@TiO2/TP | H-cell, 0.1 mol L‒1 NaOH + 0.1 mol L‒1 NO3- | 875 μmol h-1 cm-2 | 93.1 | -0.9, -0.7 | [ |
CoO@NCNT | H-cell, 0.1 mol L‒1 NaOH + 0.1 mol L‒1 NO3- | 9041.6 ± 370.7 μg h-1 cm-2 | 93.8 ± 1.5 | -0.6 | [ |
CoP NA/TM | H-cell, 0.1 mol L‒1 PBS + 500 ppm NO2- | 2260.7 ± 51.5 μg h-1 cm-2 | 90.0 ± 2.3 | -0.2 | [ |
CoP NAs/CFC | H-cell, 1.0 mol L‒1 NaOH + 1.0 mol L‒1 NO3- | 9.56 mol h-1 m-2 | ~100 | -0.3 | [ |
CoP-CNS | H-cell, 1.0 mol L‒1 OH- + 1.0 mol L‒1 NO3- | 8.47 mmol h-1 cm-2 | 88.6 | -1.03 | [ |
CoP/TiO2@TP | H-cell, 0.1 mol L‒1 NaOH + 0.1 mol L‒1 NO3- | 499.8 μmol h-1 cm-2 | 95.0 | -0.5, -0.3 | [ |
NiCo2O4/CC | H-cell, 0.1 mol L‒1 NaOH + 0.1 mol L‒1 NO3- | 973.2 µmol h-1 cm-2 | 99.0 | -0.6, -0.3 | [ |
ZnCo2O4/CC | H-cell, 0.1 mol L‒1 NaOH + 0.1 mol L‒1 NO3- | 634.74 µmol h-1 cm-2 | 98.33 | -0.8, -0.6 | [ |
FeCo2O4/CC | H-cell, 0.1 mol L‒1 NaOH + 20 mmol L‒1 NO3- | 4988 μg h-1 cm-2 | 95.9 | -0.5 | [ |
MnCo2O4/CC | H-cell, 0.1 mol L‒1 NaOH + 0.1 mol L‒1 NO3- | 0.67 mmol h-1 cm-2 | 97.1 | -0.7, -0.6 | [ |
Mn2CoO4/CC | H-cell, 0.1 mol L‒1 PBS + 0.1 mol L‒1 NO3- | 11.19 mg h-1 cm-2 | 98.6 | -1.0, -0.6 | [ |
CoB@TiO2/TP | H-cell, 0.1 mol L‒1 Na2SO4 + 400 ppm NO2- | 293 μmol h-1 cm-2 | 95.2 | -0.7 | [ |
Co-P/TP | H-cell, 0.2 mol L‒1 Na2SO4 + 200 ppm NO3- | 416.06 ± 7.2 μg h-1 cm-2 | 93.6 ± 3.3 | -0.6, -0.3 | [ |
CoBx | H-cell, 0.1 mol L‒1 KOH + 0.05 mol L‒1 NO3- | 0.787 ± 0.028 mmol h-1 cm-2 | 94.0 ± 1.67 | -1.3, -0.9 | [ |
Co2B@Co3O4 | H-cell, 0.1 mol L‒1 PBS + 0.1 mol L‒1 NO3- | 8.57 mg h-1 cm-2 | 97.0 | -1.0, -0.7 | [ |
Cu@JDC | H-cell, 0.1 mol L‒1 NaOH + 0.1 mol L‒1 NO2- | 523.5 µmol h-1 mgcat.-1 | 93.2 | -0.6 | [ |
Cu@TiO2/TP | H-cell, 0.1 mol L‒1 Na2SO4 + 0.1 mol L‒1 NO2- | 760.5 µmol h-1 cm-1 | 95.3 | -0.8, -0.6 | [ |
Cu3P NA/CF | H-cell, 0.1 mol L‒1 PBS + 0.1 mol L‒1 NO2- | 1626.6 ± 36.1 μg h-1 cm-2 | 91.2 ± 2.5 | -0.5 | [ |
CF@Cu2O | H-cell, 0.1 mol L‒1 PBS + 0.1 mol L‒1 NO2- | 7510.73 µg h-1 cm-1 | 94.21 | -0.6 | [ |
Cu-N-C SAC | H-cell, 0.1 mol L‒1 KOH + 0.1 mol L‒1 NO3- | 4.5 mg h-1 cm-1 | 84.7 | -1.0 | [ |
Fe3O4/SS | H-cell, 0.1 mol L‒1 NaOH + 0.1 mol L‒1 NO3- | 10145 μg h-1 cm-2 | 91.5 | -0.5 | [ |
FeOOH nanorod | H-cell, 0.1 mol L‒1 PBS + 0.1 mol L‒1 NO3- | 2419 μg h-1 cm-2 | 92 | -0.8, -0.5 | [ |
FeOOH NTA/CC | H-cell, 0.1 mol L‒1 PBS + 0.1 mol L‒1 NO2- | 11937 μg h-1 cm-2 | 94.7 | -1.1, -1.0 | [ |
FeS2@TiO2 | H-cell, 0.1 mol L‒1 NaOH + 0.1 mol L‒1 NO3- | 860.3 μmol h-1 cm-2 | 97.0 | -0.7, -0.4 | [ |
Fe2TiO5 nanofibers | H-cell, 0.1 mol L‒1 PBS + 0.1 mol L‒1 NO3- | 0.73 mmol h-1 mgcat.-1 | 87.6 | -1.0 | [ |
NFP | H-cell, 0.5 mol L‒1 Na2SO4 + 0.05 mol L‒1 NO3- | 0.0564 mmol h-1 mg-1 | 99.23 | -1.2 | [ |
Ni2P/NF | H-cell, 0.1 mol L‒1 PBS + 200 ppm NO2- | 2692.2 ± 92.1 μg h-1 cm-2 | 90.2 ± 3.0 | -0.3 | [ |
Ni@JBC | H-cell, 0.1 mol L‒1 NaOH + 0.1 mol L‒1 NO2- | 4117.3 µg h-1 mgcat.-1 | 83.41 | -0.5 | [ |
NiS2@TiO2 | H-cell, 0.1 mol L‒1 NaOH + 0.1 mol L‒1 NO2- | 591.9 µmol h-1 cm-1 | 92.1 | -0.6, -0.5 | [ |
TiO2‒x/CP | H-cell, 0.5 mol L‒1 Na2SO4 + 50 ppm NO3- | 0.045 mmol h-1 mg-1 | 85.0 | -1.6 V vs. SCE | [ |
TiO2‒x NBA/TP | H-cell, 0.1 mol L‒1 NaOH + 0.1 mol L‒1 NO2- | 7898 µg h-1 cm-1 | 92.7 | -0.7 | [ |
ITO@TiO2/TP | H-cell, 0.5 mol L‒1 LiClO4 + 0.1 mol L‒1 NO2- | 411.3 µmol h-1 cm-1 | 82.6 | -0.5 | [ |
Anatase TiO2‒x | H-cell, 0.1 mol L‒1 NaOH + 0.1 mol L‒1 NO2- | 12230.1 ± 406.9 μg h-1 cm-2 | 91.1 ± 5.5 | -0.8 | [ |
Fe-TiO2/TP | H-cell, 0.1 mol L‒1 NaOH + 0.1 mol L‒1 NO3- | 940.17 μmol h-1 cm-2 | 95.93 | -0.9, -0.5 | [ |
Co-TiO2/TP | H-cell, 0.1 mol L‒1 NaOH + 0.1 mol L‒1 NO3- | 1127 μmol h-1 cm-2 | 98.2 | -0.9, -0.5 | [ |
V-TiO2/TP | H-cell, 0.1 mol L‒1 NaOH + 0.1 mol L‒1 NO2- | 540.8 µmol h-1 cm-1 | 93.2 | -0.7, -0.6 | [ |
Ni-TiO2/TP | H-cell, 0.1 mol L‒1 NaOH + 0.1 mol L‒1 NO2- | 380.27 µmol h-1 cm-1 | 94.89 | -0.5 | [ |
P-TiO2/TP | H-cell, 0.1 mol L‒1 Na2SO4 + 0.1 mol L‒1 NO2- | 560.8 µmol h-1 cm-1 | 90.6 | -0.6 | [ |
Fig. 17. (a) DEMS measurements of NITRR over Cu/Ni-NC. (b) In situ ATR-SEIRAS spectra of Cu/Ni-NC. Reprinted with permission from Ref. [195]. Copyright 2023, Wiley-VCH. (c) In situ Raman spectra in the range of 900-1800 cm-1 on Fe2O3 NRs/CC. Reprinted with permission from Ref. [196]. Copyright 2022, American Chemical Society. (d) Electrochemical in situ Raman spectroscopy of CuO NWAs. Reprinted with permission from Ref. [197]. Copyright 2020, Wiley-VCH.
Fig. 18. (a) Electrochemical in situ Cu K-edge XAS spectra and (b) Fourier-transformed Cu K-edge XAS spectra for Cu50Ni50 at given potentials. (c) Electrochemical in situ Ni K-edge XAS spectra and (d) Fourier-transformed Ni K-edge XAS spectra for Cu50Ni50 at given potentials. (e) UPS spectra and d-band center positions of pure Cu and CuNi alloys. Reprinted with permission from Ref. [198]. Copyright 2020, American Chemical Society.
Fig. 19. (a) The structures of all intermediates involved in NO3- reduction on Ru@C3N4/Cu and C3N4/Cu. (b) Gibbs free energy diagram of NO3-RR over the Ru@C3N4/Cu and C3N4/Cu. (c) Gibbs free energy diagram of HER over the Ru@C3N4/Cu and C3N4/Cu. The structures of adsorption configurations of *H on Ru@C3N4/Cu (d) and C3N4/Cu (e). Reprinted with permission from Ref. [200]. Copyright 2023, Wiley-VCH.
Fig. 20. (a) TEM image of Co-NCNT. Reprinted with permission from Ref. [209]. Copyright 2022, Royal Society of Chemistry. (b) SEM image of PP-Co. Reprinted with permission from Ref. [211]. Copyright 2022, Royal Society of Chemistry. (c) SEM image of Co@JDC. (d) Polarization curves of Co@JDC/GF. (e) NO2-RR performance of Co@JDC/GF. (f) Performance of the Co@JDC/GF-based two-electrode cell. (g) Free-energy diagrams of NO2-RR and (h) HER on the Co(111), Co(200), and Co(220) planes. Reprinted with permission from Ref. [212]. Copyright 2022, Royal Society of Chemistry.
Fig. 21. (a) SEM image of vCo-Co3O4/CC. (b) TEM image of vCo-Co3O4. Polarization curves (c) and NH3-production performance (d) of vCo-Co3O4/CC and Co3O4/CC. (e) Free-energy diagrams for NO3-RR on vCo-Co3O4. Reprinted with permission from Ref. [215]. Copyright 2022, American Chemical Society. (f) SEM image of CoO@NCNT. (g) TEM image of CoO@NCNT. (h) Charge density difference of the adsorption of NO3- by 3D and 2D views. (i) Bader charges of the Co active site and N atom of NO3-. (j) Free energies of NO3-RR on the CoO surface. Reprinted with permission from Ref. [219]. Copyright 2022, Royal Society of Chemistry.
Fig. 22. (a) SEM images of CoP NA/TM. (b) NH3-generation performance of CoP NA/TM for NO2-RR. Reprinted with permission from Ref. [221]. Copyright 2022, Springer Nature. (c) Operando XANES of Co K-edge of CoP NAs/CFC. (d) Mechanism of NO3-RR on CoP NAs/CFC. (e) Operando XANES and (f) LCF results of Co K-edge of Co NAs/CFC. (g) Gibbs free energy diagram of NO3-RR on CoP. Reprinted with permission from Ref. [222]. Copyright 2022, Royal Society of Chemistry. (h) Polarization curves and (i) NH3-generation performance of CoP@TiO2/TP for NO3-RR. Reprinted with permission from Ref. [224]. Copyright 2022, Elsevier.
Fig. 23. (a) Polarization curves of NiCo2O4/CC and Co3O4/CC. (b) NH3-production performance of NiCo2O4/CC. (c) Schematic illustration of NiCo2O4/CC-based Zn-NO3? battery. (d) Discharge polarization and power density plots of NiCo2O4/CC-based Zn-NO3? battery. (e) Free energy diagrams for NO3?RR on the Co3O4(311) and NiCo2O4(311) surfaces. Reprinted with permission from Ref. [225]. Copyright 2022, Wiley-VCH. (f) Polarization curves of ZnCo2O4/CC. (g) Performance comparison. Reprinted with permission from Ref. [226]. Copyright 2022, Elsevier. (h) Charge density difference of Co for Co3O4 and Co2AlO4. (i) Free energy diagrams for NO3?RR on the Co2AlO4(220) and Co3O4(220) surfaces. Reprinted with permission from Ref. [203]. Copyright 2022, Elsevier.
Fig. 24. NH3-production performance of Co-P/TP toward NO3-RR (a) and NO2-RR (b). (c) Concentrations of NO3- and conversion rates. Reprinted with permission from Ref. [232]. Copyright 2021, Royal Society of Chemistry. (d) Fabrication process of CoBx nanoparticles. Polarization curves (e) and NH3 yields (f) of CoBx and Co toward NO3-RR. Reprinted with permission from Ref. [233]. Copyright 2021, Royal Society of Chemistry. (g) Performance comparison. (h) Free energy profile for NO3-RR on Co2B. Reprinted with permission from Ref. [234]. Copyright 2022, American Chemical Society.
Fig. 25. (a) FE of various elements incorporated in PTCDA at -0.4 V. (b) PDOS for *NO3 on Cu-PTCDA. (c) HAADF-STEM and corresponding SAED images of Cu-PTCDA. (d) FT-EXAFS spectra of Cu-PTCDA and Cu foil. (e) NH3 FE of Cu-PTCDA toward NO3-RR. Reprinted with permission from Ref. [238]. Copyright 2020, Springer Nature.
Fig. 26. (a) PDOS of Cu2O(111) with OVs before and after NO2- adsorption. (b) Charge density difference for NO2--adsorbed configuration of Cu2O(111) with OVs. (c) Free energy diagram of NO2-RR on the Cu2O(111) with OVs. Reprinted with permission from Ref. [244]. Copyright 2022, Royal Society of Chemistry. (d) In situ XANES spectra of Cu-N4 at each given potential. (e) Linear combination fitting result of Cu K-edge XANES spectra and (f) corresponding Cu K-edge FT-EXAFS spectra at different potentials. Reprinted with permission from Ref. [245]. Copyright 2022, American Chemical Society.
Fig. 27. (a) SEM images of Fe3O4/SS. (b) NH3-production performance of Fe3O4/SS and SS. Reprinted with permission from Ref. [249]. Copyright 2021, Springer Nature. (c) SEM images of FeOOH NTA/CC. (d) NH3-production performance of FeOOH NTA/CC. Reprinted with permission from Ref. [251]. Copyright 2022, Royal Society of Chemistry. (e) SEM image of FeS2@TiO2/TP. (f) Performance comparison. Reprinted with permission from Ref. [252]. Copyright 2022, Royal Society of Chemistry.
Fig. 28. (a) Polarization curves of different electrodes for NO3-RR. (b) Performance comparison. (c) Calculated density of states (DOS) of Fe2TiO5 and Fe2TiO5-VO. (d) Calculated band structures of Fe2TiO5 and Fe2TiO5-VO. (e) Free energies of Fe2TiO5 (red line) and Fe2TiO5-VO (green line). Reprinted with permission from Ref. [253]. Copyright 2022, Wiley-VCH.
Fig. 29. (a) Performance comparison. (b) Surface energy diagrams and free energy profiles. Reprinted with permission from Ref. [254]. Copyright 2021, American Chemical Society. (c) Polarization curves of Ni2P/NF. (d) NO2-RR performance of Ni2P/NF. Reprinted with permission from Ref. [255]. Copyright 2021, Elsevier.
Fig. 30. (a) Comparison of NO3-RR performance of TiO2?x and TiO2. (b) DEMS measurements of TiO2-x for electrocatalytic reduction of NO3-. (c) Calculated free energy changes of NO3-RR on the TiO2(101) surface with two oxygen vacancies. Reprinted with permission from Ref. [258]. Copyright 2020, American Chemical Society. (d) Free energy profiles for NO2-RR on V-doped TiO2 and TiO2. Reprinted with permission from Ref. [264]. Copyright 2022, Elsevier.
|
[1] | 张季, 俞爱民, 孙成华. 非金属掺杂石墨烯异核双原子催化剂氮还原特性研究[J]. 催化学报, 2023, 52(9): 263-270. |
[2] | 洪岩, 王琦, 阚子旺, 张禹烁, 郭晶, 李思琦, 刘松, 李斌. 电化学氮还原氨反应催化剂的最新研究进展[J]. 催化学报, 2023, 52(9): 50-78. |
[3] | 刘勇, 赵晓丽, 隆昶, 王晓艳, 邓邦为, 李康璐, 孙艳娟, 董帆. 原位构筑动态Cu/Ce(OH)x界面用于高活性、高选择性和高稳定性硝酸盐还原合成氨[J]. 催化学报, 2023, 52(9): 196-206. |
[4] | 周波, 石建巧, 姜一民, 肖磊, 逯宇轩, 董帆, 陈晨, 王特华, 王双印, 邹雨芹. 强化脱氢动力学实现超低电池电压和大电流密度下抗坏血酸电氧化[J]. 催化学报, 2023, 50(7): 372-380. |
[5] | 周纳, 王家志, 张宁, 王志, 王恒国, 黄岗, 鲍迪, 钟海霞, 张新波. 富含缺陷的Cu@CuTCNQ复合材料增强电催化硝酸盐还原成氨[J]. 催化学报, 2023, 50(7): 324-333. |
[6] | 李静静, 张锋伟, 詹新雨, 郭河芳, 张涵, 昝文艳, 孙振宇, 张献明. 酞菁镍分子结构的精确设计: 优化电子和空间效应用于CO2电还原[J]. 催化学报, 2023, 48(5): 117-126. |
[7] | 张文静, 李静, 魏子栋. 碳基氧还原电催化剂: 机理研究和多孔结构[J]. 催化学报, 2023, 48(5): 15-31. |
[8] | 詹麒尼, 帅婷玉, 徐慧民, 黄陈金, 张志杰, 李高仁. 单原子催化剂的合成及其在电化学能量转换中的应用[J]. 催化学报, 2023, 47(4): 32-66. |
[9] | 吴则星, 高玉肖, 王子璇, 肖卫平, 王新萍, 李彬, 李镇江, 刘晓斌, 马天翼, 王磊. 表面富集的超小铂纳米颗粒耦合缺陷磷化钴用于高效的电催化水分解和柔性锌空气电池[J]. 催化学报, 2023, 46(3): 36-47. |
[10] | 刘小妮, 刘晓斌, 李彩霞, 杨波, 王磊. 缺陷工程在金属基电池中的研究进展[J]. 催化学报, 2023, 45(2): 27-87. |
[11] | 逯宇轩, 杨柳, 姜一民, 原甑然, 王双印, 邹雨芹. 局域静电环境工程用于增强电催化生物质转化过程中羟基活性[J]. 催化学报, 2023, 53(10): 153-160. |
[12] | 李雅, 王震康, 季浩卿, 张莉芳, 钱涛, 晏成林, 路建美. 氮还原反应中氨定量假阳性结果的来源与消除方法[J]. 催化学报, 2023, 44(1): 50-66. |
[13] | 乔玉彦, 潘艳秋, 张江威, 王彬, 武婷婷, 范文俊, 曹雨程, Rashid Mehmood, 张飞, 章福祥. 多碳界面工程用于促进NiFe纳米复合电催化剂的产氧反应[J]. 催化学报, 2022, 43(9): 2354-2362. |
[14] | 崔彤, 翟雪君, 郭莉莉, 迟京起, 张昱, 朱家伟, 孙雪梅, 王磊. 自组装百合花状超低Ru, Ni掺杂的Fe2O3用于大电流碱性海水电解双功能电催化[J]. 催化学报, 2022, 43(8): 2202-2211. |
[15] | 王立群, 闫啸, 司文平, 刘道兰, 侯兴刚, 李德军, 侯峰, 窦世学, 梁骥. 光电化学氮还原: 一种可持续的氨合成方法[J]. 催化学报, 2022, 43(7): 1761-1773. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||