催化学报 ›› 2023, Vol. 50: 6-44.DOI: 10.1016/S1872-2067(23)64464-X

• 述评 • 上一篇    下一篇

电催化合成氨的研究进展

欧阳玲a,b, 梁杰b, 罗永嵩b, 郑冬冬b, 孙圣钧c, 刘倩d, Mohamed S. Hamdye, 孙旭平b,c,*(), 应斌武a,*()   

  1. a四川大学华西医院检验科, 四川成都 610041, 中国
    b电子科技大学基础与前沿研究院, 四川成都 610054, 中国
    c山东师范大学化学化工与材料科学学院, 山东济南 250014, 中国
    d成都大学高等研究院, 四川成都 610106, 中国
    e哈立德国王大学理学院化学系, 阿卜哈, 沙特阿拉伯
  • 收稿日期:2023-02-18 接受日期:2023-05-29 出版日期:2023-07-18 发布日期:2023-07-25
  • 通讯作者: *电子信箱: xpsun@uestc.edu.cn, xpsun@sdnu.edu.cn (孙旭平), yingbinwu@scu.edu.cn (应斌武).

Recent advances in electrocatalytic ammonia synthesis

Ling Ouyanga,b, Jie Liangb, Yongsong Luob, Dongdong Zhengb, Shengjun Sunc, Qian Liud, Mohamed S. Hamdye, Xuping Sunb,c,*(), Binwu Yinga,*()   

  1. aDepartment of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
    bInstitute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
    cCollege of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, Shandong, China
    dInstitute for Advanced Study, Chengdu University, Chengdu 610106, Sichuan, China
    eDepartment of Chemistry, College of Science, King Khalid University, P.O. Box 9004, 61413 Abha, Saudi Arabia
  • Received:2023-02-18 Accepted:2023-05-29 Online:2023-07-18 Published:2023-07-25
  • Contact: *E-mail: xpsun@uestc.edu.cn, xpsun@sdnu.edu.cn (X. Sun), yingbinwu@scu.edu.cn (B. Ying).
  • About author:Xuping Sun received his PhD degree in Changchun Institute of Applied Chemistry (CIAC), Chinese Academy of Sciences in 2006. During 2006-2009, he carried out postdoctoral researches at Konstanz University, University of Toronto, and Purdue University. In 2010, he started his independent research career as a full Professor at CIAC and then moved to Sichuan University in 2015. In 2018, he joined University of Electronic Science and Technology of China where he found the Research Center of Nanocatalysis & Sensing. He was recognized as a highly cited researcher (2018-2020) in both areas of chemistry and materials science by Clarivate Analytics. He published over 600 papers with total citations over 65000 and an h-index of 132. His research mainly focuses on rational design of nanocatalysts toward applications in electrosynthesis of green hydrogen and ammonia as well as electrochemical denitration of vehicle exhausts and industrial wastewater.
    Binwu Ying, MD, Postdoc, MBA, Professor, doctoral supervisor. Vice President of West China College of Medical Technology, Sichuan University, Director of Department of Laboratory Medicine, West China Clinical Medical College/West China Hospital Department of Laboratory Medicine. Standing member of the 11th Committee of the Chinese Medical Association Laboratory Medicine Committee, Standing member of the 4th Laboratory Medicine Branch of the Chinese Medical Doctor Association, Chairman of the 12th Clinical Laboratory Medicine Committee of the Sichuan Medical Association, and president-elect of the 3rd Laboratory Medicine branch of the Sichuan Medical Doctor Association. Senior editorial board member of Chinese Chemical Letters, the editorial board member of Chinese Medical Journal, and the editorial board members of Chinese Journal of Laboratory Medicine, Journal of Sichuan University (Medical Edition), International Journal of Laboratory Science. He is mainly engaged in molecular diagnostic research of infectious diseases. He has published more than 200 papers and won 10 national invention patents.

摘要:

氨是一种重要的工业原料, 在化肥、染料、药品和炸药的制造中起着重要作用. 由于氨的氢容量大、能量密度高且易于运输, 被认为是一种潜在的无碳燃料. Haber-Bosch工艺实现了高附加值氨的大规模工业化生产, 但其生产条件(400‒550 ºC, 15‒30 MPa)苛刻, 且伴随着高能耗和CO2排放. 因此, 开发绿色和可持续的氨合成方法, 同时实现全球环境的可持续性势在必行. 电催化氮还原合成氨(NRR)是近年来的研究热点, 该技术可以在环境条件下进行, 且可利用电子作为绿色还原剂, 水作为质子源. 此外, 该过程具有实现分散和现场按需生产氨的巨大潜力, 支持分布式肥料生产, 从而降低运输成本. 除了N2作为氮源, 对环境有害且活性高于N2的氮物种(如NO, NO2-/NO3-)已被认为是实现环境条件下生产氨的有吸引力的氮源, 电催化NO还原(NORR)和NO2-/NO3-(NOx-)还原(NtrRR)合成氨具有应用潜力.

本文综述了近年来电催化合成氨的研究进展. 首先简要介绍了三种电催化合成氨路线(NRR, NORR和NtrRR)的研究背景和意义. 然后, 对环境条件下合成氨电催化剂的最新研究进展进行了详细讨论, 主要涉及催化机理、理论计算和电化学性能. 最后, 对人工电催化合成氨当前面临的挑战和未来的研究需求作了总结和展望, 包括: (1)注重理论计算, 通过理论计算可以预测可能的活性位点、吸附能和反应途径, 有助于快速筛选合适的催化剂, 大大降低实验成本; (2)发展先进的原位表征技术来观察电催化剂表面上的动态变化和捕获/识别反应中间体, 促进对真实反应机理的探索, 从而进一步指导催化剂的设计; (3)确保数据的准确性和可重复性; (4)合理设计有效的电催化剂. 为了进一步提高现有材料体系对氨合成的催化性能, 需要开发更高效的材料设计策略(如精确调节单原子金属的配位环境、掺杂原子/空位的类型和浓度、合理暴露特定的晶体面等), 以促进电催化剂的内在活性. 此外, 通过优化电催化剂的形态, 构建特殊的结构(如尖刺), 可以暴露丰富的活性位点, 显著提高其表观活性; (5)研究特定的电极材料时, 除材料工程外, 扩展实验条件也至关重要, 包括电解质的pH值、应用电位和氮物种初始浓度等, 可能会影响催化活性和选择性; (6)文献报道的稳定性测试通常在50 h以下, 对于工业运行(预计在高电流密度下可以稳定运行数千小时)来说, 时间太短. 因此, 未来的催化剂设计需要以更长的测试时间为目标; (7)未来研究应进一步探索真实环境下NORR/NtrRR的催化活性, 以实现更高效的氨合成; (8)应开发一种可替代的氨分离技术. 在传统的Haber-Bosch工艺中, 通过冷凝, 氨从未反应的N2和H2中分离出来, 耗能大, 因此应采用比冷凝工艺能量输入更少的分离技术; (9)从实际应用角度出发, 还应考虑综合的技术经济评估, 包括材料成本、总能源成本、设备维护成本和产品分离成本等, 以评估氨电合成的大规模可扩展性和商业可行性. 综上, 开展电催化合成氨领域的研究有望以绿色和可持续的方式缓解环境污染和未来的能源问题.

关键词: 氨合成, 氮还原, 一氧化氮还原, 硝酸盐/亚硝酸盐还原, 电催化剂

Abstract:

Artificial electrocatalytic ammonia (NH3) synthesis is recently becoming a research hotspot. It can couple with clean renewable electricity, which is considered an energy-efficient and sustainable approach for regulating the recirculation of nitrogen species and meanwhile promoting the growth of a circular nitrogen economy. In this Account, we review recent advances in electrocatalytic ammonia synthesis. Firstly, we briefly introduce the research background and significance of three electrochemical NH3 synthesis routes: electrocatalytic nitrogen reduction, nitric oxide reduction, and nitrate/nitrite reduction. And then we give a detailed discussion of the latest research advances in electrocatalysts for ambient NH3 synthesis, mainly involving catalytic mechanisms, theoretical advances, and electrochemical performance. Finally, the existing challenges and future research needs for artificial electrosynthesis of NH3 are also highlighted.

Key words: Ammonia synthesis, Nitrogen reduction, Nitric oxide reduction, Nitrate/nitrite reduction, Electrocatalyst