催化学报 ›› 2023, Vol. 45: 27-87.DOI: 10.1016/S1872-2067(22)64168-8
刘小妮a, 刘晓斌a,b,*(), 李彩霞a,b,*(), 杨波b, 王磊a,b,c,*()
收稿日期:
2022-06-06
接受日期:
2022-08-10
出版日期:
2023-01-10
发布日期:
2023-01-10
通讯作者:
刘晓斌,李彩霞,王磊
基金资助:
Xiaoni Liua, Xiaobin Liua,b,*(), Caixia Lia,b,*(), Bo Yangb, Lei Wanga,b,c,*()
Received:
2022-06-06
Accepted:
2022-08-10
Online:
2023-01-10
Published:
2023-01-10
Contact:
Xiaobin Liu, Caixia Li, Lei Wang
About author:
Xiaobin Liu is currently a postdoctor at Qingdao University of Science and Technology. He received his PhD from the Institute for Advanced Materials and Technology at University of Science and Technology Beijing. His research interests focus on the synthesis of nanomaterials and their application in the field of electrochemical energy storage and conversion.Supported by:
摘要:
清洁能源在开发和利用过程中存在间歇性和不稳定性, 开发高性能、高效率、环保清洁的新型储能器件可保障稳定的能源输出, 实现能源转型. 其中, 金属基电池(如金属-空气电池, 金属-硫电池等)具有低成本, 高能量密度的优势, 具有较高的应用价值. 电池电极材料(催化剂)的合理设计影响着其储能效率, 对可再生能源技术的发展具有重要作用. 近年来, 随着研究人员对电催化反应机理的深入理解, 缺陷工程被普遍认为是增加催化活性位点数量, 提升电池性能的有效策略. 其原因在于缺陷可以提供大量不饱和位点, 从而为电化学过程提供更多活性中心, 增强电极催化效率, 实现电化学动力学的提升. 此外, 缺陷工程实现了电池电极材料局部原子结构以及配位环境的可控调节, 进一步调整电极材料的电子和结构特性, 可显著提升电池的电化学动力学.
本文系统总结了缺陷工程促进电催化性能的可行性策略和金属基电池电催化剂缺陷工程的最新进展. 首先介绍了金属-空气电池和金属-硫电池的反应机理, 明确金属基电池的反应机理和反应过程对于开发性能优异、环境适应性强催化剂至关重要. 其次, 归纳和总结了缺陷的种类(本征缺陷、阴离子空位、阳离子空位、晶格畸变和杂原子掺杂)及其引入的常用方法(如热/化学还原、剥落、化学刻蚀、等离子体技术、球磨等). 随后, 讨论了用于检测电催化剂中缺陷类型和浓度的相关高端表征手段, 揭示了构筑缺陷催化剂是提高电催化剂性能的关键. 此外, 对电催化电池中缺陷的作用及设计原则进行了总结, 讨论了电催化剂中缺陷的作用机理, 为未来实现具有高本征活性、长期稳定性和高选择性的电催化剂设计提供了更科学的指导. 以典型的金属基电池(锌-空电池、锂氧电池、锂-CO2电池、锂硫电池、钠硫电池等)为例, 详细介绍了缺陷工程在提高金属基电池电化学性能中发挥的重要作用及其最新进展. 最后, 提出了金属基电池目前面临的挑战和发展前景, 旨在通过缺陷工程提升催化电极材料活性, 促进清洁储能器件的商业化进程.
刘小妮, 刘晓斌, 李彩霞, 杨波, 王磊. 缺陷工程在金属基电池中的研究进展[J]. 催化学报, 2023, 45: 27-87.
Xiaoni Liu, Xiaobin Liu, Caixia Li, Bo Yang, Lei Wang. Defect engineering of electrocatalysts for metal-based battery[J]. Chinese Journal of Catalysis, 2023, 45: 27-87.
Fig. 3. (a) Schematic of an aqueous rechargeable metal-air battery. (b) Combined volcano plot for the ORR (up) and OER (below). Reprinted with permission from Ref. [28]. Copyright 2011, the Royal Society of Chemistry.
Fig. 6. (a) Schematic diagram of the route of Co0.85Se1-x@C hollow nanocages with rich Se vacancies. (b) Co0.85Se1-x@C hollow nanocages OER electrode applications. (c) TEM picture. (d) The EPR spectra of the ZIF-1h-500, ZIF-1h-550, and ZIF-1h-600 samples. Reprinted with permission from Ref. [56]. Copyright 2021, Wiley-VCH GmbH.
Fig. 7. (a) The preparation route of catalyst. (b) SEM image of B-Zn-FeNG. (c) HR-TEM image of B-Zn-FeNG, the inset shows selected area electron diffraction (SAED) of B-Zn-FeNG. Reprinted with permission from Ref. [63]. Copyright 2021, Elsevier Inc.
Fig. 8. The HAADF-STEM (a) and HRTEM (b) images of the Co@DMOF-900 catalyst. (c) AC HAADF-STEM image. (d) AC LAADF-STEM image. Reprinted with permission from Ref. [66]. Copyright 2021, Wiley-VCH GmbH.
Fig. 9. (a) The Co 2p XPS measurement spectra of the LSCFO. (b) O 1s XPS measurement spectra of LSCFO. (c) PL spectra. (d) EPR spectra. Reprinted with permission from Ref. [67]. Copyright 2021, American Chemical Society.
Fig. 10. (a) The HR-TEM image of the VCu-PtCu NNWs. (b) Point defect. (c) Positron annihilation spectrum. Simulation results of the positron density distribution in the perfect PtCu (d) and VCu-PtCu (e) Catalysts. Reprinted with permission from Ref. [68]. Copyright 2020, Wiley-VCH GmbH.
Fig. 11. (a) Energy changes of the system during the separation of the metal SA from the metal cluster and then landing on a defective carbon surface. Inset shows a detailed path of metal atoms from NP. (b) Metal SA diffusion barrier on the defect-free carbon surface. (c) The binding energy of the metal SA on a defect-free carbon surface and on a carbon surface with the SV-position or the DV-position. Reprinted with permission from Ref. [72]. Copyright 2020, the Royal Society of Chemistry.
Fig. 12. (a) The Gibbs free energy diagram of the OER on the HOoct-NFO and NFO surfaces. (b) Energy barrier histograms to be overcome for HOoct-NFO and NFO in the rate determination step of U = 1.23 V (*OOH to *O). (c) DOS curves of the Fe d, Ni d, and O p orbits of the *OOH on the HOoct-NFO and NFO. (d) The d-band center of the Fe d orbits of the *OOH on the HOoct-NFO and the NFO. (e) Optimized structure of the key intermediates during the HOoct-NFO OER process. Reprinted with permission from Ref. [73]. Copyright 2022, Wiley-VCH GmbH.
Fig. 13. (a) In situ IR spectroelectrochemistry of both catalysts. (b) Current responses during the in-situ measurements applied constant potential at 1.1 V (for No ORR) and 0.8 V (for ORR) vs. RHE in O2-saturated 0.1 mol L-1 KOH without stirring. Reprinted with permission from Ref. [77]. Copyright 2020, American Chemical Society.
Fig. 14. Operando Raman and XRD characterization of the VSe2-VG@CC/S electrodes. (a) Operando Raman spectra in different discharge and charging states. (b) The corresponding Raman map. (c) The A1g signal amplification diagram of VSe2 in (a). (d) In-situ XRD map at different discharge and charge states. The arrows indicate the modes corresponding to the discharge (blue) and the charging process (orange). (e) Schematic diagram of the discharge process of the SeVs-VSe2-VG@CC/S cathode. Reprinted with permission from Ref. [80]. Copyright 2020, American Chemical Society.
Fig. 15. (a) XANES for Co K-edge of pure Co3O4, VO-Co3O4 and three standards of cobalt-based materials. (b) Change of Co valence was included by the first derivative of the f main absorption edge (Co K-edge in XAS) with the applied potential. Operando XAFS for Co K-edge of pure Co3O4 (c) and VO-Co3O4 (d). The insets show a detailed view of the dotted boxes, respectively. (e) Structural coherence changes in the EXAFS coordination number of Co ions under an applied potential relative to the OCP state. Reprinted with permission from Ref. [81]. Copyright 2020, American Chemical Society.
Fig. 16. (a) Diagrepresentation of basic reaction steps. (b) Potential energy map of the reactant close to the surface. (c,d) Reaction path of the defective electrocatalyst before and after the introduction of the defect in the electrocatalytic process. Reprinted with permission from Ref. [86]. Copyright 2018, American Chemical Society.
Fig. 17. Schematic diagram of sulfur substances in defective regulated M-S batteries. Reprinted with permission from Ref. [34]. Copyright 2021, Wiley-VCH GmbH.
Electrocatalyst | Electrolyte | Eonset (V) | E10 (V) | E1/2 (V) | n | E (V) | Ref. |
---|---|---|---|---|---|---|---|
B-Zn-FeNG | 0.10 mol L-1 KOH for ORR, 1.0 mol L-1 KOH for OER | 1.03 | 1.54 | 0.89 | 3.98 | 0.65 | [ |
NSP-Gra | 6 mol L-1 KOH | 0.95 | 1.76 | 0.82 | 3.70 | 0.94 | [ |
NiFe LDH-NS@DG10 | 1.0 mol L-1 KOH | 1.41 | 1.44 | — | — | — | [ |
Ge-NP-rGO | 0.1 mol L-1 KOH | 0.94 | — | 0.84 | 4.0 | — | [ |
g-FePc | 0.1 mol L-1 KOH | 0.98 | — | 0.88 | 3.90 | — | [ |
FePc/DG | 0.1 mol L-1 KOH | 0.98 | — | 0.90 | 4.0 | — | [ |
CC@VG 6min | 1.0 mol L-1 KOH | — | 1.635 | 0.80 | 3.60 | 0.85 | [ |
E-CoFe LDHs | 1.0 mol L-1 KOH | — | 1.532 | — | — | — | [ |
Co3-xO4 (Co-300) | 1 mol L-1 KOH | 1.42 | 1.498 | — | 3.99 | — | [ |
NiO-TiO2 nanosheet | 1 mol L-1 KOH | 1.42 | 1.55 | — | — | — | [ |
Mn3O4/NiCo2S4 | 0.1 mol L-1 KOH | 0.92 | 1.55 | 0.81 | 3.99 | 0.74 | [ |
N-Co/CNF-300-10 | 0.1 mol L-1 KOH | 0.995 | — | 0.853 | — | — | [ |
NiO/CoO NWs | 1 mol L-1 KOH | 0.908 | 1.485 | 0.803 | 4.03 | 0.682 | [ |
NiFe-LDH/Co, N-CNF | 0.1 mol L-1 KOH | 0.893 | 1.63 | 0.79 | 3.89 | 0.75 | [ |
In-CoO/CoP FNS | 0.1 mol L-1 KOH | 0.94 | 1.597 | 0.81 | 3.68 | 0.787 | [ |
CoOx-4h nanoplates | 1 mol L-1 KOH | 1.54 | 1.536 | — | — | — | [ |
100CoO0.87S0.13/GN | 0.1 mol L-1 KOH | 0.94 | 1.59 | 0.83 | 4.0 | 0.76 | [ |
LSC/LDH (NiFe) | 0.1 mol L-1 KOH | 0.92 | 1.57 | 0.86 | 4.2 | 0.71 | [ |
S5.84%-LCO | 1 mol L-1 KOH | — | 1.594 | 0.704 | 3.93 | 0.89 | [ |
LSF0.95-1000 °C | 0.1 mol L-1 KOH | 0.69 | 1.74 | 0.57 | 3.8 | 1.17 | [ |
Pt-SCFP/C-12 | 0.1 mol L-1 KOH | 1.570 | 1.608 | 0.752 | ~2.0 | 0.858 | [ |
Pt-SCFP/C-12 | 0.1 mol L-1 KOH | 0.90 | 1.54 | 0.81 | 3.99 | 0.73 | [ |
ODAC-CoO-30 | 0.1 mol L-1 KOH | — | 1.594 | 0.849 | 3.9 | 0.745 | [ |
Co9S8-NSHPCNF | 0.1 mol L-1 KOH | 0.96 | 1.58 | 0.82 | 3.78 | 0.76 | [ |
NiCo2O@C | 1 mol L-1 KOH | — | 1.526 | 0.847 | 3.99 | 0.679 | [ |
NCO-250 | 1 mol L-1 KOH | 0.95 | 1.55 | 0.75 | 3.98 | 0.80 | [ |
NiCo2O4/CNF | 1 mol L-1 KOH | 0.861 | 1.453 | — | — | — | [ |
Fe-enriched-FeNi3/NC | 0.1 mol L-1 KOH | 0.90 | 1.59 | 0.79 | 3.8 | 0.80 | [ |
CuS/NiS2 INs | 0.1 mol L-1 KOH | 1.47 | 1.52 | 0.73 | 3.98 | 0.79 | [ |
Table 1 ORR and OER bifunctional activity of recently reported defected electrocatalysts.
Electrocatalyst | Electrolyte | Eonset (V) | E10 (V) | E1/2 (V) | n | E (V) | Ref. |
---|---|---|---|---|---|---|---|
B-Zn-FeNG | 0.10 mol L-1 KOH for ORR, 1.0 mol L-1 KOH for OER | 1.03 | 1.54 | 0.89 | 3.98 | 0.65 | [ |
NSP-Gra | 6 mol L-1 KOH | 0.95 | 1.76 | 0.82 | 3.70 | 0.94 | [ |
NiFe LDH-NS@DG10 | 1.0 mol L-1 KOH | 1.41 | 1.44 | — | — | — | [ |
Ge-NP-rGO | 0.1 mol L-1 KOH | 0.94 | — | 0.84 | 4.0 | — | [ |
g-FePc | 0.1 mol L-1 KOH | 0.98 | — | 0.88 | 3.90 | — | [ |
FePc/DG | 0.1 mol L-1 KOH | 0.98 | — | 0.90 | 4.0 | — | [ |
CC@VG 6min | 1.0 mol L-1 KOH | — | 1.635 | 0.80 | 3.60 | 0.85 | [ |
E-CoFe LDHs | 1.0 mol L-1 KOH | — | 1.532 | — | — | — | [ |
Co3-xO4 (Co-300) | 1 mol L-1 KOH | 1.42 | 1.498 | — | 3.99 | — | [ |
NiO-TiO2 nanosheet | 1 mol L-1 KOH | 1.42 | 1.55 | — | — | — | [ |
Mn3O4/NiCo2S4 | 0.1 mol L-1 KOH | 0.92 | 1.55 | 0.81 | 3.99 | 0.74 | [ |
N-Co/CNF-300-10 | 0.1 mol L-1 KOH | 0.995 | — | 0.853 | — | — | [ |
NiO/CoO NWs | 1 mol L-1 KOH | 0.908 | 1.485 | 0.803 | 4.03 | 0.682 | [ |
NiFe-LDH/Co, N-CNF | 0.1 mol L-1 KOH | 0.893 | 1.63 | 0.79 | 3.89 | 0.75 | [ |
In-CoO/CoP FNS | 0.1 mol L-1 KOH | 0.94 | 1.597 | 0.81 | 3.68 | 0.787 | [ |
CoOx-4h nanoplates | 1 mol L-1 KOH | 1.54 | 1.536 | — | — | — | [ |
100CoO0.87S0.13/GN | 0.1 mol L-1 KOH | 0.94 | 1.59 | 0.83 | 4.0 | 0.76 | [ |
LSC/LDH (NiFe) | 0.1 mol L-1 KOH | 0.92 | 1.57 | 0.86 | 4.2 | 0.71 | [ |
S5.84%-LCO | 1 mol L-1 KOH | — | 1.594 | 0.704 | 3.93 | 0.89 | [ |
LSF0.95-1000 °C | 0.1 mol L-1 KOH | 0.69 | 1.74 | 0.57 | 3.8 | 1.17 | [ |
Pt-SCFP/C-12 | 0.1 mol L-1 KOH | 1.570 | 1.608 | 0.752 | ~2.0 | 0.858 | [ |
Pt-SCFP/C-12 | 0.1 mol L-1 KOH | 0.90 | 1.54 | 0.81 | 3.99 | 0.73 | [ |
ODAC-CoO-30 | 0.1 mol L-1 KOH | — | 1.594 | 0.849 | 3.9 | 0.745 | [ |
Co9S8-NSHPCNF | 0.1 mol L-1 KOH | 0.96 | 1.58 | 0.82 | 3.78 | 0.76 | [ |
NiCo2O@C | 1 mol L-1 KOH | — | 1.526 | 0.847 | 3.99 | 0.679 | [ |
NCO-250 | 1 mol L-1 KOH | 0.95 | 1.55 | 0.75 | 3.98 | 0.80 | [ |
NiCo2O4/CNF | 1 mol L-1 KOH | 0.861 | 1.453 | — | — | — | [ |
Fe-enriched-FeNi3/NC | 0.1 mol L-1 KOH | 0.90 | 1.59 | 0.79 | 3.8 | 0.80 | [ |
CuS/NiS2 INs | 0.1 mol L-1 KOH | 1.47 | 1.52 | 0.73 | 3.98 | 0.79 | [ |
Electrocatalyst | Peak power density (mW cm−2) | Specific capacity (mAh gZn−1) | Cycling current density (mA cm−2) | Discharge voltage (V) | Charge voltage (V) | Voltage gap (V) | Cycling stability | Ref. |
---|---|---|---|---|---|---|---|---|
BSCF-80 | 193.1 | 719.1 | 10 | 1.25 | 2.14 | 0.89 | 140 cycles | [ |
B-Zn-FeNG | 229 | 752 | 5 | 1.11 | 1.97 | 0.86 | 80 h | [ |
NSP-Gra | 225 | — | 2 | 1.21 | 1.96 | 0.75 | 40 h | [ |
FePc/DG | 190 | 735 | 5 | 1.23 | — | — | 60 h | [ |
CC@VGZAB-CC@VG6min | 45.8 | — | 2 | 1.12 | 1.95 | 0.74 | 108 cycles | [ |
Mn3O4/NiCo2S4 | 106.26 | — | 5 | 1.18 | 2.04 | 0.86 | 216 h | [ |
N-Co/CNF-300-10 | 229 | 659.6 | 10 | 1.252 | 1.99 | 0.738 | 26 h | [ |
NiO/CoO NWs | 151 | 842.58 | 1 | 1.18 | 1.95 | 0.77 | 33 h | [ |
In-CoO/CoP FNS | 139 | 739 | 5 | — | — | 0.68 | 136 h | [ |
CoO0.87S0.13/GN | — | 709 | 20 | — | — | 0.76 | 300 h | [ |
Co-MOF/LC-0.5 | 126 | — | 5 | 1.33 | 2.00 | 0.67 | 120 h | [ |
LSC/LDH (NiFe) | — | — | 5 | 1.3 | 1.96 | 0.66 | 100 cycles | [ |
La90 | 52.9 | 698 | 5 | 1.0 | 1.80 | 0.80 | 100 cycles | [ |
S5.84%-LCO | 92 | 747 | 5 | — | — | — | 100 h | [ |
LSF0.95-1000 °C | 94 | 755 | 10 | 1.23 | 1.97 | 0.74 | 10 h | [ |
ODAC-CoO-30 | 128.5 | 705.6 | 5 | 1.22 | 1.98 | 0.76 | 150 h | [ |
Co9S8-NSHPCNF | 113 | 823.5 | 10 | 1.16 | 2.00 | 0.84 | 200 h | [ |
NiCo2O@C | 155.48 | 820 | 5 | 1.184 | 1.922 | 0.738 | 1500 h | [ |
NCO-250 | 166 | — | 10 | 1.23 | 2.00 | 0.77 | 75 h | [ |
Mn3O4/NiCo2S4 | 106.26 | — | 5 | 1.18 | 2.04 | 0.86 | 216 h | [ |
Fe-enriched-FeNi3/NC | 89 | 734 | 10 | — | — | 0.89 | 50000 s | [ |
CuS/NiS2 INs | 172.4 | 774.85 | 5 | 1.35 | 1.92 | 0.57 | 83 h | [ |
Table 2 Summary of the research progress of defect engineering in metal-based battery.
Electrocatalyst | Peak power density (mW cm−2) | Specific capacity (mAh gZn−1) | Cycling current density (mA cm−2) | Discharge voltage (V) | Charge voltage (V) | Voltage gap (V) | Cycling stability | Ref. |
---|---|---|---|---|---|---|---|---|
BSCF-80 | 193.1 | 719.1 | 10 | 1.25 | 2.14 | 0.89 | 140 cycles | [ |
B-Zn-FeNG | 229 | 752 | 5 | 1.11 | 1.97 | 0.86 | 80 h | [ |
NSP-Gra | 225 | — | 2 | 1.21 | 1.96 | 0.75 | 40 h | [ |
FePc/DG | 190 | 735 | 5 | 1.23 | — | — | 60 h | [ |
CC@VGZAB-CC@VG6min | 45.8 | — | 2 | 1.12 | 1.95 | 0.74 | 108 cycles | [ |
Mn3O4/NiCo2S4 | 106.26 | — | 5 | 1.18 | 2.04 | 0.86 | 216 h | [ |
N-Co/CNF-300-10 | 229 | 659.6 | 10 | 1.252 | 1.99 | 0.738 | 26 h | [ |
NiO/CoO NWs | 151 | 842.58 | 1 | 1.18 | 1.95 | 0.77 | 33 h | [ |
In-CoO/CoP FNS | 139 | 739 | 5 | — | — | 0.68 | 136 h | [ |
CoO0.87S0.13/GN | — | 709 | 20 | — | — | 0.76 | 300 h | [ |
Co-MOF/LC-0.5 | 126 | — | 5 | 1.33 | 2.00 | 0.67 | 120 h | [ |
LSC/LDH (NiFe) | — | — | 5 | 1.3 | 1.96 | 0.66 | 100 cycles | [ |
La90 | 52.9 | 698 | 5 | 1.0 | 1.80 | 0.80 | 100 cycles | [ |
S5.84%-LCO | 92 | 747 | 5 | — | — | — | 100 h | [ |
LSF0.95-1000 °C | 94 | 755 | 10 | 1.23 | 1.97 | 0.74 | 10 h | [ |
ODAC-CoO-30 | 128.5 | 705.6 | 5 | 1.22 | 1.98 | 0.76 | 150 h | [ |
Co9S8-NSHPCNF | 113 | 823.5 | 10 | 1.16 | 2.00 | 0.84 | 200 h | [ |
NiCo2O@C | 155.48 | 820 | 5 | 1.184 | 1.922 | 0.738 | 1500 h | [ |
NCO-250 | 166 | — | 10 | 1.23 | 2.00 | 0.77 | 75 h | [ |
Mn3O4/NiCo2S4 | 106.26 | — | 5 | 1.18 | 2.04 | 0.86 | 216 h | [ |
Fe-enriched-FeNi3/NC | 89 | 734 | 10 | — | — | 0.89 | 50000 s | [ |
CuS/NiS2 INs | 172.4 | 774.85 | 5 | 1.35 | 1.92 | 0.57 | 83 h | [ |
Electrocatalyst | Defect type | Sulfur loading (mg cm−2) | Specific capacity (mAh gZn−1) | Cycles (rate)/Decay rate (%) | Ref. |
---|---|---|---|---|---|
S/CA-2 | intrinsic defect | 4.2 | 1120.8 (0.2 C) | 800 (1 C)/0.06 | [ |
S/G-Nb2O5 | intrinsic defect and oxygen vacancy | 1.4-1.6 | 782 (0.2 C) | 1000 (2 C)/0.053 | [ |
BTS/PP | intrinsic defect | 4.0 | 873 (0.2 C) | 1100 (0.2 C)/0.016 | [ |
S/Cu1.8Se | Cu vacancy | 1 | 527 (3 C) | 1000 (3 C)/0.0029 | [ |
D-UiO-66-NH2-4/G EM | intrinsic defect | 1.5 | 756 (3 C) | 600 (3 C)/0.013 | [ |
Co3S4-DHS/S | sulfur vacancy | 1.4 | 699 (1 C) | 400 (1 C)/0.17 | [ |
Zn1−xO/rGO/S | Zn vacancy | 1.7 | 921.3 (0.2 C) | 200 (0.2 C)/0.16 | [ |
Li/VC/V2O3−x@CT | oxygen vacancy | 3 | 851 (1 C) | 1000 (1 C)/0.02 | [ |
OV-TnQDs@PCN/S | oxygen vacancy | 2.2 | 672 (2 C) | 1000 (2 C)/0.012 | [ |
A-Nb2O5−x@MCS-S | oxygen vacancy | 1 | 1056.6 (0.2 C) | 1200 (1 C)/0.024 | [ |
a-Fe3O4−x/GO | oxygen vacancy | 0.6 | 610 (1 C) | 500 (1 C)/0.12 | [ |
S/CNT-CoP-Vp-1M | phosphorus vacancy | 2.83 | 585 (2 C) | 1300(2C)/0.083 | [ |
S@NCO-HS | cation/anionic defect | 1 | 781.8 (0.2 C) | 800 (0.2 C)/0.045 | [ |
CeO2−xNR@CC | oxygen vacancy and lattice distortion | 1 | 863 (2 C) | 350 (2 C)/0.024 | [ |
S/WSe1.51/CNT | Se vacancy and lattice distortion | 1.5 | 741.4 (1 C) | 1000 (1 C)/0.025 | [ |
Ni3Fe@NCNT | lattice distortion | 1 | 895.5 (1 C) | 1000 (1 C)/0.034 | [ |
N-SPC | N defect | 1.0-1.1 | 512 (1 C) | 500 (1 C)/0.089 | [ |
PTCN/S | intrinsic defect | 2 | 504 (4 C) | 500 (4 C)/0.063 | [ |
S@Fe(0.1)/Co3O4 | oxygen vacancy | 1 | 571.3 (5 C) | 1000 (1 C)/0.017 | [ |
Table 3 Comparison of metal-S battery performances based on electrocatalyst with different defect types.
Electrocatalyst | Defect type | Sulfur loading (mg cm−2) | Specific capacity (mAh gZn−1) | Cycles (rate)/Decay rate (%) | Ref. |
---|---|---|---|---|---|
S/CA-2 | intrinsic defect | 4.2 | 1120.8 (0.2 C) | 800 (1 C)/0.06 | [ |
S/G-Nb2O5 | intrinsic defect and oxygen vacancy | 1.4-1.6 | 782 (0.2 C) | 1000 (2 C)/0.053 | [ |
BTS/PP | intrinsic defect | 4.0 | 873 (0.2 C) | 1100 (0.2 C)/0.016 | [ |
S/Cu1.8Se | Cu vacancy | 1 | 527 (3 C) | 1000 (3 C)/0.0029 | [ |
D-UiO-66-NH2-4/G EM | intrinsic defect | 1.5 | 756 (3 C) | 600 (3 C)/0.013 | [ |
Co3S4-DHS/S | sulfur vacancy | 1.4 | 699 (1 C) | 400 (1 C)/0.17 | [ |
Zn1−xO/rGO/S | Zn vacancy | 1.7 | 921.3 (0.2 C) | 200 (0.2 C)/0.16 | [ |
Li/VC/V2O3−x@CT | oxygen vacancy | 3 | 851 (1 C) | 1000 (1 C)/0.02 | [ |
OV-TnQDs@PCN/S | oxygen vacancy | 2.2 | 672 (2 C) | 1000 (2 C)/0.012 | [ |
A-Nb2O5−x@MCS-S | oxygen vacancy | 1 | 1056.6 (0.2 C) | 1200 (1 C)/0.024 | [ |
a-Fe3O4−x/GO | oxygen vacancy | 0.6 | 610 (1 C) | 500 (1 C)/0.12 | [ |
S/CNT-CoP-Vp-1M | phosphorus vacancy | 2.83 | 585 (2 C) | 1300(2C)/0.083 | [ |
S@NCO-HS | cation/anionic defect | 1 | 781.8 (0.2 C) | 800 (0.2 C)/0.045 | [ |
CeO2−xNR@CC | oxygen vacancy and lattice distortion | 1 | 863 (2 C) | 350 (2 C)/0.024 | [ |
S/WSe1.51/CNT | Se vacancy and lattice distortion | 1.5 | 741.4 (1 C) | 1000 (1 C)/0.025 | [ |
Ni3Fe@NCNT | lattice distortion | 1 | 895.5 (1 C) | 1000 (1 C)/0.034 | [ |
N-SPC | N defect | 1.0-1.1 | 512 (1 C) | 500 (1 C)/0.089 | [ |
PTCN/S | intrinsic defect | 2 | 504 (4 C) | 500 (4 C)/0.063 | [ |
S@Fe(0.1)/Co3O4 | oxygen vacancy | 1 | 571.3 (5 C) | 1000 (1 C)/0.017 | [ |
Fig. 18. (a) TEM image of the NSP-Gra. (b) LSV curves for OER performances of graphene, NS-Gra, and NSP-Gra in 0.1 mol L?1 KOH at a scanning rate of 5 mV s-1. (c) Comparison plot of polarization and power density curves of ZABs samples. Reprinted with permission from Ref. [104]. Copyright 2021, Elsevier.
Fig. 19. (a) Scheme of the synthesis process of FePc/DG hybrid. (b) High-resolution. (c) TEM images of FePc/DG. (d) TEM image and the corresponding EDS mapping for C, N, and Fe elements of FePc/DG. (e) Polarization and power density curves of the ZABs assembled with FePc/DG and Pt/C. (f) Galvanostatic discharge curves of ZABs assembled with FePc/DG and Pt/C at a current density of 5 mA cm?2. (g) Specific capacity of the battery assembled with FePc/DG and Pt/C. Reprinted with permission from Ref. [109]. Copyright 2021, Elsevier.
Fig. 21. (a) Instruments for testing the electrochemical properties of the ORR. (b) Add air-saturated droplets to HOPG edges. (c) Add air-saturated droplets to the HOPG substrate surface. (d) The LSV curve of droplet testing at HOPG edge or base surface. Reprinted with permission from Ref. [118]. Copyright 2014, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fig. 22. Different vacancy defects types in non-precious metal-based electrocatalysts. Reprinted with permission from Ref. [127]. Copyright 2018, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fig. 23. (a) LSV curves of normal and defected Mn3O4. (b) Free energy pathways for ORR on normal and defected Mn3O4 under U = -0.77 V (vs. SHE) in pH = 13. (c) UV-vis diffuse reflectance spectra. (d) The comparison of calculated potential diagrams of normal and defected Mn3O4(110). The differences in charge density of OH*-adsorbed structure of normal (e) and defected (f) Mn3O4(110) (the yellow and blue colors represent charge accumulation and consumption). (g) Molecular orbitals diagrams for the Mn-OH (Mn3+, Mn2+) bonding at the surface of normal and defected Mn3O4. Reprinted with permission from Ref. [146]. Copyright 2020, Published by Elsevier.
Fig. 24. (a) The vertical view of NiO (TI) (left) and the anti-bonding orbitals near the EF of the bonding-form TI model (right). (b) The vertical view of CoO (TI) (left) and anti-bonding orbitals near the EF of the bonding-form TI model (right). (c) The comparison of PDOSs for NiO (TI), NiO (111), and NiO (100) systems. (d) The t2g and eg splitting trends for NiO (100), NiO (111), NiO (TI) and CoO (TI). (e) The overall polarization curves of samples. (f) The power density and polarization curves of ZABs with different samples as air-cathodes. (g) Long-term cycling tests of the ZABs assembled by NiO/CoO TINWs under different temperatures at the current density of 1 mA cm-2. Reprinted with permission from Ref. [148]. Copyright 2019, Published by Angewandte Chemie.
Fig. 25. (a) HRTEM images for Pt-SCFP/C-12. The LSV profiles of SCFP, 20Pt/C, and Pt-SCFP/C-12 for ORR (b) and SCFP, 20Pt/C, IrO2, and Pt-SCFP/C-12 for OER (c). (d) Polarization (I-V) plots and the corresponding power density (P-V) profiles for single Pt-SCFP/C-12-based and 20Pt/C-based ZABs. (e) The long-term charge and discharge performance of ZABs tested with catalyst Pt-SCFP/C-12 or 1:1 20Pt/C + IrO2 mixture at 5 mA cm-2. Reprinted with permission from Ref. [170]. Copyright 2019, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fig. 26. (a) HAADF-STEM image. (b) The synthetic process of NiCo2O@C catalyst. (c) HRTEM image. (d) LSV curves of NiCo2O@C, IrO2, and Pt/C in the full OER/ORR region. (e) Charge and discharge polarization curve. (f) Charge-discharge cycling curves at 5 mA cm-2. Reprinted with permission from Ref. [176]. Copyright 2020, Elsevier B.V.
Fig. 27. (a,b) HRTEM images of NixCo1-xSe2 nanocrystals. (c) HRTEM and TEM images of NixCo1-xSe2-O electrocatalysts. (d) The OER polarization curves of different samples for OER. (e) The comparison of Ni0.6Co0.4Se2-O catalyst measured after 1000 cycles for OER. Inset is the chronoamperometric curves of Ni0.6Co0.4Se2-O and Ni0.6Co0.4Se2. (f) ORR results of different electrocatalysts. Specific capacities (g) and cycling curves (h) of ZABs based on Ni0.6Co0.4Se2-O and Pt@Ir/C electrodes. Reprinted with permission from Ref. [203]. Copyright 2019, American Chemical Society.
Fig. 28. (a) HRTEM image of CuS/NiS2 INs and corresponding FFT patterns (inset) of CuS/NiS2 INs from the distortion regions. The subtle distortion regions of CuS and vacancy defects are marked by the dash and dot circles, respectively. (b) Room-temperature ESR spectra of CuS/NiS2 INs, CuS NCs, and NiS2 NCs. (c) Disordered edge of the CuS/NiS2 Ins. (d) Schematic representation of the S-vacancy position in the CuS/NiS2 Ins. (e) Schematic representation of the Jahn-Teller effect of subtle distortions in the CuS/NiS2 INs lattice. The charge and discharge polarization curves of the CuS/NiS2 INs were tested in a ZAB. (f) Discharge voltage curve and the corresponding power density with CuS/NiS2 INs. Reprinted with permission from Ref. [214]. Copyright 2017, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fig. 29. (a) The quantity contrast of pyridinic-N, pyrrolic-N, graphitic-N and pyridinic N+-O- acquired from the N 1s spectra of samples with different temperatures. (b) LSV curves of NDGs-x and Pt/C catalysts for ORR at 5 mV s-1 in 0.1 mol L-1 KOH. (c) LSV curves of DGs-800, NDGs-800, RuO2/C and Pt/C catalysts for OER at 2 mV s-1 in 1 mol L-1 KOH. (d) The seven types of pyridinic-N-contained sites (1N, 2N, 3N-1, 3N-2, 4N, 5N and 6N) in graphene model and (e) the corresponding overpotential versus adsorption energy of *OH along ORR and OER pathway regardless of the effect of pH. (f) Charge and discharge polarization curves of rechargeable ZABs. (g) Cycling performance of rechargeable ZABs at a constant charge-discharge current density of 10 mA cm-2. Reprinted with permission from Ref. [228]. Copyright 2018, American Chemical Society.
Fig. 30. TEM photographs of CA-2 (a) and S/CA-2 (b). (c) Charge and discharge cycle performance at 0.2 C. (d-f) Potential discharge distribution map of Li2S8/tetramer solution on different substrates, Inset: SEM photographs of electrochemically precipitated Li2S. (g-i) X-ray three-dimensional nanoscale CT photos of Li2S precipitation on CA substrates at different rotation angles. Reprinted with permission from Ref. [248]. Copyright 2021, Elsevier B.V.
Fig. 31. (a) Structure of defective graphene models. Carbon rings consisting of 5-, 7-, and 8-membered elements are indicated in gray, blue, and orange, respectively. (b) Binding structures of Li2S combine with perfect graphene and graphene with a different type of defects. (c) Energy distribution of Li2S molecule decomposition and Li+ diffusion on perfect and defective graphene. Li at the edge of the 12C defects is indicated by the green line. (d) Energy distribution of S8 to Li2S during discharge for different carbon defect graphene and S-doping graphene. Color code: C in gray, Li in purple, S in yellow. Reprinted with permission from Ref. [249]. Copyright 2022, Elsevier Ltd.
Fig. 32. (a) Schematic diagram of the Li-S cell with PP and BTS/PP separator. (b) FESEM photos of the cross-section BTS/PP partition. (c) FESEM images of the BTS/PP partition surface. (d) CV curves of the electrodes with the PP, C/PP, BT/PP, and BTS/PP compartments. (e) Cycle performance at 0.2 C. Reprinted with permission from Ref. [252]. Copyright 2020, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fig. 33. (a) Schematic diagram preparation process of OV-TnQDs@PCN. Optimized configuration (b) and Li2S4 adsorption energy (001) and aircraft (c) on Ti2O3 (012), Ti3O5 (100), Ti3C2O2 (001) and Ti3C2(OH)2 without OV. (d) Long-term cycle performance of OV-TnQDs@PCN/S at 2.0 C. (e) First CV curve for Ti3C2Tx/S and OV-TnQDs@PCN/S. Reprinted with permission from Ref. [261]. Copyright 2021, Wiley-VCH GmbH.
Fig. 34. (a) The Raman spectra of PB/GO and a-Fe3O4-x/GO. (b) Polysulphide shuttle experiments for a-Fe3O4-x/GO and PP. (c) Typical CV curve. (d) Circulation performance under 1 C. Reprinted with permission from Ref. [265]. Copyright 2020, ACS.
Fig. 35. (a) High-resolution XPS spectra with deconvolution peaks of V 2p and O 1s in V2O3@CT and VC/V2O3-x@CT. (b) Digital photo of the LiPSs adsorption test. (c-e) The optimized configuration of Li2S6 on VC (111), V2O3 (104), and V2O3-x (104). Lithium was plated/stripped at a current density of 1.0 mA cm-2. (f) Voltage curve of lithium plating. (g) The magnified plated curves show the various nucleation overpotentials. (h) Battery multiplier performance. Reprinted with permission from Ref. [268]. Copyright 2022, Elsevier B.V.
Fig. 36. (a) TEM image. (b) HR-TEM image. (c) The first cycle current discharge-charge voltage curve at 0.05 C. (d) The calculated binding energies histograms of Co3S4 and Co3S4-DHS for Li2S6. Reprinted with permission from Ref. [274]. Copyright 2020, American Chemical Society.
Fig. 37. (a) Schematic diagram of CNT-CoP-Vp synthesis. (b) HRTEM image of CNT-CoP-Vp-1M. (c) Circular stability test. (d) The 3D charge density difference cross-section between CoP and CoP-Vp. (e) Changes in free energy during the redox reaction. Reprinted with permission from Ref. [279]. Copyright 2022, Wiley-VCH GmbH.
Fig. 38. (a) The SHIM image. (b) TEM image of the defective site on the NCO-HS. (c) UV-visible spectroscopy and optical images of the LPS solutions adsorbed by Co3O4-NPs, Co3O4-HS, and NCO-HS. (d) Rate capability. (e) Schematic diagram of the kinetic features of the S@NCO-HS. (f) The PITT curves reveal the Li+ diffusion coefficients of S@NCO-HS, S@Co3O4-HS, and S@Co3O4-NPs during charge and discharge. Reprinted with permission from Ref. [285]. Copyright 2019, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fig. 39. (a-c) TEM and HRTEM images. (d) SEM plot of Ni3Fe@NCNT-modified after 200 cycles at 0.2 C. (e) Atomic structure model of Ni and Ni3Fe. (f) The plot of Ni3Fe bimetallic with Lattice distortion. (g) Cycle stability of low sulfur loading batteries at 0.2 C. Reprinted with permission from Ref. [292]. Copyright 2020, American Chemical Society.
Fig. 40. (a) The HRTEM image of the WSe1.51/CNT and the corresponding FFT pattern indicate that the prepared material matches the crystal surface of the hexagonal phase WSe2 (PDF # 38-1388). (b,c) IFFT pattern of the yellow rectangle in the image (a). (d) Long-cycle performance and coulombic efficiency at the 1 C rate. (e) EIS spectra of symmetric configurations of various electrodes and Li2S6 solutions. (f) The schematic diagram for a quantitative comparison of the electrochemical behavior. Reprinted with permission from Ref. [297]. Copyright 2021, Elsevier B.V.
Fig. 41. (a,d) Optimized configuration of Li2S6 adsorbed on TCN and PTCN. (b,e) DOS of TCN and PTCN. (c,f) The transition state of Li2S2 decomposed on TCN and PTCN. (g) SEM image. (h) XPS spectra. (i) CV curve. (j) Cyclic performance under 0.2 C. (k) The EIS of the TCN and PTCN symmetric units. (l) Li2S oxidation LSV curve for the TCN and PTCN electrodes. Reprinted with permission from Ref. [304]. Copyright 2022, Elsevier Ltd.
Fig. 42. Adsorption-desorption isotherm (a) and pore size distribution (b) obtained by N2 physisorbent analysis at -196 °C. (c) Static adsorption test of 0.1 mol L-1 Li2S6 solution in DME/DOL. (d) Nyquist plot of EIS analysis in the range of 100 kHz-10 MHz. (e) Rate capability at different current densities. Reprinted with permission from Ref. [305]. Copyright 2022, Elsevier Ltd.
Fig. 43. (a) HAADF-STEM image of Ti3C2 QDC. (b) EPR spectra of Ti3C2 QDC/NC, Ti3C2 SQD/NC, and Ti3C2 MNS/NC. (c) Normalized K-edge XANES for Ti3C2 QDC/N,C Ti3C2 MNS/NC and Ti-foil, TiO2 reference. (d) Non-situ SEM images of fully discharged Ti3C2 QDC/NC electrode. (e) CV curves for the Ti3C2 QDC/NC, Ti3C2 SQD/NC, and Ti3C2 MNS/NC electrodes at a scan rate of 0.1 mV s-1. (f) First depth discharge-charging curve of different electrodes at the current density of 200 mA g-1. (g) A 3D representation of the calculated density difference between Ti3C2 QDC. (h,i) Calculated free energy maps of discharge-charging reactions on active surfaces of Ti3C2 QDC and Ti3C2 MNS. Reprinted with permission from Ref. [315]. Copyright Wiley-VCH GmbH.
Fig. 44. (a) HRTEM image of the Pd/carbon catalyst. (b) Battery voltage curve based on carbon vs. Pd/carbon air electrodes (to 0.5 mAh cm-2). The Pd 3d XPS spectra of C 1s (c) and O 1s (d). DEMS analysis of Li-O2 batteries with a Pd/carbon cathode in different cycles. (e) Pd/carbon loading. (f) Pd/carbon after 10 charging cycles. Reprinted with permission from Ref. [317]. Copyright 2019, American Chemical Society.
Fig. 45. (a) HRTEM image of RuO2-Co3O4 nanohybrid. (b) The WT EXAFS of Co3O4 and RuO2-Co3O4. (c) The XPS O 1s spectra of the Co3O4 and RuO2-Co3O4. (d) The complete discharge-charge curve of the block Co3O4 and RuO2-Co3O4. The corresponding curve of medium voltage (e) and discharge capacity and cycle times (f). Free energy maps of the ORR/OER catalyzed by the Co3O4 (g) and RuO2-Co3O4 nanohybrid (h). Reprinted with permission from Ref. [320]. Copyright 2021, American Chemical Society.
Fig. 46. (a) The XRD patterns of the original NCO and the magnetron-sputtered NCO. (b) The PL spectra of the raw NCO and the magnetron-sputtered NCO. (c) A PDOS comparison between the defective NiCo2O4 and the original NiCo2O4. (d) Schematic representation of atomic oxygen forming bonds on the original and defect NiCo2O4 by coupling O 2p to the highest occupied d state. (e) Cycle stability of the Li-O2 battery. (f) First discharge/charging curve of the original and magnetically sputtering NCO-based Li-O2 battery. The XRD patterns of the original electrode (g) and NCO 10 min electrode surface (h) at different phases. Reprinted with permission from Ref. [327]. Copyright 2020, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fig. 47. (a) The HRTEM image. (b) The STEM image. (c) Raman spectra. (d) The CV diagram under 0.15 mV s-1. (e) MoS2-x@CNT cathode with an XRD pattern at different stages. Reprinted with permission from Ref. [331]. Copyright 2021, Wiley-VCH GmbH.
Fig. 48. (a) HRTEM image. (b) S 2p high-resolution XPS spectra. (c) The PL spectra. (d) Band map. Initial complete discharge-charging curves (e) and CV curves (f) of different electrodes. (g) Circulation performance of the three electrodes. (h) XPS spectra of the Ru-ZIS-Vs electrodes in the C 1s region. Reprinted with permission from Ref. [336]. Copyright 2020, the Royal Society of Chemistry.
Fig. 49. (a) Schematic diagram of the crystallization transition from the original CoSe2@N-CC to V Se-CoSe2@N-CC. (b) HRTEM image of V Se-CoSe2, the illustration is TEM image. (c) Full discharge/charge curves of the Li-O2 battery. (d) The durability of the Li-O2 battery. (e) High-resolution Li 1s spectrum of the three electrodes after recharging. Reprinted with permission from Ref. [343]. Copyright 2020, the Royal Society of Chemistry.
Fig. 50. (a) Atomic-resolution spherical aberration-corrected TEM image of Co3-xO4. (b) The intensity profile of cobalt vacancy in (a). (c) EPR spectrum. (d) The ratios of Co and O atoms of Co-300, Co-400, Co-500, Co-600, and Co-700. (e) The CV curves of the different cathodes at 0.15 mV s-1. (f) Initial discharge/charge curve from 2.35 to 4.35 V. (g) The circulation performance of different cathodes at 100 mA g-1. (h) After a long-term cycle at a limited capacity of 1000 mAh g-1. (i) XRD plot of Co-300 cathode at different stages. Reprinted with permission from Ref. [346]. Copyright 2020, Wiley-VCH GmbH.
Fig. 51. (a) The HRTEM image of CoSe2@NiSe2 and the corresponding FFT pattern (illustration). (b) The HRTEM image of CoSe2@NiSe2 at the interface. (c) First discharge/charge curve of Li-O2 batteries with CoSe2@NiSe2, CoSe2, and NiSe2 electrodes. (d) CV curves. (e) Voltage and time curve of the Li-O2 cells with different electrodes during the cycle. (f-h) TEM image of CoSe2@NiSe2 initial stage electrodes, discharge electrodes, and charging electrodes. Reprinted with permission from Ref. [349]. Copyright 2020, Elsevier B.V.
Fig. 52. (a) Schematic diagram of the synthesis of TiN-LDH nanohybrids. (b) Ti K-edge FT EXAFS data. (c) Under nitrogen-poor conditions, the nitrogen-vacancy at the interface forms the energy EXAFS as a function of the defect. (d) Charge depletion of interface Ti atoms (large circle) in Ni-Fe-LDH/TiN (with and without nitrogen vacancy) relative to TiN (001). (e) Schematic model of hybridization-driven defect formation on TiN NTs. (f) The LSV curves of the OER. (g) EIS data. (h) Capacity cycle performance. Reprinted with permission from Ref. [354]. Copyright 2022, Wiley-VCH GmbH.
Fig. 53. (a) The HRTEM images of the N-MoS2. (b) The EPR spectra of the N-MoS2 and MoS2. Comparison of the ORR (c) and OER (d) properties of the MoS2 and N-MoS2 catalysts. (e) CV plots of MoS2 and N-MoS2. (f) Charge/discharge curves of MoS2 and N-MoS2, with a voltage limit of 2.2-4.4 V at 100 mA g-1. Reprinted with permission from Ref. [355]. Copyright 2020, Elsevier Ltd.
|
[1] | 王潇涵, 田汉, 余旭, 陈立松, 崔香枝, 施剑林. 非晶相电催化剂在电解水领域的研究进展[J]. 催化学报, 2023, 51(8): 5-48. |
[2] | 周波, 石建巧, 姜一民, 肖磊, 逯宇轩, 董帆, 陈晨, 王特华, 王双印, 邹雨芹. 强化脱氢动力学实现超低电池电压和大电流密度下抗坏血酸电氧化[J]. 催化学报, 2023, 50(7): 372-380. |
[3] | 欧阳玲, 梁杰, 罗永嵩, 郑冬冬, 孙圣钧, 刘倩, Mohamed S. Hamdy, 孙旭平, 应斌武. 电催化合成氨的研究进展[J]. 催化学报, 2023, 50(7): 6-44. |
[4] | 米金星, 陈孝平, 丁亚军, 张良柱, 马军, 康辉, 吴籼虹, 刘岳峰, 陈建军, 吴忠帅. 活化高熵氧化物中部分金属位点显著增强热催化和电催化[J]. 催化学报, 2023, 48(5): 235-246. |
[5] | 李静静, 张锋伟, 詹新雨, 郭河芳, 张涵, 昝文艳, 孙振宇, 张献明. 酞菁镍分子结构的精确设计: 优化电子和空间效应用于CO2电还原[J]. 催化学报, 2023, 48(5): 117-126. |
[6] | 姜润, 乔泽龙, 许昊翔, 曹达鹏. 用于氧还原反应的Fe-N-C单原子催化剂的缺陷工程[J]. 催化学报, 2023, 48(5): 224-234. |
[7] | 张文静, 李静, 魏子栋. 碳基氧还原电催化剂: 机理研究和多孔结构[J]. 催化学报, 2023, 48(5): 15-31. |
[8] | 吴则星, 高玉肖, 王子璇, 肖卫平, 王新萍, 李彬, 李镇江, 刘晓斌, 马天翼, 王磊. 表面富集的超小铂纳米颗粒耦合缺陷磷化钴用于高效的电催化水分解和柔性锌空气电池[J]. 催化学报, 2023, 46(3): 36-47. |
[9] | 刘成, 刘胡润卿, 余济美, 吴棱, 李朝辉. 高效光催化金属有机框架(MOFs)的构筑策略[J]. 催化学报, 2023, 55(12): 1-19. |
[10] | 杨竣皓, 安露露, 王双, 张辰浩, 罗官宇, 陈应泉, 杨会颖, 王得丽. 层状双氢氧化物基电解水催化剂的缺陷工程调控策略[J]. 催化学报, 2023, 55(12): 116-136. |
[11] | 夏苏为, 周其兴, 孙若栩, 陈立章, 张明义, 庞欢, 徐林, 杨军, 唐亚文. 在N掺杂碳纳米管/纳米线耦合超结构中原位固载CoNi纳米颗粒制备莫特-肖特基催化剂并用于高效电催化氧还原反应[J]. 催化学报, 2023, 54(11): 278-289. |
[12] | 逯宇轩, 杨柳, 姜一民, 原甑然, 王双印, 邹雨芹. 局域静电环境工程用于增强电催化生物质转化过程中羟基活性[J]. 催化学报, 2023, 53(10): 153-160. |
[13] | 乔玉彦, 潘艳秋, 张江威, 王彬, 武婷婷, 范文俊, 曹雨程, Rashid Mehmood, 张飞, 章福祥. 多碳界面工程用于促进NiFe纳米复合电催化剂的产氧反应[J]. 催化学报, 2022, 43(9): 2354-2362. |
[14] | 崔彤, 翟雪君, 郭莉莉, 迟京起, 张昱, 朱家伟, 孙雪梅, 王磊. 自组装百合花状超低Ru, Ni掺杂的Fe2O3用于大电流碱性海水电解双功能电催化[J]. 催化学报, 2022, 43(8): 2202-2211. |
[15] | 钱秀, 魏艳娇, 孙梦洁, 韩野, 张晓俐, 田健, 邵敏华. 在Ti3C2Tx MXene上原位生长2D TiO2纳米片的异质结构用于改善电催化氮气还原[J]. 催化学报, 2022, 43(7): 1937-1944. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||