催化学报 ›› 2023, Vol. 51: 5-48.DOI: 10.1016/S1872-2067(23)64486-9

• 综述 • 上一篇    下一篇

非晶相电催化剂在电解水领域的研究进展

王潇涵a, 田汉b,*(), 余旭b, 陈立松c, 崔香枝a,b,*(), 施剑林b   

  1. a中国科学院大学杭州高等研究院, 化学与材料科学学院, 浙江杭州310024
    b中国科学院上海硅酸盐研究所, 高性能陶瓷与超微结构国家重点实验室, 上海200050
    c华东师范大学化学与分子工程学院, 上海市绿色化学与化工过程绿色化重点实验室, 上海200062
  • 收稿日期:2023-04-29 接受日期:2023-07-03 出版日期:2023-08-18 发布日期:2023-09-11
  • 通讯作者: *电子信箱: cuixz@mail.sic.ac.cn (崔香枝), tianhan@mail.sic.ac.cn (田汉)
  • 基金资助:
    国家自然科学基金(52172110);上海市科委“科技创新行动计划”港澳台科技合作项目(21520760500);上海市人力资源和社会保障局“超级博士后”激励计划(2021411);中国科学院特别研究助理资助项目.

Advances and insights in amorphous electrocatalyst towards water splitting

Xiaohan Wanga, Han Tianb,*(), Xu Yub, Lisong Chenc, Xiangzhi Cuia,b,*(), Jianlin Shib   

  1. aSchool of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, Zhejiang, China
    bState Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
    cShanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
  • Received:2023-04-29 Accepted:2023-07-03 Online:2023-08-18 Published:2023-09-11
  • Contact: *E-mail: cuixz@mail.sic.ac.cn (X. Cui), tianhan@mail.sic.ac.cn (H. Tian).
  • About author:Xiangzhi Cui received her Ph.D. degree in 2009 at Shanghai Institute of Ceramics, Chinese Academy of Sciences, and has been working at the institute since then. Now she is a full professor of the Institute. Her main research interest includes the structural design and synthesis of nanostructured composites, and the electrochemical catalysis for clean energy.
    Han Tian received his Ph.D. degree in 2021 at Shanghai Institute of Ceramics, Chinese Academy of Sciences, and has been working as a postdoctor at the institute since then. His main research interest includes the structural design and synthesis of nanostructured composites in water splitting and proton exchange membrane fuel cells.
  • Supported by:
    National Natural Science Foundation of China(52172110);“Scientific and Technical Innovation Action Plan” China Science & Technology Cooperation Project of Shanghai Science and Technology Committee(21520760500);“Super Postdoctoral Incentive Program” of Shanghai Municipal Human Resources and Social Security Bureau(2021411);Special Research Assistant Grant Project from Chinese Academy of Sciences

摘要:

化石燃料短缺和环境污染引发了人们对可持续、清洁和高效新能源的关注. 氢具有能量密度高、燃烧产物清洁等优点, 是一种重要的能源载体, 具有替代化石燃料的潜力. 在各种制氢方法中, 电解水制氢是获取高纯氢气的有效技术, 其包含阴极析氢反应(HER)和阳极析氧反应(OER). 为了实现高效的电化学水分解, 需要使用高效的电催化剂以克服HER和OER的热力学势垒并降低制氢电耗. 目前, 广泛使用的HER和OER催化剂分别是Pt和RuO2/IrO2基金属或金属氧化物, 该类贵金属催化剂的高成本和稀缺性严重限制了其在水分解制氢中的广泛应用. 此外, 金红石型RuO2和IrO2在阳极高电位下可溶于酸性和碱性电解质溶液中, 致使催化活性下降, 因此, 亟需发展新型高效且稳定的电解水催化剂.
相较于目前报道的晶相电解水催化剂材料, 非晶相催化剂材料没有严格限定的晶体结构, 并具有硬度低、比表面积大和化学稳定性好等优点, 特别是其含有大量随机取向的化学键和表面暴露的缺陷, 可以显著提高活性位点数量, 优化反应物的吸脱附, 因此在电催化领域具有良好的应用前景. 自20世纪80年代末以来, 一系列非晶相材料被成功制备出来且用于HER, OER和全解水中. 考虑到当前非晶相电催化剂在电解水领域取得的进展, 本综述对其合成方法、稳定策略、性能评估、机制探索和理论研究等进行了系统的总结. 阐述了酸性和碱性条件下HER和OER的反应过程和机理, 介绍了非晶电催化剂材料的制备方法, 以及提升其稳定性的策略. 重点介绍了含贵金属(Pt, Pd和Ir等)和非贵金属(Fe, Co, Ni和Mo等)基非晶态电催化剂在HER, OER和全解水中的性能评价, 以及采用能带理论和第一性原理相结合阐述相应的电催化机理. 深入讨论了当前非晶态电催化剂在电解水实际应用中遇到的关键问题, 如非晶催化剂所面临的导电率低、稳定性差(尤其是高电流下)、制备困难、缺乏深入的催化机制研究和工业化前景不明朗等问题, 简要地指出了该领域未来的研究方向: (1)高导电材料的引入. 为了解决非晶材料导电性差的问题, 可考虑引入高导电介质或引入特殊导电结构(如核壳结构等). (2)新颖的合成策略(非晶/结晶结构集成、非晶表面涂覆和创造离子缺陷等). (3)非晶材料结构高度可调的合理使用. 非晶催化剂的结构具有高度可调性, 在催化过程中易发生相转变, 可考虑合理诱导其可控转变. (4)先进的表征手段(原位电镜、原位拉曼、原位XPS和同步辐射等)的开发. (5)理论计算工具(进一步引入机器学习、材料基因组等理论)的使用. (6)更多应用层面的探索. 通过研究催化机制加深对非晶催化剂结构的认知, 提高稳定性, 一方面探究其在实际环境条件(高/低温、高/低pH)下的电解水性能, 另一方面将其扩展到甲醇、甘油等小分子氧化应用中的探究. 综上, 本综述旨在更好地理解非晶相电催化剂在电解水领域的研究现状、机理研究以及存在的挑战等, 从而推动非晶相电催化剂在未来电解水领域中的实际应用.

关键词: 非晶相催化剂, 缺陷工程, 电解水, 析氢反应, 析氧反应

Abstract:

Amorphous materials can markedly enhance the active site amount and optimize the adsorption and desorption of reactants owing to the special structural characteristics of large numbers of randomly oriented bonds and surface-exposed defects. Therefore, many amorphous electrocatalysts have emerged for effectively catalyzing water splitting. Considering the advancement of novel in-situ techniques and theoretical density functional theory calculations, significant progress emerging in amorphous electrocatalysts for water splitting needs to be summarized urgently. Herein, the recent progress of amorphous catalyst materials in water splitting has been systematically reviewed, emphasizing key issues of synthesis methods, stabilization strategies, performance evaluation, mechanistic understanding, integrated experiments, and theoretical studies in water splitting, including hydrogen evolution reaction, oxygen evolution reaction, and overall water splitting. This study focuses on these topics to present the most updated results and the perspectives and challenges for the future development of amorphous electrocatalysts toward water splitting.

Key words: Amorphous catalyst, Defect engineering, Water splitting, Hydrogen evolution reaction, Oxygen evolution reaction