催化学报 ›› 2023, Vol. 50: 45-82.DOI: 10.1016/S1872-2067(23)64457-2
牛青, 米林华, 陈玮, 李秋军, 钟升红*(), 于岩*(
), 李留义*(
)
收稿日期:
2023-03-10
接受日期:
2023-05-09
出版日期:
2023-07-18
发布日期:
2023-07-25
通讯作者:
*电子信箱: 基金资助:
Qing Niu, Linhua Mi, Wei Chen, Qiujun Li, Shenghong Zhong*(), Yan Yu*(
), Liuyi Li*(
)
Received:
2023-03-10
Accepted:
2023-05-09
Online:
2023-07-18
Published:
2023-07-25
Contact:
*E-mail: About author:
Shenghong Zhong (College of Materials Science and Engineering, Fuzhou University) received his B.Sc. degree (2011) in Chemistry from University of Science and Technology of China (USTC), and Ph.D. degree (2019) in materials science and engineering from King Abdullah University of Science and Technology (KAUST). Since the end of 2019, he has been working in Fuzhou University as an associate professor. His research interests mainly focus on non-precious metal nanomaterials, electrocatalysis, aqueous zinc batteries, and liquid metals. He has published more than 20 peer-reviewed papers.Supported by:
摘要:
共价有机框架材料(COFs)是由有机单元通过共价键连接而成的晶态多孔有机聚合物. 因其具有长程有序、高表面积和结构可预先设计等特点, 为解决日益严重的环境和能源问题提供了新兴的材料平台, 在光(电)催化领域得到广泛关注. 负载型单位点催化剂具有最大的金属原子利用率和明确的活性中心, 对提高原子利用效率、揭示催化反应机制和提升催化性能等具有重要意义, 成为近年的科研前沿. 基于单位点催化和COFs材料的独特优势, 利用COFs材料作为支撑材料锚定高度分散的单位点, 如单个金属离子、单原子、单个活性位点或金属团簇等, 设计和制备基于COFs的单位点光(电)催化材料成为当前催化科学领域的研究热点之一. 近年来, 国内外研究人员在设计合成COFs基单位点光(电)催化材料方面取得诸多重要进展.
本文综述了COFs基单位点光(电)催化材料的结构特点、设计原则、催化机理及其在光-电催化领域的应用. 总结了COFs基单位点材料在光(电)催化应用方面的基本依据和适用光(电)催化的COFs材料的一般合成方法, 讨论了COFs基单位点光(电)催化材料的设计原则及优缺点. 概述了COFs基单位点光(电)催化材料在光催化分解水、光催化制备H2O2、光催化CO2还原、光催化N2还原、光催化降解污染物、光催化有机转化及电催化分解水、电催化CO2还原、电催化产氧、氧还原和N2还原等领域的最新研究进展, 并着重介绍了催化机理. 此外, 介绍了COFs基单位点光(电)催化材料常用的先进原位表征技术, 如原位红外和原位X射线光电子能谱, 并对其他先进的原位技术如原位X射线吸收光谱和原位电子顺磁共振光谱等在COFs基单位点催化中的应用进行了展望. 总结了理论计算在揭示COFs基单位点光(电)催化材料催化活性来源中的重要作用, 并提出用于光催化和电催化的修饰策略. 同时指出COFs基单位点材料在光(电)催化领域所面临的挑战和未来的发展机遇. 综上, 期望本文为COFs基单位点材料在光(电)催化领域的应用提供一些借鉴.
牛青, 米林华, 陈玮, 李秋军, 钟升红, 于岩, 李留义. 基于共价有机框架的单位点光(电)催化材料的研究进展[J]. 催化学报, 2023, 50: 45-82.
Qing Niu, Linhua Mi, Wei Chen, Qiujun Li, Shenghong Zhong, Yan Yu, Liuyi Li. Review of covalent organic frameworks for single-site photocatalysis and electrocatalysis[J]. Chinese Journal of Catalysis, 2023, 50: 45-82.
Fig. 1. Number of publications on COF-based single-sites for photo- and electrocatalysis from 2011 to 2022. The data was extracted from Web of Science. The index formula is Ts = ("Covalent organic framework*") and Ts = (single) and Ts = (*cataly*) in Web of Science.
Fig. 4. Schematic illustration for hydrogen-oxygen fuel cell (a) and water electrolytic instrument (b). Reprinted with permission from Ref. [70]. Copyright 2020, Elsevier.
Photocatalyst | Reaction condition | Light source | Activity | Ref. |
---|---|---|---|---|
Pt1@TpPa-1 | 40 mg photocatalyst, 400 mg SA in 100 mL PBS buffer solution | 300 W Xe lamp λ ≥ 420 nm | H2 evolution rate 719 μmol g-1 h-1 | [ |
Pt/PY-DHBD-COF | 10 mg photocatalyst, 1 wt% Pt, 100 mL of H2O, 10 mmol L‒1 AA | 300 W Xe lamp λ ≥ 420 nm | H2 evolution rate 42432 μmol g-1 h-1 | [ |
TpPa(Δ)-Cu(II)- COF | 10 mg photocatalyst, cysteine (1.21 g, 0.1 mol L‒1), 100 mL H2O | 300 W Xe lamp λ ≥ 420 nm | H2 evolution rate 14.7 mmol g-1 h-1 | [ |
Ni(OH)2-2.5%/ TpPa-2 | 10 mg photocatalyst PBS 50 mL (PH = 7), 100 mg SA | 300 W Xe lamp λ ≥ 420 nm | H2 evolution rate 1895.99 μmol g-1 h-1 | [ |
N2-COF | 5 mg photocatalyst, 10 mL of 4:1 ACN/H2O solvent 100 μL of TEOA | 100 mW cm‒2 AM 1.5 radiation | H2 evolution rate 782 μmol g-1 h-1 | [ |
CTF-1 | 50 mg photocatalyst 3 wt% RuOx, 200 mL 0.2 mol L‒1 AgNO3 solution | 300 W Xe lamp λ ≥ 420 nm | O2 evolution rate 140 μmol g-1 h-1 | [ |
BpCo-COF | 10 mg photocatalyst, 100 mL H2O, 5 mmol L‒1 AgNO3, 1 wt% Co | 300 W Xe lamp λ ≥ 420 nm | O2 evolution rate 152 μmol g-1 h-1 | [ |
CTF-0-M2 | 100 mg photocatalyst, 3 wt% Pt, 230 mL of H2O, 10 vol % TEOA | 300 W Xe lamp λ ≥ 420 nm | H2 evolution rate 7010 μmol g-1 h-1 | [ |
Pt@I-TST COF | 10 mg photocatalyst, 3 wt% Pt, 50 mL H2O, 10 vol% TEOA | 300 W Xe lamp λ > 420 nm | H2 evolution rate ~130 μmol g-1 h-1 | [ |
Co@I-TST COF | 10 mg photocatalyst, 50 mL H2O, 0.01 mol L‒1 AgNO3, 0.1 g La2O3 | 300 W Xe lamp λ > 420 nm | O2 evolution rate ~36 μmol g-1 h-1 | [ |
Pt@TpBpy-NS | 15 mg photocatalyst, 50 mL H2O | 300 W Xe Lamp λ ≥ 420 nm | H2 evolution rate 132 μmol g-1 h-1 O2 evolution rate 64 μmol g-1 h-1 | [ |
BtB-COF | 10 mg photocatalyst, 50 mL H2O, 0.1 mmol L‒1 AgNO3, Co(ClO4)2 | 300 W Xe Lamp λ ≥ 420 nm | O2 evolution rate 664.5 μmol g-1 h-1 | [ |
CdS/BtB-COF | 30 mg photocatalyst, 50 mL H2O, 0.5 mL MeCN, H2PtCl6, Co(ClO4)2 | 300 W Xe Lamp λ > 420 nm | H2 evolution rate 450 μmol g-1 h-1 O2 evolution rate 212 μmol g-1 h-1 | [ |
Table 1 Overview of the activity COF-based single-site catalysts for photocatalytic HER and OER.
Photocatalyst | Reaction condition | Light source | Activity | Ref. |
---|---|---|---|---|
Pt1@TpPa-1 | 40 mg photocatalyst, 400 mg SA in 100 mL PBS buffer solution | 300 W Xe lamp λ ≥ 420 nm | H2 evolution rate 719 μmol g-1 h-1 | [ |
Pt/PY-DHBD-COF | 10 mg photocatalyst, 1 wt% Pt, 100 mL of H2O, 10 mmol L‒1 AA | 300 W Xe lamp λ ≥ 420 nm | H2 evolution rate 42432 μmol g-1 h-1 | [ |
TpPa(Δ)-Cu(II)- COF | 10 mg photocatalyst, cysteine (1.21 g, 0.1 mol L‒1), 100 mL H2O | 300 W Xe lamp λ ≥ 420 nm | H2 evolution rate 14.7 mmol g-1 h-1 | [ |
Ni(OH)2-2.5%/ TpPa-2 | 10 mg photocatalyst PBS 50 mL (PH = 7), 100 mg SA | 300 W Xe lamp λ ≥ 420 nm | H2 evolution rate 1895.99 μmol g-1 h-1 | [ |
N2-COF | 5 mg photocatalyst, 10 mL of 4:1 ACN/H2O solvent 100 μL of TEOA | 100 mW cm‒2 AM 1.5 radiation | H2 evolution rate 782 μmol g-1 h-1 | [ |
CTF-1 | 50 mg photocatalyst 3 wt% RuOx, 200 mL 0.2 mol L‒1 AgNO3 solution | 300 W Xe lamp λ ≥ 420 nm | O2 evolution rate 140 μmol g-1 h-1 | [ |
BpCo-COF | 10 mg photocatalyst, 100 mL H2O, 5 mmol L‒1 AgNO3, 1 wt% Co | 300 W Xe lamp λ ≥ 420 nm | O2 evolution rate 152 μmol g-1 h-1 | [ |
CTF-0-M2 | 100 mg photocatalyst, 3 wt% Pt, 230 mL of H2O, 10 vol % TEOA | 300 W Xe lamp λ ≥ 420 nm | H2 evolution rate 7010 μmol g-1 h-1 | [ |
Pt@I-TST COF | 10 mg photocatalyst, 3 wt% Pt, 50 mL H2O, 10 vol% TEOA | 300 W Xe lamp λ > 420 nm | H2 evolution rate ~130 μmol g-1 h-1 | [ |
Co@I-TST COF | 10 mg photocatalyst, 50 mL H2O, 0.01 mol L‒1 AgNO3, 0.1 g La2O3 | 300 W Xe lamp λ > 420 nm | O2 evolution rate ~36 μmol g-1 h-1 | [ |
Pt@TpBpy-NS | 15 mg photocatalyst, 50 mL H2O | 300 W Xe Lamp λ ≥ 420 nm | H2 evolution rate 132 μmol g-1 h-1 O2 evolution rate 64 μmol g-1 h-1 | [ |
BtB-COF | 10 mg photocatalyst, 50 mL H2O, 0.1 mmol L‒1 AgNO3, Co(ClO4)2 | 300 W Xe Lamp λ ≥ 420 nm | O2 evolution rate 664.5 μmol g-1 h-1 | [ |
CdS/BtB-COF | 30 mg photocatalyst, 50 mL H2O, 0.5 mL MeCN, H2PtCl6, Co(ClO4)2 | 300 W Xe Lamp λ > 420 nm | H2 evolution rate 450 μmol g-1 h-1 O2 evolution rate 212 μmol g-1 h-1 | [ |
Fig. 9. (a) XAFS measurements of Pt@TpPa-1. (b) Photocatalytic H2 evolution on TpPa-1 with different Pt loading. (c) Calculated free energy and optimized geometric structures for the as-obtained TpPa-1 and Pt@TpPa-1. (d) Schematic illustrations of single Pt atom on TpPa-1-COF. Reprinted with permission from Ref. [108]. Copyright 2021, American Chemical Society.
Fig. 10. (a) Synthesis and structure analyses of the TpPa-Cu(II)-COF. (b) Photocatalytic H2 evolution over TpPa-Cu(II)-COF. (c) Photogenerated electron transfer and proposed photocatalytic mechanism. (d) Calculated H atom binding free energy on TpPa model. Reprinted with permission from Ref. [110]. Copyright 2022, Springer Nature.
Fig. 11. Illustration of the (a) photocatalytic H2 evolution and (b) proposed photocatalytic mechanism (c) of MS-c@TpPa-1. Calculated charge density difference (d) and calculated Gibbs free energy (e) for H atoms adsorption on MS-c@TpPa-1. Reprinted with permission from Ref. [113]. Copyright 2022, Elsevier.
Fig. 12. Integrated interfacial designs of porphyrin-based COFs photocatalysts. Reprinted with permission from Ref. [114]. Copyright 2023, Springer Nature.
Fig. 13. (a) Synthesis illustration of Co@BtB-COF. (b) Photocatalytic H2O oxidation activity of Co@BtB-COF. (c) HOMO and LUMO of Co@BtB-COF. (d) Photocatalytic H2O oxidation pathway and (e) mechanism of Co@BtB-COF. Reprinted with permission from Ref. [120]. Copyright 2023, American Chemical Society.
Fig. 14. (a) Schematic design and synthesis of the 2D COFs. (b) Photocatalytic water splitting activity by I-TST COF. (c) Calculated CBM and VBM energy position of 2D COFs. (d) Proposed OER pathways on the TST segment of 2D COFs. (e) Calculated Gibbs free energy of OER and HER process over I-TST. Reprinted with permission from Ref. [122]. Copyright 2020, American Chemical Society.
Fig. 15. (a) Design and synthesis of COFs in this work. (b) COFs band structure. (c) Overall water splitting activities. (d) Possible reaction pathways and Gibbs free energy value by DFT calculation for TpBpy-NS. Reprinted with permission from Ref. [123]. Copyright 2023, Springer Nature.
Fig. 16. (a) Synthesis diagram of isostructural hydrazone-linked COFs. (b) Photocatalytic H2O oxidation activities over the as-prepared COFs. (c) Mechanistic illustration of H2O oxidation over COFs. Reprinted with permission from Ref. [124]. Copyright 2022, American Chemical Society.
Fig. 17. Structure (a) and photocatalytic H2O2 production (b) over COF-TfpBpy. (c) Proposed 2e- redox process in catalytic mechanism. Reprinted with permission from Ref. [125]. Copyright 2022, John Wiley and Sons.
Photocatalyst | Reaction condition | Light source | Activity | Ref. |
---|---|---|---|---|
Ni-TpBpy | 10 mg Photocatalyst, 6.5 mg [Ru(bpy)3]Cl2·6H2O, 3 mL MeCM, 1 mL H2O, 1 mL TEOA, 15 mg 2,2′-bipyridine | 300 W Xe lamp λ ≥ 420 nm | CO: 811 μmol g-1 h-1 H2: 34 μmol g-1 h-1 | [ |
PI-COF | 10 mg Photocatalyst, 2 mg Ni(ClO4)2·6H2O, 3 mL MeCM, 1 mL H2O, 1 mL TEOA, 15 mg 2,2′-bipyridine | 300 W Xe lamp λ ≥ 420 nm | CO: 483 μmol g-1 h-1 H2: 16 μmol g-1 h-1 | [ |
sp2c-COFdpy-Co | 10 mg Photocatalyst, 5 mL TEOA, 45 mL H2O | 300 W Xe lamp λ ≥ 300 nm | CO: 1 mmol g-1 h-1 H2: 0.22 mmol g-1 h-1 | [ |
DQTP COF-Co | 20 mg Photocatalyst, 40 mL MeCM, 10 mL TEOA, 22.5 mg [Ru(bpy)3]Cl2·6H2O | 300 W Xe lamp λ ≥ 420 nm | CO: 1.02 mmol g-1 h-1 HCOOH:152.5 μmol g-1 h-1 | [ |
Co-TPTGCl | 1.0 mg photocatalyst, 8.0 mL MeCN, 2.0 mL H2O, 2.0 mL TEOA, 19.0 mg Ru(bpy)3Cl2 | 5 W LED | CO: 14641 μmol mg-1 h-1 H2: 7968 μmol mg-1 h-1 | [ |
PdIn@N3-COF | 2 mg photocatalyst, 10 mL ultrapure water | 3300 W Xe lamp λ ≥ 420 nm | CH3OH: 590 μmol g-1 in 24 h CH3CH2OH: 207 μmol g-1 in 24 h | [ |
Ni-TP-CON | 5 mg photocatalyst, 20 mg [Ru(bpy)3]Cl2, 6 mL MeCN, 2 mL H2O, 2 mL TEOA | 300 W Xe lamp λ ≥ 420 nm | CO: 4361 μmol g-1 h-1 H2: 436 μmol g-1 h-1 | [ |
Fe SAS/Tr-COF | 5 mg Photocatalyst, 10 mg [Ru(bpy)3]Cl2·6H2O, MeCN, H2O, TEOA | 300 W Xe lamp λ ≥ 420 nm | CO: 980.3 μmol g-1 h-1 H2: 36.6 μmol g-1 h-1 | [ |
TCOF-MnMo6 | 2 mg Photocatalyst, 200 μL H2O | 300 W Xe lamp 400-800 nm | CO: 37.25 μmol g-1 h-1 | [ |
MCOF-Ti6Cu3 | 10 mg Photocatalyst, 30 mL H2O | 300 W Xe lamp AM 1.5 | HCOOH: 169.8 μmol g-1 h-1 | [ |
Re-TpBpy COF | 15 mg photocatalysts, 10 mL MeCN, 1.8 mL H2O, 0.1 mol L‒1 TEOA | 200 W Xe lamp λ > 390 nm | CO: ~284 μmol g-1 h-1 | [ |
H2PReBpy-COF | 3 mg photocatalyst, 10 mL MeCN, 1 mL TEA | 300 W Xe lamp λ ≥ 400 nm | CO: 1200 μmol g-1 h-1 HCOOH: 447 μmol g-1 h-1 | [ |
Co-TFPG-DAAQ | 10 mg photocatalyst, 5 mL MeCN, H2O 1 mL, 25 mg Cobalt-acetate, 23 mg Dimethylglyoxime | blue LED light (445 nm) | Greater than 125 TON | [ |
Cu0.10-SA/CTF | 5 mg photocatalyst, 5 mL H2O, 15 mmol TEA | 300 W Xe lamp λ ≥ 420 nm | CH4: 32.56 μmol g-1 h-1 CO: 2.24 μmol g-1 h-1 | [ |
Pt-SA/CTF-1 | 10 mg Photocatalyst, 10 mL H2O, 2.075 mL TEA | 300 W Xe lamp λ ≥ 420 nm | CH4: 4.7 μmol g-1 h-1 CO: 1.4 μmol g-1 h-1 | [ |
Co-PI-COF | 40 mg photocatalyst, 40 mL MeCN, 10 mL TEOA | 150 W Xe lamp λ ≥ 420 nm | HCOO: 50 μmol g-1 h-1 | [ |
Co-FPy-CON | 1 mg Photocatalyst, 1.5 mg 2,2′-bipyridine, 3 mL MeCM, 1 mL H2O, 1 mL TEOA | 300 W Xe lamp λ ≥ 420 nm | CO: 10.1 μmol g-1 h-1 H2: 3.18 μmol g-1 h-1 | [ |
CoPor- DPP-COF | 2 mg photocatalyst, 10 mg [Ru(bpy)3]Cl2, 10 mL MeCN, 6 mL H2O, 4 mL TIPA | 300 W Xe lamp λ ≥ 420 nm | CO: 10200 μmol g-1 h-1 H2: 2239 μmol g-1 h-1 | [ |
Ni-PCD@ TD-COF | 5 mg photocatalyst, 20 mg [Ru(bpy)3]Cl2, 6 mL MeCN, 2 mL H2O, 2 mL TEOA | Xe lamp λ ≥ 420 nm | CO: 478 μmol g-1 h-1 H2: 10 μmol g-1 h-1 | [ |
Re-CTF-py | 2 mg photocatalyst, 4 mL MeCN, 1 mL TEOA | 300 W Xe lamp full region light | CO: 353.05 μmol g-1 h-1 | [ |
Re-Bpy- sp2c-COF | 1 mg photocatalyst, 4.83 mL MeCN, 0.16 mL TEOA | 300 W Xe lamp λ ≥ 420 nm | CO: 1040 μmol g-1 h-1 H2: 244 μmol g-1 h-1 | [ |
PD-COF-23-Ni | 2.5 mg photocatalyst, 3 mL MeCN, 2 mL H2O, 0.5 mL TEOA | 300 W Xe lamp λ ≥ 420 nm | CO: 40 μmol g-1 h-1 | [ |
Ru@TpBpy | 15 mg photocatalyst, 100 mL MeCN, 10 mL TEOA | 300 W Xe lamp 800 nm ≥ λ ≥ 420 nm | HCOOH: 172 μmol g-1 h-1 | [ |
COF-367-CoIII | 10 mg photocatalyst, 20mL MeCN, 2 mL TEA | 300 W Xe lamp λ ≥ 380 nm | HCOOH: 93 ± 0.07 μmol g-1 h-1 CO: 5.5 ± 0.88 μmol g-1 h-1 CH4: 10.1 ± 1.12 μmol g-1 h-1 | [ |
Re-COF | 0.9 mg photocatalyst, 3 mL MeCN, 0.2 mL TEOA | 225 W Xe lamp λ ≥ 420 nm | CO: ~15 mmol g-1 | [ |
NiP-TPE-COF | 15 mg photocatalyst, 30 mg [Ru(bpy)3]Cl2, 3 mL MeCN, 2 mL H2O, 1 mL TEOA | Xe lamp λ ≥ 420 nm | CO: 525 μmol g-1 h-1 H2: 41 μmol g-1 h-1 | [ |
TTCOF-Zn | 100 mg Photocatalyst, 80 mL H2O | 300 W Xe lamp 420-800 nm | CO: 12.3 μmol g-1 h-1 | [ |
Cu-COF | 5 mg photocatalyst, 8 mL MeCN, 2 mL H2O, 2 mL TEOA | 300 W Xe lamp λ ≥ 420 nm | CO: 206 μmol g-1 h-1 H2: 14 μmol g-1 h-1 | [ |
Table 2 Summary of COF-based single-site catalysts for photocatalytic reduction of CO2.
Photocatalyst | Reaction condition | Light source | Activity | Ref. |
---|---|---|---|---|
Ni-TpBpy | 10 mg Photocatalyst, 6.5 mg [Ru(bpy)3]Cl2·6H2O, 3 mL MeCM, 1 mL H2O, 1 mL TEOA, 15 mg 2,2′-bipyridine | 300 W Xe lamp λ ≥ 420 nm | CO: 811 μmol g-1 h-1 H2: 34 μmol g-1 h-1 | [ |
PI-COF | 10 mg Photocatalyst, 2 mg Ni(ClO4)2·6H2O, 3 mL MeCM, 1 mL H2O, 1 mL TEOA, 15 mg 2,2′-bipyridine | 300 W Xe lamp λ ≥ 420 nm | CO: 483 μmol g-1 h-1 H2: 16 μmol g-1 h-1 | [ |
sp2c-COFdpy-Co | 10 mg Photocatalyst, 5 mL TEOA, 45 mL H2O | 300 W Xe lamp λ ≥ 300 nm | CO: 1 mmol g-1 h-1 H2: 0.22 mmol g-1 h-1 | [ |
DQTP COF-Co | 20 mg Photocatalyst, 40 mL MeCM, 10 mL TEOA, 22.5 mg [Ru(bpy)3]Cl2·6H2O | 300 W Xe lamp λ ≥ 420 nm | CO: 1.02 mmol g-1 h-1 HCOOH:152.5 μmol g-1 h-1 | [ |
Co-TPTGCl | 1.0 mg photocatalyst, 8.0 mL MeCN, 2.0 mL H2O, 2.0 mL TEOA, 19.0 mg Ru(bpy)3Cl2 | 5 W LED | CO: 14641 μmol mg-1 h-1 H2: 7968 μmol mg-1 h-1 | [ |
PdIn@N3-COF | 2 mg photocatalyst, 10 mL ultrapure water | 3300 W Xe lamp λ ≥ 420 nm | CH3OH: 590 μmol g-1 in 24 h CH3CH2OH: 207 μmol g-1 in 24 h | [ |
Ni-TP-CON | 5 mg photocatalyst, 20 mg [Ru(bpy)3]Cl2, 6 mL MeCN, 2 mL H2O, 2 mL TEOA | 300 W Xe lamp λ ≥ 420 nm | CO: 4361 μmol g-1 h-1 H2: 436 μmol g-1 h-1 | [ |
Fe SAS/Tr-COF | 5 mg Photocatalyst, 10 mg [Ru(bpy)3]Cl2·6H2O, MeCN, H2O, TEOA | 300 W Xe lamp λ ≥ 420 nm | CO: 980.3 μmol g-1 h-1 H2: 36.6 μmol g-1 h-1 | [ |
TCOF-MnMo6 | 2 mg Photocatalyst, 200 μL H2O | 300 W Xe lamp 400-800 nm | CO: 37.25 μmol g-1 h-1 | [ |
MCOF-Ti6Cu3 | 10 mg Photocatalyst, 30 mL H2O | 300 W Xe lamp AM 1.5 | HCOOH: 169.8 μmol g-1 h-1 | [ |
Re-TpBpy COF | 15 mg photocatalysts, 10 mL MeCN, 1.8 mL H2O, 0.1 mol L‒1 TEOA | 200 W Xe lamp λ > 390 nm | CO: ~284 μmol g-1 h-1 | [ |
H2PReBpy-COF | 3 mg photocatalyst, 10 mL MeCN, 1 mL TEA | 300 W Xe lamp λ ≥ 400 nm | CO: 1200 μmol g-1 h-1 HCOOH: 447 μmol g-1 h-1 | [ |
Co-TFPG-DAAQ | 10 mg photocatalyst, 5 mL MeCN, H2O 1 mL, 25 mg Cobalt-acetate, 23 mg Dimethylglyoxime | blue LED light (445 nm) | Greater than 125 TON | [ |
Cu0.10-SA/CTF | 5 mg photocatalyst, 5 mL H2O, 15 mmol TEA | 300 W Xe lamp λ ≥ 420 nm | CH4: 32.56 μmol g-1 h-1 CO: 2.24 μmol g-1 h-1 | [ |
Pt-SA/CTF-1 | 10 mg Photocatalyst, 10 mL H2O, 2.075 mL TEA | 300 W Xe lamp λ ≥ 420 nm | CH4: 4.7 μmol g-1 h-1 CO: 1.4 μmol g-1 h-1 | [ |
Co-PI-COF | 40 mg photocatalyst, 40 mL MeCN, 10 mL TEOA | 150 W Xe lamp λ ≥ 420 nm | HCOO: 50 μmol g-1 h-1 | [ |
Co-FPy-CON | 1 mg Photocatalyst, 1.5 mg 2,2′-bipyridine, 3 mL MeCM, 1 mL H2O, 1 mL TEOA | 300 W Xe lamp λ ≥ 420 nm | CO: 10.1 μmol g-1 h-1 H2: 3.18 μmol g-1 h-1 | [ |
CoPor- DPP-COF | 2 mg photocatalyst, 10 mg [Ru(bpy)3]Cl2, 10 mL MeCN, 6 mL H2O, 4 mL TIPA | 300 W Xe lamp λ ≥ 420 nm | CO: 10200 μmol g-1 h-1 H2: 2239 μmol g-1 h-1 | [ |
Ni-PCD@ TD-COF | 5 mg photocatalyst, 20 mg [Ru(bpy)3]Cl2, 6 mL MeCN, 2 mL H2O, 2 mL TEOA | Xe lamp λ ≥ 420 nm | CO: 478 μmol g-1 h-1 H2: 10 μmol g-1 h-1 | [ |
Re-CTF-py | 2 mg photocatalyst, 4 mL MeCN, 1 mL TEOA | 300 W Xe lamp full region light | CO: 353.05 μmol g-1 h-1 | [ |
Re-Bpy- sp2c-COF | 1 mg photocatalyst, 4.83 mL MeCN, 0.16 mL TEOA | 300 W Xe lamp λ ≥ 420 nm | CO: 1040 μmol g-1 h-1 H2: 244 μmol g-1 h-1 | [ |
PD-COF-23-Ni | 2.5 mg photocatalyst, 3 mL MeCN, 2 mL H2O, 0.5 mL TEOA | 300 W Xe lamp λ ≥ 420 nm | CO: 40 μmol g-1 h-1 | [ |
Ru@TpBpy | 15 mg photocatalyst, 100 mL MeCN, 10 mL TEOA | 300 W Xe lamp 800 nm ≥ λ ≥ 420 nm | HCOOH: 172 μmol g-1 h-1 | [ |
COF-367-CoIII | 10 mg photocatalyst, 20mL MeCN, 2 mL TEA | 300 W Xe lamp λ ≥ 380 nm | HCOOH: 93 ± 0.07 μmol g-1 h-1 CO: 5.5 ± 0.88 μmol g-1 h-1 CH4: 10.1 ± 1.12 μmol g-1 h-1 | [ |
Re-COF | 0.9 mg photocatalyst, 3 mL MeCN, 0.2 mL TEOA | 225 W Xe lamp λ ≥ 420 nm | CO: ~15 mmol g-1 | [ |
NiP-TPE-COF | 15 mg photocatalyst, 30 mg [Ru(bpy)3]Cl2, 3 mL MeCN, 2 mL H2O, 1 mL TEOA | Xe lamp λ ≥ 420 nm | CO: 525 μmol g-1 h-1 H2: 41 μmol g-1 h-1 | [ |
TTCOF-Zn | 100 mg Photocatalyst, 80 mL H2O | 300 W Xe lamp 420-800 nm | CO: 12.3 μmol g-1 h-1 | [ |
Cu-COF | 5 mg photocatalyst, 8 mL MeCN, 2 mL H2O, 2 mL TEOA | 300 W Xe lamp λ ≥ 420 nm | CO: 206 μmol g-1 h-1 H2: 14 μmol g-1 h-1 | [ |
Fig. 19. Schematic diagram of CO2 reduction (a) and HAADF-STEM image of Ni-TpBpy (b). (c) Photoreduction activity of CO2 for Ni-TpBpy. (d) DFT Gibbs free energy calculation of reaction routine for CO2 reduction with and without TpBpy. (e,f) Catalytic mechanism for CO2 reduction over Ni-TpBpy. Reprinted with permission from Ref. [132]. Copyright 2019, American Chemical Society.
Fig. 20. (a) Synthesis of PI-COFs for the photocatalytic CO2 reduction. (b) Photocatalytic activity of PI-COFs in CO2 reduction. (c) DFT calculation and the possible mechanism of the photoreduction of CO2. Reprinted with permission from Ref. [133]. Copyright 2020, Royal Society of Chemistry.
Fig. 21. Preparation (a) and photocatalytic performance (b) of DQTP COF and DATP COF. (c) Photoreduction mechanism of CO2 over DQTP COF-M. Reprinted with permission from Ref. [141]. Copyright 2019, Elsevier.
Fig. 22. (a) Schematic of the synthesis of COF-POM catalyst. (b) Photocatalytic CO2 reduction activity for TCOF-MnMo6 and ECOF-MnMo6. (c) Illustration of the mechanism of CO2 reduction and H2O oxidation over TCOF-MnMo6. (d) DFT free energy calculation for CO2 conversion (MnMo6) and H2O oxidation (TTF) over TCOF-MnMo6 catalyst. Reprinted with permission from Ref. [143]. Copyright 2022, American Chemical Society.
Fig. 23. (a) Preparation of MCOF-Ti6Cu3. (b) Photoreduction activity of CO2 for the as-obtained samples. (c) Proposed reaction pathway. Reprinted with permission from Ref. [144]. Copyright 2022, Springer Nature.
Fig. 24. (a) Photocatalytic reduction of CO2 over COF-367-Co. (b) Calculated energy profiles for CO2 reduction over COF-367-CoII and COF-367-CoIII. Reprinted with permission from Ref. [145]. Copyright 2020, American Chemical Society. (c) CO2RR performances for TTCOF-M and COF366-Zn. (d) Synthesis of TTCOF-M catalyst. (e) Proposed mechanism of CO2 reduction and H2O oxidation over TTCOF-M. Reprinted with permission from Ref. [146]. Copyright 2019, John Wiley and Sons.
Fig. 25. (a) Preparation of Fe SAS/Tr-COFs. (b) Energy band structure and photoreduction activity of CO2 for the as-prepared COF catalysts. (c) Gibbs free energy calculation for the as-obtained COF catalysts and possible CO2 reduction mechanism for Fe SAS/Tr-COFs. Reprinted with permission from Ref. [163]. Copyright 2022, American Chemical Society.
Fig. 26. (a) Preparation of Pt-SACs/CTF. (b,c) Evaluation of the photocatalytic activity of NH4+ and NH3 production by the as-obtained samples. (d) Band structure and N2 fixation mechanism of the as-prepared materials. (e) Schematic illustration and free energy profiles for the distal and alternating mechanisms over Pt-SACs/CTF. Reprinted with permission from Ref. [167]. Copyright 2020, American Chemical Society.
Fig. 27. (a) Photocatalytic conversion mechanism of N2 to NH3 for Bi/COF-TaTp. (b) Photocatalytic activity of NH3 production via the obtained catalysts. (c) Isotope labeling experiments for 5% Bi/COF-TaTp. Reprinted with permission from Ref. [170]. Copyright 2022, John Wiley and Sons.
Fig. 28. Synthesis (a) and charge distribution (b) of COF-909 and COF-909(Cu). (c) Photocatalytic degradation kinetic constants for as-prepared materials. (d) Mechanism of SMX photodegradation by COF-909(Cu). Reprinted with permission from Ref. [171]. Copyright 2021, Elsevier.
Fig. 29. (a) Synthesis of DhaTph-M (M = 2H, Zn, Ni) and illustration of molecular oxygen activation. Reprinted with permission from Ref. [173]. Copyright 2020, American Chemical Society. (b) Ru-COF for photocatalytic C?H activation. Reprinted with permission from Ref. [174]. Copyright 2021, Elsevier.
Fig. 30. (a) Synthesis and (b) proposed photocatalytic mechanism of oxidation of arylboronic acids over LZU-190. Reprinted with permission from Ref. [87]. Copyright 2018, American Chemical Society.
Fig. 31. (a) The formation process and HER mechanism illustration of CTFs@MoS2. (b) Electrochemical performances of catalysts. (c) Total pore volume with the variation of Tafel slope. Reprinted with permission from Ref. [184]. Copyright 2019, John Wiley and Sons.
Fig. 32. (a) Fabrication of CoSAs/PTFs. (b) HER test of LSV. (c) Mass activities at different potentials. (d) HER mechanism diagram for CoSAs/PTF-600. Reprinted with permission from Ref. [187]. Copyright 2019, Royal Society of Chemistry.
Fig. 33. (a) Synthesis of 2D-Co-COF500. (b) FECO for 2D-Co-COF500 (red) and Co-COF500 (black). PDOS for 2D-Co-COF500 (c) and Co-COF500 (d). Reprinted with permission from Ref. [188]. Copyright 2019, Royal Society of Chemistry.
Fig. 34. (a) A diagram of the process of reducing CO2 of 2D polyimide-linked phthalocyanine COFs. (b) LSV curves. (c) Faradaic efficiency. (d) Calculated energy gap and (e) Calculated free energy diagram. Reprinted with permission from Ref. [189]. Copyright 2021, American Chemical Society.
Fig. 35. Structures (a) and Activities (b) at 0.9 and 0.85V vs. RHE of Co@rhm-PorBTD and Co@sql-PorBTD COFs. (c,d) Proposed catalytic mechanism and free energy diagram. Reprinted with permission from Ref. [194]. Copyright 2023, American Chemical Society.
Fig. 36. (a) Schematics for the synthesis of the catalysts. (b) CV curves of 20 mV s-1. (c) Chronoamperometric profiles of N, P co-doped carbon catalysts. Reprinted with permission from Ref. [195]. Copyright 2019, American Chemical Society.
Fig. 37. (a) Schematic diagram of the reaction of TpBpy. LSV stability profile (b) and chronoamperometric stability profile (c) for Co-TpBpy. Reprinted with permission from Ref. [196]. Copyright 2016, American Chemical Society.
Fig. 38. (a) Synthesis of TM-COF-C4N. (b) Tafel plots for resultant materials. (c) The free energy profile of the OER pathway. (d) The structures of TM-COF-C4N, OH*, *O, and *OOH intermediates. PDOS and charge density difference for (e) Co-COF-C4N and (f) Ni-COF-C4N between *OOH and TM sites. Reprinted with permission from Ref. [197]. Copyright 2023, Elsevier.
Fig. 39. (a) Schematic diagram of NRR for 2D M-COF. (b) Yield of NH3 and corresponding FE of Ti-COF. (c) Schematic and mechanism illustration of Ti-COF. (d) Free energy diagrams of Ti-COF. Reprinted with permission from Ref. [199]. Copyright 2022, American Chemical Society.
Fig. 40. (a) Schematic diagram of the reaction mechanisms during the NRR. Gibbs free energy diagrams for NRR on (b) Nb-COFs, (c) Mo-COFs, and (d) Ta-COFs. Reprinted with permission from Ref. [200]. Copyright 2023, Elsevier.
Application type | Electrocatalyst | Electrolyte | Overpotential (vs. RHE) | Tafel slope | Ref. |
---|---|---|---|---|---|
Electrocatalytic H2 evolution | CTFs@MoS2 | 0.5 mol L‒1 H2SO4 | 0.093 V | 43 mV decade‒1 | [ |
CoSAs/PTF | 0.5 mol L‒1 H2SO4 | 0.021 V | 50 mV decade‒1 | [ | |
Electrocatalytic CO2 reduction | 2D-Co-COF500 | 0.5 mol L‒1 KHCO3 | — | 292.7 mV decade‒1 | [ |
CoPc-PI-COF-4 | 0.5 mol L‒1 KHCO3 | — | 95 mV decade‒1 | [ | |
Electrocatalytic O2 reduction | Pt-CTF/CPs | 0.5 mol L‒1 H2SO4 | 0.58 V | — | [ |
Co@sql-PorBTD | 0.1 mol L‒1 KOH | 0.85 V | 87 mV decade‒1 | [ | |
N, P Co-doped carbon catalysts derived from COFs | 0.10 mol L‒1 KOH | 0.88 V | 70 mV decade‒1 | [ | |
Electrocatalytic O2 evolution | Co-TpBpy | Phosphate buffer | 0.4 V | 59 mV decade‒1 | [ |
COF-C4N | Nitrogen saturated KOH | 280 mV | 61 mV decade‒1 | [ | |
Electrocatalytic N2 fixation | Ti-COF | 0.05 mol L‒1 HCl | — | — | [ |
Table 3 Summary of electrocatalytic activity for COFs-based single-site electrocatalysts.
Application type | Electrocatalyst | Electrolyte | Overpotential (vs. RHE) | Tafel slope | Ref. |
---|---|---|---|---|---|
Electrocatalytic H2 evolution | CTFs@MoS2 | 0.5 mol L‒1 H2SO4 | 0.093 V | 43 mV decade‒1 | [ |
CoSAs/PTF | 0.5 mol L‒1 H2SO4 | 0.021 V | 50 mV decade‒1 | [ | |
Electrocatalytic CO2 reduction | 2D-Co-COF500 | 0.5 mol L‒1 KHCO3 | — | 292.7 mV decade‒1 | [ |
CoPc-PI-COF-4 | 0.5 mol L‒1 KHCO3 | — | 95 mV decade‒1 | [ | |
Electrocatalytic O2 reduction | Pt-CTF/CPs | 0.5 mol L‒1 H2SO4 | 0.58 V | — | [ |
Co@sql-PorBTD | 0.1 mol L‒1 KOH | 0.85 V | 87 mV decade‒1 | [ | |
N, P Co-doped carbon catalysts derived from COFs | 0.10 mol L‒1 KOH | 0.88 V | 70 mV decade‒1 | [ | |
Electrocatalytic O2 evolution | Co-TpBpy | Phosphate buffer | 0.4 V | 59 mV decade‒1 | [ |
COF-C4N | Nitrogen saturated KOH | 280 mV | 61 mV decade‒1 | [ | |
Electrocatalytic N2 fixation | Ti-COF | 0.05 mol L‒1 HCl | — | — | [ |
Fig. 41. (a) In-situ DRIFT spectra and catalytic mechanism for H2O2 generation over DETH-COF. Reprinted with permission from Ref. [124]. Copyright 2022, American Chemical Society. (b) In-situ DRIFT spectra for the simulated photocatalytic CO2 reduction reaction over MCOF-Ti6Cu3. Reprinted with permission from Ref. [144]. Copyright 2022, Springer Nature.
Fig. 42. XPS (a) and in-situ XPS (b) spectra for Ti 2p and Cu 2p of MCOF-Ti6Cu3. Reprinted with permission from Ref. [144]. Copyright 2022, Springer Nature.
Fig. 43. (a) Side and top views of HOMO and LUMO partial charge density and charge density difference over Cu-Bpy-COF. Reprinted with permission from Ref. [140]. Copyright 2023, John Wiley and Sons. (b) Optimized structures of reaction intermediates for photocatalytic N2 fixation mechanism over Pt-SACs/CTF catalyst by DFT calculation. Reprinted with permission from Ref. [167]. Copyright 2020, American Chemical Society.
Fig. 44. (a) Structure of key intermediates in electrocatalytic CO2RR on 2D-Co-COF500. (b) Relative energy diagrams of CO2 reduction to CO for 2D-Co-COF500 (red curve), CoN4 sites (blue curve) and CoN3O site (green curve). Reprinted with permission from Ref. [188]. Copyright 2019, Royal Society of Chemistry. (c) Gibbs free energies for H2 adsorption of metal-salen COFEDA. (d) Reaction mechanism for HER catalyzed by PEDOT@metal-salen COFEDA. Reprinted with permission from Ref. [206]. Copyright 2022, John Wiley and Sons.
Fig. 45. (a) Transient photocurrent response for as-prepared materials. (b,c) Illustration of possible photocatalytic mechanism for coupling COFs with other heterogeneous components. Reprinted with permission from Ref. [221]. Copyright 2021, John Wiley and Sons.
Fig. 46. (a) Synthesis of COF@ZIF800 catalyst. (b) Mechanism for ORR and HER of COF@ZIF800. (c) Structure of the TP-BPY-COF. Reprinted with permission from Ref. [222]. Copyright 2022, Royal Society of Chemistry.
|
[1] | 赵彬彬, 钟威, 陈峰, 王苹, 别传彪, 余火根. 高晶化g-C3N4光催化剂: 合成、结构调控和光催化产氢[J]. 催化学报, 2023, 52(9): 127-143. |
[2] | 唐小龙, 李锋, 李方, 江燕斌, 余长林. 单原子催化剂在光催化和电催化合成过氧化氢中的研究进展[J]. 催化学报, 2023, 52(9): 79-98. |
[3] | 张季, 俞爱民, 孙成华. 非金属掺杂石墨烯异核双原子催化剂氮还原特性研究[J]. 催化学报, 2023, 52(9): 263-270. |
[4] | 胡金念, 田玲婵, 王海燕, 孟洋, 梁锦霞, 朱纯, 李隽. MXene负载3d金属单原子高效氮还原电催化剂的理论筛选[J]. 催化学报, 2023, 52(9): 252-262. |
[5] | 洪岩, 王琦, 阚子旺, 张禹烁, 郭晶, 李思琦, 刘松, 李斌. 电化学氮还原氨反应催化剂的最新研究进展[J]. 催化学报, 2023, 52(9): 50-78. |
[6] | 蔡铭洁, 刘艳萍, 董珂欣, 陈晓波, 李世杰. 漂浮型Bi2WO6/C3N4/碳布S型异质结光催化材料用于高效净化水体环境[J]. 催化学报, 2023, 52(9): 239-251. |
[7] | 刘勇, 赵晓丽, 隆昶, 王晓艳, 邓邦为, 李康璐, 孙艳娟, 董帆. 原位构筑动态Cu/Ce(OH)x界面用于高活性、高选择性和高稳定性硝酸盐还原合成氨[J]. 催化学报, 2023, 52(9): 196-206. |
[8] | 高晖, 张恭, 程东方, 王永涛, 赵静, 李晓芝, 杜晓伟, 赵志坚, 王拓, 张鹏, 巩金龙. 构建Cu台阶位促进电催化CO2还原制醇类化学品的研究[J]. 催化学报, 2023, 52(9): 187-195. |
[9] | 王思恺, 闵祥婷, 乔波涛, 颜宁, 张涛. 单原子催化: 追寻催化领域的“圣杯”[J]. 催化学报, 2023, 52(9): 1-13. |
[10] | 江梓聪, 程蓓, 张留洋, 张振翼, 别传彪. 氧化锌基梯型异质结光催化剂[J]. 催化学报, 2023, 52(9): 32-49. |
[11] | 邹心仪, 顾均. 酸性条件下二氧化碳高效电还原策略[J]. 催化学报, 2023, 52(9): 14-31. |
[12] | 刘鑫, 王茂弟, 任亦起, 刘嘉立, 戴慧聪, 杨启华. 构建模块化催化体系用于氢转移反应: 氢键的促进作用[J]. 催化学报, 2023, 52(9): 207-216. |
[13] | 刘博文, 蔡家杰, 张建军, 谭海燕, 程蓓, 许景三. MOF/CdS梯型光催化剂同时进行苯甲醇氧化和析氢反应及其机理研究[J]. 催化学报, 2023, 51(8): 204-215. |
[14] | 宋明明, 宋相海, 刘鑫, 周伟强, 霍鹏伟. ZnIn2S4/MOF-808微球结构S型异质结光催化剂的制备及其光还原CO2性能研究[J]. 催化学报, 2023, 51(8): 180-192. |
[15] | 邵秀丽, 李可, 李静萍, 程强, 王国宏, 王楷. 揭示NiS@Ta2O5纳米纤维中梯型电荷转移路径及光催化CO2转化性能[J]. 催化学报, 2023, 51(8): 193-203. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||