催化学报 ›› 2023, Vol. 50: 83-108.DOI: 10.1016/S1872-2067(23)64463-8
赵梦a,b,1, 徐晶a,b,1, 宋术岩a,b,*(), 张洪杰a,b,c,*(
)
收稿日期:
2023-02-28
接受日期:
2023-05-16
出版日期:
2023-07-18
发布日期:
2023-07-25
通讯作者:
*电子信箱: 作者简介:
1共同第一作者.
基金资助:
Meng Zhaoa,b,1, Jing Xua,b,1, Shuyan Songa,b,*(), Hongjie Zhanga,b,c,*(
)
Received:
2023-02-28
Accepted:
2023-05-16
Online:
2023-07-18
Published:
2023-07-25
Contact:
*E-mail: About author:
Shuyan Song received his BSc degree in Chemistry in 2003 and MSc in inorganic chemistry in 2006 both from Northeast Normal University. He joined the group of Prof. Hongjie Zhang at Changchun Institute of Applied Chemistry, Chinese Academy of Sciences (CAS), where he received his PhD in inorganic chemistry in 2009. He is working as a professor under the direction of Prof. Zhang at Changchun Institute of Applied Chemistry, CAS. His research focus is primarily on the development of porous functional materials for heterogeneous catalysis, proton conduction, chemical sensing and detection.1 Contributed equally to this work.
Supported by:
摘要:
串联催化在工业生产中具有重要意义. 串联催化剂将两个或多个具有不同反应活性的明确活性位点整合到一个催化剂单元中, 预先设计的催化反应可以在相应的活化位点依次发生, 即反应物在第一个位点被激活, 产生的中间体将迁移到下一个位点, 直至获得目标产物. 串联反应不仅极大地降低了能量消耗的成本, 而且根据勒夏特列原理, 其可以显著影响热力学平衡, 有效地将前一步的化学平衡前移, 提高了催化转化效率, 在减少分离步骤、控制反应顺序和选择性方面发挥着核心作用, 有效地提高了工业工程工艺的可行性.
本文全面系统地总结了核/蛋黄-壳串联纳米反应器的研究进展. 介绍了该领域新颖的合成手段, 包括原子层沉积法、脱硅-重结晶法和物理涂覆法等, 明晰了核/蛋黄-壳结构的最佳生长条件, 并对潜在的生长机理进行细致讨论, 为精细整合串联催化剂活性组分分布提供新思路. 另外, 本文分别针对核壳反应器和蛋黄壳反应器, 深入探讨了包括金属有机骨架、沸石、金属氧化物和碳材料在内的多种壳层材料对于多种串联催化反应的特殊作用, 详细介绍了多相加氢、合成气转化、二氧化碳加氢、丙烷脱氢和纳米酶催化等串联反应的催化路径, 并对结构-性能内禀关联进行了细致阐述, 进而总结了核壳/蛋黄壳纳米反应器的适用范围. 最后, 概述了该领域面临的挑战和机遇, 包括如何实现具有不同功能的催化中心在反应器内部的精准落位, 如何精准调控壳层厚度、孔尺寸等精细结构以及如何实现多中心的合理兼容等. 总之, 核/蛋黄-壳串联纳米反应器在多相催化反应中表现出显著增强的催化性能, 是一类极具发展前景的新催化体系. 但相关研究仍处于起步阶段, 仍需复出更大的努力实现结构的可控以及性能的优化.
赵梦, 徐晶, 宋术岩, 张洪杰. 核壳/蛋黄壳纳米反应器用于串联催化[J]. 催化学报, 2023, 50: 83-108.
Meng Zhao, Jing Xu, Shuyan Song, Hongjie Zhang. Core/yolk-shell nanoreactors for tandem catalysis[J]. Chinese Journal of Catalysis, 2023, 50: 83-108.
Fig. 1. (a) Formation mechanism of the Al/Ni-Pt/Ti catalysts. Reprinted with permission from Ref. [25]. Copyright 2016, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. (b) Formation mechanism of the FeMn@HZSM-5 catalysts. Reprinted with permission from Ref. [27]. Copyright 2021, American Chemical Society. (c) Formation mechanism of the CuZnAl/SAPO11-PhyC catalysts. Reprinted with permission from Ref. [29]. Copyright 2015, Elsevier B. V.
Fig. 2. (a) Schematic diagram about the synthesis routes of UIO-66-Pt-Au and UIO-66-Pt/Au. (b) Schematic illustration of the specific tandem reaction routes. (c) Catalytic performance of different materials. Reprinted with permission from Ref. [48]. Copyright 2021, Springer Nature.
Fig. 3. (a) Schematic illustration of the step-by-step synthesis routes of Ni/SiO2@Ni-MOF-74. (b) The growth mechanism of Ni-MOF-74 on hollow Ni/SiO2 surface. (c) Illustration of the role of the Ni-MOF-74 shell in tandem catalysis. Reprinted with permission from Ref. [53]. Copyright 2019, American Chemical Society.
Fig. 4. (a) Scheme image of the GOx@ZIF-8@HRP@ZIF-8) synthetic process. (b) The regulation of distance of different enzymes by adjust the epitaxial growth period of ZIF-8. Reprinted with permission from Ref. [56]. Copyright 2022, Springer Nature. (c) Schematic illustration of the separate encapsulation of incompatible enzymes by MOF-Cs. (d) Schematic illustration of tandem catalytic process and corresponding catalytic performance and recyclability. Reprinted with permission from Ref. [57]. Copyright 2018, Wiley-VCH GmbH.
Fig. 5. (a) Schematic diagram of the Fe-Zn-Zr-T@H-ZSM-5 structure and reaction path for CO2 hydrogenation. (b) Possible tandem catalytic mechanism. (c?e) Catalytic performance of various catalysts with different components ratios. (d) Thermal stability of the Fe-Zn-Zr(0.1:1:1)-T@H-ZSM-5 catalysts. Reprinted with permission from Ref. [30]. Copyright 2021, American Chemical Society.
Fig. 6. (a) Schematic diagram of the Cu/ZnO@H-MOR core-shell catalysts preparation. (b) Reaction pathways of the ethanol synthesis. (c) Influence of shell thickness on the catalytic performance. (d) Proposed possible tandem catalytic mechanism. Reprinted with permission from Ref. [74]. Copyright 2020, American Chemical Society.
Fig. 7. (a) The synthesis strategy of Zn-Cr@SAPO-34 core-shell catalysts and corresponding STO process. (b) STO performance of various catalysts. Reprinted with permission from Ref. [34]. Copyright 2020, Royal Society of Chemistry. (c) FTS performance of FeMnK@H-S-1 core-shell like nanoreactors with different porous shells. (d) HF values of catalysts treated with different solution. (e) The relationship of HF value with light olefins selectivity. Reprinted with permission from Ref. [28]. Copyright 2021, Elsevier Ltd.
Fig. 8. (a) Schematic illustration of step-by-step synthesis process of MO@ZO materials. (b) Cross-sectional high resolution transmission electron microscopy (HRTEM) images of catalyst at the heating temperature of 400 °C and the enlarged HRTEM images and corresponding Fourier transform patterns of the enlarged three areas (l?n). (c) Catalytic performance of various catalysts in syngas conversion. (d) Illustration of reaction pathway of MO@ZO. Reprinted with permission from Ref. [82]. Copyright 2022, Springer Nature.
Fig. 9. (a) Schematic diagram of synthesis of CeO2-Pt@mSiO2. (b) Possible tandem catalytic mechanism of alkene hydroformylation. (c) Catalytic performance of CeO2-Pt@mSiO2, CeO2/Pt and Pt/mSiO2 at 150 °C respectively. (d) Catalytic performance comparison of CeO2-Pt@mSiO2 and single-step hydroformylation at different temperature. Reprinted with permission from Ref. [16]. Copyright 2016, American Chemical Society. (e) Synthesis of CeO2-Pt@mSiO2-Co tandem catalyst. (f) Catalytic performance of different catalysts as well as product distribution and CO2 conversion on various reaction conditions. Reprinted with permission from Ref. [17]. Copyright 2017, American Chemical Society.
Fig. 10. (a) Three kinds of tandem catalysts models. (b) Infrared spectra of adsorbed linear CO on catalysts treated with various temperature and in situ H2 DRIFTS spectra of different catalysts at same temperature. (c?e) Specific catalytic performance of model 1?3 in (a), respectively. (f) Comparison of catalytic performance over (Pt/Al2O3)@In2O3 with other state-of-art catalysts. Reprinted with permission from Ref. [22]. Copyright 2021, American Association for the Advancement of Science.
Fig. 11. (a) The tandem deacetalization-Knoevenagel reaction. (b) Scheme image of the synthetic process of the all-organic nanoreactor. (c) The specific tandem reaction steps in the core-shell catalyst. (d) Reaction kinetics plot. Reprinted with permission from Ref. [86]. Copyright 2020, Wiley-VCH GmbH.
Fig. 12. (a) The selectivity of the as-prepared catalysts. (b) Schematic diagram of the yolk-shell nanoreactors of Pd1@Fe1. (c) Diagram of ring-opening amination reaction scheme for epoxides. (d) The specific productivity and selectivity for a continuous recycled testing. Reprinted with permission n from Ref. [92]. Copyright 2021, Nature. (e) Synthesis procedure of Zn-N-C/Au@mSiO2. (f) Conversion and yield changes over time. (g) Reaction mechanism of styrene to styrene carbonate. (h) Catalytic performance comparison for styrene to styrene carbonate. Reprinted with permission from Ref. [18]. Copyright 2021, The Royal Society of Chemistry.
Fig. 13. (a) Schematic diagram of the preparation process of ZnCoSiOx with different structure. (b) Catalytic performance of ZnCoSiOx in CO2 hydrogenation at 390 °C. (c) The proposed CO2 conversion process over ZnCoSiOx. Reprinted with permission from Ref. [95]. Copyright 2021, Springer Nature Switzerland AG.
Fig. 14. (a) Comparison of catalytic activity with previous works. (b) Reaction scheme for Olefin pathway over the FeMn@MZ5. (c) TG curves of the catalysts after the stability test. (d) Rate of coke deposition on the catalyst during the stability test. Reprinted with permission from Ref. [27]. Copyright 2021, American Chemical Society. (e) Catalytic performance of different catalysts for CO2 hydrogenation. (f) TEM image of fresh Co@hsZSM5@Pt (5 wt%). (g) TEM image of spent Co@hsZSM5@Pt (5 wt%). (h) EDS elemental mapping of fresh Pt-Co/comZSM5. (i) EDS elemental mapping of spent Pt-Co/comZSM5. Reprinted with permission from Ref. [102]. Copyright 2020, The Royal Society of Chemistry.
Fig. 15. (a) FE of various reduction products of Ag@Cu2O-6.4 NCs at di?erent potentials measured in a flow-cell with 1 mol L?1 KOH electrolyte. (b) Operando Cu K-edge XANES spectra of Ag@Cu2O-6.4 NCs at different potential. (c) Linear scaling relations between *CO coverage and formation energy of *CHO and *COCOH on Cu (111) surface. (d) The reduction products and CO flux in Ag@Cu2O-x NCs with different radius of the Cu2O shell. Reprinted with permission from Ref. [104]. Copyright 2021 Wiley-VCH GmbH. (e) The faradaic efficiencies of reduction products from the CO2RR reaction of Au@Cu2O-MC. (f) Au@Cu2O Schematic diagram of intracavity tandem catalytic mechanism. Reprinted with permission from Ref. [106]. Copyright 2020, The Royal Society of Chemistry. (g) The catalytic activity of different catalysts. (h) The rate at which N2H4·H2O breaks down to H2. Reprinted with permission from Ref. [25]. Copyright 2016, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. (i) The catalytic performance from the DKR of 1-phenylethylamine catalyzed by the Pd/NH2-MSN@BTME@enzyme/L-mesosilica and other catalysts. Reprinted with permission from Ref. [111]. Copyright 2017, The Royal Society of Chemistry.
|
[1] | Abhishek R. Varma, Bhushan S. Shrirame, Sunil K. Maity, Deepti Agrawal, Naglis Malys, Leonardo Rios-Solis, Gopalakrishnan Kumar, Vinod Kumar. C4二醇的发酵生产及其化学催化升级为高价值化学品的研究进展[J]. 催化学报, 2023, 52(9): 99-126. |
[2] | 刘润泽, 邵雪, 王畅, 戴卫理, 关乃佳. 甲醇制烃反应机理: 基础及应用研究[J]. 催化学报, 2023, 47(4): 67-92. |
[3] | 焦龙, 江海龙. 金属有机框架材料在催化领域的研究现状与展望[J]. 催化学报, 2023, 45(2): 1-5. |
[4] | 聂超, 龙向东, 刘琪, 王嘉, 展飞, 赵泽伦, 李炯, 席永杰, 李福伟. 原子分散Ru-P-Ru催化剂的制备及其在多类加氢中的高效应用[J]. 催化学报, 2023, 45(2): 107-119. |
[5] | 孙万军, 朱佳玉, 张美玉, 孟翔宇, 陈梦雪, 冯钰, 陈新龙, 丁勇. 钴基非均相催化剂在光催化水分解、二氧化碳还原和氮还原的研究进展与展望[J]. 催化学报, 2022, 43(9): 2273-2300. |
[6] | 翁雪霏, 杨双莉, 丁丁, 陈明树, 万惠霖. 宽波段原位红外吸收光谱在Pd/SiO2和Cu/SiO2催化剂上CO氧化中的应用[J]. 催化学报, 2022, 43(8): 2001-2009. |
[7] | 蒋亚飞, 刘锦程, 许聪俏, 李隽, 肖海. 打破合成氨反应中线性标度关系的碗型活性位点设计: 来自LaRuSi及其同构电子化物的启示[J]. 催化学报, 2022, 43(8): 2183-2192. |
[8] | 刘聪, 梅轩豪, 韩策, 宫雪, 宋平, 徐维林. 二氧化碳电还原催化剂调控策略与结构效应[J]. 催化学报, 2022, 43(7): 1618-1633. |
[9] | 王春鹏, 王哲, 毛善俊, 陈志荣, 王勇. 多相催化剂活性位点的配位环境及其对催化性能的影响[J]. 催化学报, 2022, 43(4): 928-955. |
[10] | 陈辉, 张博, 梁宵, 邹晓新. 轻元素调控的贵金属催化剂在能源相关领域的应用[J]. 催化学报, 2022, 43(3): 611-635. |
[11] | 张涛, 韩晓驰, Nhat Truong Nguyen, 杨磊, 周雪梅. 二氧化钛基光催化剂用于二氧化碳还原和太阳燃料的生产[J]. 催化学报, 2022, 43(10): 2500-2529. |
[12] | 雷琦锋, 王畅, 戴卫理, 武光军, 关乃佳, Michael Hunger, 李兰冬. 双功能TiSn-Beta分子筛限域的串联Lewis酸催化烯烃生成1,2-二醇[J]. 催化学报, 2021, 42(7): 1176-1184. |
[13] | 刘晓玲, 陈磊, 许红中, 蒋师, 周瑜, 王军. 直接合成Beta沸石封装Pt纳米粒子用于5-羟甲基糠醛合成2,5-呋喃二甲酸[J]. 催化学报, 2021, 42(6): 994-1003. |
[14] | 刘晓艳, 蓝国钧, 李振清, 钱丽华, 刘健, 李瑛. 用于生物质水相加氢多相负载型金属催化剂的稳定策略[J]. 催化学报, 2021, 42(5): 694-709. |
[15] | 戴志锋, 唐永铨, 张飞, 熊玉兵, 王赛, 孙琦, 王亮, 孟祥举, 赵雷洪, 肖丰收. 双中心多孔聚合物作为多相催化剂实现CO2在温和条件下高效转化[J]. 催化学报, 2021, 42(4): 618-626. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||