催化学报 ›› 2023, Vol. 52: 99-126.DOI: 10.1016/S1872-2067(23)64512-7
Abhishek R. Varmaa, Bhushan S. Shriramea, Sunil K. Maitya,*(), Deepti Agrawalb, Naglis Malysc, Leonardo Rios-Solisd, Gopalakrishnan Kumare, Vinod Kumarf,g,h,*(
)
收稿日期:
2023-07-17
接受日期:
2023-08-28
出版日期:
2023-09-18
发布日期:
2023-09-25
通讯作者:
*电子信箱: sunil_maity@che.iith.ac.in (S. K. Maity),Vinod.Kumar@cranfield.ac.uk (V. Kumar).
Abhishek R. Varmaa, Bhushan S. Shriramea, Sunil K. Maitya,*(), Deepti Agrawalb, Naglis Malysc, Leonardo Rios-Solisd, Gopalakrishnan Kumare, Vinod Kumarf,g,h,*(
)
Received:
2023-07-17
Accepted:
2023-08-28
Online:
2023-09-18
Published:
2023-09-25
Contact:
*E-mail: About author:
Dr. Sunil K. Maity is currently working as a Professor in the Department of Chemical Engineering, Indian Institute of Technology Hyderabad, India. He also served about two and half years as an Assistant Professor at the National Institute of Technology Rourkela, India, from 2007 to 2010. Prof. Maity received his B.Tech. degree in Chemical Engineering from University College of Science and Technology, University of Calcutta, India in 1999, followed by M.Tech. degree in 2002 and Ph.D. in 2007 from the Department of Chemical Engineering, Indian Institute of Technology Kharagpur. His research interests mainly focus on biorefinery for biofuels and renewable chemicals, heterogeneous catalysis and chemical reaction engineering, and techno-economic analysis using Aspen Plus and pinch technology. He published three edited books, ten book chapters, forty peer-reviewed journal articles, and has organized several national and international conferences.摘要:
化石资源的过度消耗导致能源和环境污染问题, 迫切需要科研人员开发出可持续、低能耗、绿色低碳的化学品生产技术. 生物技术利用“细胞工厂”, 以生物质等可再生资料为原料生产基础化学品, 是以化石资源为原料的合成方法的潜在替代方案. 然而, 利用生物技术生产全系列石化产品存在其自身的局限性, 因此, 人们对集成/混合方法越来越感兴趣, 该方法先采用生物技术对生物质升级, 再通过化学催化的途径使其转化为含有活性官能团的产物.
本文主要综述了C4二醇的三种重要结构异构体, 2,3-、1,3-和1,4-丁二醇的生物生产方法, 目前这些异构体主要通过石化路线生产, 全球市场需求不断增长. 首先, 从集成方法的原理出发, 总结了上述二醇的生物法生产现状, 包括底物、微生物、发酵技术和代谢/途径工程和发酵技术. 然后, 全面总结了C4二醇催化升级以生产系列产物的最新研究进展, 讨论了催化剂中不同活性位点对催化活性、产物选择性和催化剂稳定性的影响. 此外, 给出了集成方法的具体实例, 解决开发C4二醇生物生产工艺的相关挑战, 强调通过直接催化转化方法对其升级所存在的困难. 最后, 对C4二醇的发酵生产及其化学催化升级为高价值化学品的相关研究进行总结, 对未来发展进行展望, 并指出将生物催化和化学催化方法相结合对于拓宽生物质升级转化产物范围具有重要作用.
Abhishek R. Varma, Bhushan S. Shrirame, Sunil K. Maity, Deepti Agrawal, Naglis Malys, Leonardo Rios-Solis, Gopalakrishnan Kumar, Vinod Kumar. C4二醇的发酵生产及其化学催化升级为高价值化学品的研究进展[J]. 催化学报, 2023, 52: 99-126.
Abhishek R. Varma, Bhushan S. Shrirame, Sunil K. Maity, Deepti Agrawal, Naglis Malys, Leonardo Rios-Solis, Gopalakrishnan Kumar, Vinod Kumar. Recent advances in fermentative production of C4 diols and their chemo-catalytic upgrading to high-value chemicals[J]. Chinese Journal of Catalysis, 2023, 52: 99-126.
Butanediol | Structure | Molar mass (g/mol) | Boiling point (°C) | Melting point (°C) | Density (g/cm3) | Vapor pressure (Pa) | Heat capacity (J/(mol·°C )) |
---|---|---|---|---|---|---|---|
1,4-BDO | ![]() | 90.12 | 230 | 20.1 | 1.02 | 1.4@25 °C | 202.34@25 °C |
2,3-BDO | ![]() | 90.12 | 177 | 19 | 0.967 | 23@20 °C | 227.2@27 °C |
1,3-BDO | ![]() | 90.12 | 207 | ‒77 | 1.01 | 8@20 °C | 227.2@27 °C |
1,2-BDO | ![]() | 90.12 | 192 | ‒42 | 1.002 | 2.7@20 °C | 240.4@25 °C |
Table 1 Properties of butanediols.
Butanediol | Structure | Molar mass (g/mol) | Boiling point (°C) | Melting point (°C) | Density (g/cm3) | Vapor pressure (Pa) | Heat capacity (J/(mol·°C )) |
---|---|---|---|---|---|---|---|
1,4-BDO | ![]() | 90.12 | 230 | 20.1 | 1.02 | 1.4@25 °C | 202.34@25 °C |
2,3-BDO | ![]() | 90.12 | 177 | 19 | 0.967 | 23@20 °C | 227.2@27 °C |
1,3-BDO | ![]() | 90.12 | 207 | ‒77 | 1.01 | 8@20 °C | 227.2@27 °C |
1,2-BDO | ![]() | 90.12 | 192 | ‒42 | 1.002 | 2.7@20 °C | 240.4@25 °C |
Microorganism | Genotype | Substrate | Fermentation mode | Titer (g/L) | Yield (g/g) | Productivity (g/(L·h)) | Ref. |
---|---|---|---|---|---|---|---|
Klebsiella pneumoniae | wild type | glucose | fed-batch | 150.0 | 0.48 | 3.95 | [ |
Serratia marcescens | ΔswrW | sucrose | fed-batch | 152.0 | 0.46 | 2.67 | [ |
Klebsiella oxytoca | ΔaldA | glucose | fed-batch | 130.0 | 0.48 | 1.63 | [ |
Klebsiella pneumoniae | wild type | glycerol | fed-batch | 70.0 | 0.39 | 0.47 | [ |
Paenibacillus polymyxa | wild type | glucose | fed-batch | 111.0 | — | 2.06 | [ |
Bacillus licheniformis | wild type | glucose | fed-batch | 144.7 | 0.40 | 1.14 | [ |
Klebsiella pneumoniae | ↑budA ↑budB | glucose | fed-batch | 101.5 | 0.34 | 2.54 | [ |
Klebsiella oxytoca | ΔldhA | glucose | fed-batch | 115.0 | 0.41 | 2.27 | [ |
Saccharomyces cerevisiae | Δpdc1Δpdc5, point mutation in mth1, ↑alsS↑alsD↑bdh1 | glucose | fed-batch | 96.2 | 0.28 | 0.39 | [ |
Bacillus amyloliquefaciens | ↑bdh ↑gapA | glucose | fed-batch | 132.9 | 0.45 | 2.95 | [ |
Klebsiella pneumoniae | ΔadhEΔldhA | glucose | fed-batch | 116 | 0.49 | 2.23 | [ |
Klebsiella oxytoca | ↑budC | glucose | fed-batch | 142.5 | 0.42 | 1.47 | [ |
Enterobacter cloacae | mutant strain | glucose | fed-batch | 110.9 | 0.39 | 1.98 | [ |
Bacillus licheniformis | ΔbudC | glucose | fed-batch | 123.7 | — | 2.95 | [ |
Klebsiella oxytoca | ΔadhEΔackA-ptaΔldhAME | glucose | fed-batch | 117.4 | 0.49 | 1.20 | [ |
Enterobacter cloacae | ΔldhΔptsGΔbdhΔfrdA↑bdh↑galP | glucose/xylose | fed-batch | 152.0 | 0.49 | 3.50 | [ |
Klebsiella oxytoca | ΔldhAΔpflBΔbudC↑bdh | glucose | fed-batch | 106.7 | 0.40 | 3.10 | [ |
Bacillus subtilis | ↑alsS ↑alsD ↑budC ↑udhAΔuppΔacoAΔbdhAΔptaΔldh | glucose | fed-batch | 103.7 | 0.49 | 0.46 | [ |
Saccharomyces cerevisiae | ↑alsS↑alsD↑BDH1↑PDC1↑noxEΔPDC | glucose | fed-batch | 154.3 | 0.40 | 1.98 | [ |
Klebsiella sp. | random mutant | sucrose | fed-batch | 119.4 | 0.40 | 1.84 | [ |
Saccharomyces cerevisiae | ↑alsS ↑alsD ↑BDH1 ↑noxEΔadh1ΔPDC | glucose | fed-batch | 178.0 | 0.34 | 1.88 | [ |
Enterobacterludwigii | Wild type | VHP cane sugar | fed-batch | 111.0 | 0.40 | 1.11 | [ |
Bacillus licheniformis | ΔbudC | glucose | fed-batch | 123.0 | 0.41 | 1.71 | [ |
Enterobacter ludwigii | random mutant | xylose | fed-batch | 71.1 | 0.40 | 0.94 | [ |
Enterobacter ludwigii | random mutant | glucose | fed-batch | 144.5 | 0.47 | 1.51 | [ |
Klebsiella oxytoca | wild type | molasses | repeated batch | 118.0 | 0.42 | 2.40 | [ |
Klebsiella pneumoniae | wild type | jerusalem artichoke | fed-batch/SSF | 84.0 | 0.29 | 2.10 | [ |
Enterobacter cloacae | wild type | cassava powder | fed-batch/SSF | 93.9 | — | 2.00 | [ |
Enterobacter aerogenes | ΔldhAΔscrR | sugarcane molasses | fed-batch | 98.7 | 0.37 | 2.74 | [ |
Bacillus licheniformis | wild type | inulin | fed-batch/SSF | 103.0 | — | 3.43 | [ |
Bacillus licheniformis | wild type | apple pomace | fed-batch | 113.0 | 0.49 | 0.69 | [ |
Klebsiella oxytoca | ΔpduCΔldhA | crude glycerol | fed-batch | 131.5 | 0.44 | 0.84 | [ |
Enterobacter cloacae | mutant strain | sugarcane molasses | fed-batch | 90.8 | 0.36 | 1.66 | [ |
Enterobacter cloacae | ΔldhΔptsGΔbdhΔfrdA↑bdh↑galP | corn stover | fed-batch | 119.4 | 0.48 | 2.30 | [ |
Enterobacter cloacae | Wild type | corncob-derived xylose | fed-batch | 81.4 | 0.39 | 0.72 | [ |
Saccharomyces cerevisiae | ↑alsS ↑alsD ↑BDH1 ↑noxEΔadh1ΔPDC | cassava | fed-batch | 132.0 | 0.32 | 1.92 | [ |
Enterobacter ludwigii | random mutant | sugarcane bagasse | fed-batch | 63.5 | 0.36 | 0.84 | [ |
Enterobacter ludwigii | random mutant | brewer’s spent grains | fed-batch | 118.5 | 0.43 | 1.65 | [ |
Enterobacter ludwigii | random mutant | bread waste | fed-batch | 138.8 | 0.48 | 1.45 | [ |
ME: metabolic evolution |
Table 2 Summary of high-level production of 2,3-BDO from pure and crude renewable carbon sources by wild type and engineered strains.
Microorganism | Genotype | Substrate | Fermentation mode | Titer (g/L) | Yield (g/g) | Productivity (g/(L·h)) | Ref. |
---|---|---|---|---|---|---|---|
Klebsiella pneumoniae | wild type | glucose | fed-batch | 150.0 | 0.48 | 3.95 | [ |
Serratia marcescens | ΔswrW | sucrose | fed-batch | 152.0 | 0.46 | 2.67 | [ |
Klebsiella oxytoca | ΔaldA | glucose | fed-batch | 130.0 | 0.48 | 1.63 | [ |
Klebsiella pneumoniae | wild type | glycerol | fed-batch | 70.0 | 0.39 | 0.47 | [ |
Paenibacillus polymyxa | wild type | glucose | fed-batch | 111.0 | — | 2.06 | [ |
Bacillus licheniformis | wild type | glucose | fed-batch | 144.7 | 0.40 | 1.14 | [ |
Klebsiella pneumoniae | ↑budA ↑budB | glucose | fed-batch | 101.5 | 0.34 | 2.54 | [ |
Klebsiella oxytoca | ΔldhA | glucose | fed-batch | 115.0 | 0.41 | 2.27 | [ |
Saccharomyces cerevisiae | Δpdc1Δpdc5, point mutation in mth1, ↑alsS↑alsD↑bdh1 | glucose | fed-batch | 96.2 | 0.28 | 0.39 | [ |
Bacillus amyloliquefaciens | ↑bdh ↑gapA | glucose | fed-batch | 132.9 | 0.45 | 2.95 | [ |
Klebsiella pneumoniae | ΔadhEΔldhA | glucose | fed-batch | 116 | 0.49 | 2.23 | [ |
Klebsiella oxytoca | ↑budC | glucose | fed-batch | 142.5 | 0.42 | 1.47 | [ |
Enterobacter cloacae | mutant strain | glucose | fed-batch | 110.9 | 0.39 | 1.98 | [ |
Bacillus licheniformis | ΔbudC | glucose | fed-batch | 123.7 | — | 2.95 | [ |
Klebsiella oxytoca | ΔadhEΔackA-ptaΔldhAME | glucose | fed-batch | 117.4 | 0.49 | 1.20 | [ |
Enterobacter cloacae | ΔldhΔptsGΔbdhΔfrdA↑bdh↑galP | glucose/xylose | fed-batch | 152.0 | 0.49 | 3.50 | [ |
Klebsiella oxytoca | ΔldhAΔpflBΔbudC↑bdh | glucose | fed-batch | 106.7 | 0.40 | 3.10 | [ |
Bacillus subtilis | ↑alsS ↑alsD ↑budC ↑udhAΔuppΔacoAΔbdhAΔptaΔldh | glucose | fed-batch | 103.7 | 0.49 | 0.46 | [ |
Saccharomyces cerevisiae | ↑alsS↑alsD↑BDH1↑PDC1↑noxEΔPDC | glucose | fed-batch | 154.3 | 0.40 | 1.98 | [ |
Klebsiella sp. | random mutant | sucrose | fed-batch | 119.4 | 0.40 | 1.84 | [ |
Saccharomyces cerevisiae | ↑alsS ↑alsD ↑BDH1 ↑noxEΔadh1ΔPDC | glucose | fed-batch | 178.0 | 0.34 | 1.88 | [ |
Enterobacterludwigii | Wild type | VHP cane sugar | fed-batch | 111.0 | 0.40 | 1.11 | [ |
Bacillus licheniformis | ΔbudC | glucose | fed-batch | 123.0 | 0.41 | 1.71 | [ |
Enterobacter ludwigii | random mutant | xylose | fed-batch | 71.1 | 0.40 | 0.94 | [ |
Enterobacter ludwigii | random mutant | glucose | fed-batch | 144.5 | 0.47 | 1.51 | [ |
Klebsiella oxytoca | wild type | molasses | repeated batch | 118.0 | 0.42 | 2.40 | [ |
Klebsiella pneumoniae | wild type | jerusalem artichoke | fed-batch/SSF | 84.0 | 0.29 | 2.10 | [ |
Enterobacter cloacae | wild type | cassava powder | fed-batch/SSF | 93.9 | — | 2.00 | [ |
Enterobacter aerogenes | ΔldhAΔscrR | sugarcane molasses | fed-batch | 98.7 | 0.37 | 2.74 | [ |
Bacillus licheniformis | wild type | inulin | fed-batch/SSF | 103.0 | — | 3.43 | [ |
Bacillus licheniformis | wild type | apple pomace | fed-batch | 113.0 | 0.49 | 0.69 | [ |
Klebsiella oxytoca | ΔpduCΔldhA | crude glycerol | fed-batch | 131.5 | 0.44 | 0.84 | [ |
Enterobacter cloacae | mutant strain | sugarcane molasses | fed-batch | 90.8 | 0.36 | 1.66 | [ |
Enterobacter cloacae | ΔldhΔptsGΔbdhΔfrdA↑bdh↑galP | corn stover | fed-batch | 119.4 | 0.48 | 2.30 | [ |
Enterobacter cloacae | Wild type | corncob-derived xylose | fed-batch | 81.4 | 0.39 | 0.72 | [ |
Saccharomyces cerevisiae | ↑alsS ↑alsD ↑BDH1 ↑noxEΔadh1ΔPDC | cassava | fed-batch | 132.0 | 0.32 | 1.92 | [ |
Enterobacter ludwigii | random mutant | sugarcane bagasse | fed-batch | 63.5 | 0.36 | 0.84 | [ |
Enterobacter ludwigii | random mutant | brewer’s spent grains | fed-batch | 118.5 | 0.43 | 1.65 | [ |
Enterobacter ludwigii | random mutant | bread waste | fed-batch | 138.8 | 0.48 | 1.45 | [ |
ME: metabolic evolution |
Microorganism | Genotype | Substrate | Fermentation mode | Titer (g/L) | Yield (g/g) | Productivity (g/(L·h)) | Ref. |
---|---|---|---|---|---|---|---|
E. coli | ↑phaA↑phaB↑bld | glucose | fed-batch | 9.05 | — | 0.08 | [ |
E. coli | ↑phaA↑phaB↑bld | glucose | fed-batch | 15.7 | 0.19 | 0.16 | [ |
E. coli | ↑AKR↑DERA ↑PDC ΔadhEΔldhAΔpflBδyqhDΔeutGΔadhPΔyjgBΔilvBΔpoxBΔpta | glucose | fed-batch | 2.4 | 0.058 | — | [ |
E. coli | ↑bldL273T↑yqhD↑phaA↑phaB↑pntA↑pntB↑sfp↑yqhD | glucose | fed-batch | 13.4 | 0.29 | 0.42 | [ |
E. coli | ↑thl↑hbd↑tesB ↑car↓fabD↓accAΔeddΔpfkB | glucose | fed-batch | 22.7 | 0.40 | 0.32 | [ |
E. coli | ↑phaA↑phaB↑bld ↑yqhDΔadhEΔldhAΔpoxBΔpta-ackAΔpyciA | glucose | fed-batch | 23.1 | 0.25 | 0.64 | [ |
C. necator | ↑bld↑yqhD↑dra↑PDC↑phaABΔphaC1 | CO2 | fed-batch | 3.0 | 0.20 | 0.025 | [ |
Cell free in vitro synthesis | ↑ADH ↑NOX↑DERA↑AKR↑FDH | ethanol | batch | 7.7 | 0.83* | 0.16 | [ |
Table 3 Summary of non-native 1,3-BDO production by microbial cell factories.
Microorganism | Genotype | Substrate | Fermentation mode | Titer (g/L) | Yield (g/g) | Productivity (g/(L·h)) | Ref. |
---|---|---|---|---|---|---|---|
E. coli | ↑phaA↑phaB↑bld | glucose | fed-batch | 9.05 | — | 0.08 | [ |
E. coli | ↑phaA↑phaB↑bld | glucose | fed-batch | 15.7 | 0.19 | 0.16 | [ |
E. coli | ↑AKR↑DERA ↑PDC ΔadhEΔldhAΔpflBδyqhDΔeutGΔadhPΔyjgBΔilvBΔpoxBΔpta | glucose | fed-batch | 2.4 | 0.058 | — | [ |
E. coli | ↑bldL273T↑yqhD↑phaA↑phaB↑pntA↑pntB↑sfp↑yqhD | glucose | fed-batch | 13.4 | 0.29 | 0.42 | [ |
E. coli | ↑thl↑hbd↑tesB ↑car↓fabD↓accAΔeddΔpfkB | glucose | fed-batch | 22.7 | 0.40 | 0.32 | [ |
E. coli | ↑phaA↑phaB↑bld ↑yqhDΔadhEΔldhAΔpoxBΔpta-ackAΔpyciA | glucose | fed-batch | 23.1 | 0.25 | 0.64 | [ |
C. necator | ↑bld↑yqhD↑dra↑PDC↑phaABΔphaC1 | CO2 | fed-batch | 3.0 | 0.20 | 0.025 | [ |
Cell free in vitro synthesis | ↑ADH ↑NOX↑DERA↑AKR↑FDH | ethanol | batch | 7.7 | 0.83* | 0.16 | [ |
Microorganism | Genotype | Substrate | Fermetation mode | Titer (g/L) | Yield (g/g) | Productivity (g/(L·h)) | Ref. |
---|---|---|---|---|---|---|---|
E. coli | ΔadhEΔpflBΔldhAΔmdhΔarcAΔlpdA Kp.lpdD354K gltAR163L↑sucCD↑sucD↑4hbd/↑sucA↑adh(025B) ↑Cat2 | glucose | fed-batch | 18.0 | 0.37 | 0.15 | [ |
E. coli | not available | glucose | fed-batch | 29.0 | 0.25 | 0.60 | [ |
E. coli | not available | glucose | fed-batch | 99.0 | 0.35 | 2.10 | [ |
E. coli | not available | glucose | fed-batch | >125.0 | >0.40 | >3.50 | [ |
E. coli | ΔxylAΔyjhHΔyagE↑xdh↑xylX↑mdlC | xylose | batch | 0.44 | 0.042 | — | [ |
E. coli | ΔxylAΔyagEΔyjhH↑xylB↑xylC↑xylD↑xylX↑kivd(V461I)↑yqhD | xylose + glucose | fed-batch | 9.2 | 0.22 | 0.26 | [ |
E. coli | ΔxylAΔyagEΔyjhH↑xylB↑xylC↑xylD↑xylX↑kivd(V461I)↑yqhD↑atoB↑mvaS↑mvaE | xylose + glucose | fed-batch | 12.0 | 0.26 | 0.40 | [ |
E. coli | ↑araC↑araD↑araA↑araB↑kivd↑yqhD | arabinose + glucose | fed-batch | 15.6 | 0.22 | 0.22 | [ |
E. coli | ΔgarLΔuxaC↑udh↑garD↑ycbC↑kivd↑yqhD | galactouronic acid + glucose | fed-batch | 16.5 | 0.33 | 0.18 | [ |
E. coli | ΔxylAΔyagEΔyjhH↑xylBC↑xylD↑kivD↑yqhD↑ppdA-C-B (S301AQ336AV300M) | xylose | batch | 0.21 | — | — | [ |
E. coli* | ↑gldABC(S302AQ337A) | erythritol | batch | 16.1 | 0.009 | 0.81 | [ |
E. coli* | ↑pddABC(S301AQ336A) | erythritol | batch | 11.9 | 0.006 | 0.6 | [ |
E. coli* | ↑gldABC(S302AQ337A) | erythritol | batch | 34.5 | — | — | [ |
Table 4 Overview of 1,4-BDO production from different carbon sources by engineered microorganisms.
Microorganism | Genotype | Substrate | Fermetation mode | Titer (g/L) | Yield (g/g) | Productivity (g/(L·h)) | Ref. |
---|---|---|---|---|---|---|---|
E. coli | ΔadhEΔpflBΔldhAΔmdhΔarcAΔlpdA Kp.lpdD354K gltAR163L↑sucCD↑sucD↑4hbd/↑sucA↑adh(025B) ↑Cat2 | glucose | fed-batch | 18.0 | 0.37 | 0.15 | [ |
E. coli | not available | glucose | fed-batch | 29.0 | 0.25 | 0.60 | [ |
E. coli | not available | glucose | fed-batch | 99.0 | 0.35 | 2.10 | [ |
E. coli | not available | glucose | fed-batch | >125.0 | >0.40 | >3.50 | [ |
E. coli | ΔxylAΔyjhHΔyagE↑xdh↑xylX↑mdlC | xylose | batch | 0.44 | 0.042 | — | [ |
E. coli | ΔxylAΔyagEΔyjhH↑xylB↑xylC↑xylD↑xylX↑kivd(V461I)↑yqhD | xylose + glucose | fed-batch | 9.2 | 0.22 | 0.26 | [ |
E. coli | ΔxylAΔyagEΔyjhH↑xylB↑xylC↑xylD↑xylX↑kivd(V461I)↑yqhD↑atoB↑mvaS↑mvaE | xylose + glucose | fed-batch | 12.0 | 0.26 | 0.40 | [ |
E. coli | ↑araC↑araD↑araA↑araB↑kivd↑yqhD | arabinose + glucose | fed-batch | 15.6 | 0.22 | 0.22 | [ |
E. coli | ΔgarLΔuxaC↑udh↑garD↑ycbC↑kivd↑yqhD | galactouronic acid + glucose | fed-batch | 16.5 | 0.33 | 0.18 | [ |
E. coli | ΔxylAΔyagEΔyjhH↑xylBC↑xylD↑kivD↑yqhD↑ppdA-C-B (S301AQ336AV300M) | xylose | batch | 0.21 | — | — | [ |
E. coli* | ↑gldABC(S302AQ337A) | erythritol | batch | 16.1 | 0.009 | 0.81 | [ |
E. coli* | ↑pddABC(S301AQ336A) | erythritol | batch | 11.9 | 0.006 | 0.6 | [ |
E. coli* | ↑gldABC(S302AQ337A) | erythritol | batch | 34.5 | — | — | [ |
Fig. 2. Biochemical route for production of 1,4-BDO. The enzymes in red indicate the steps leading to carbon loss and by-product formation [18,23,49].
Catalyst | Acidity (μmol/g) | Reaction conditions | X (%) | Selectivity (%) | Ref. | |||||
---|---|---|---|---|---|---|---|---|---|---|
WHSV (h‒1) | T (°C) | N2 (mL/min) | MEK | BD | IBA | Others | ||||
AlP | 930 | 1.5 | 250 | — | 100 | 78.1 | 6.9 | 13.4 | C8-C12: 1.5 | [ |
ZrP | 840 | 400 | 250 | 11.2 | 65.8 | 3.5 | 23.5 | C8-C12: 4.1 | ||
γ-Al2O3 | 189 | 10 | 250 | 25 | 82.8 | 73.3 | 3.2 | 2.8 | C8-C12: 19.9 | [ |
H-BEA | 220 | 10 | 250 | 25 | 81.6 | 51.9 | 4.6 | 16.3 | C8-C12: 26.1, 3B2OL: 0.2 | |
deAl BEA1 | 43 | 75.9 | 50.5 | 4.2 | 17.4 | C8-C12: 27.6, 3B2OL: 0.2 | ||||
Zr-BEA | 270 | 80 | 25.7 | 2.3 | 7.2 | C8-C12: 63.1, 3B2OL: 0.1 | ||||
2%P/HZSM-5 | 1407 | 4 | 180 | 12.5 | ~100 | ~75 | — | ~15 | — | [ |
1%B/HZSM-5 | 963.8 | 4 | 180 | 12.5 | 97.2 | 68.4 | 1.2 | 16.8 | — | [ |
963.8 | 200 | 100 | 69.7 | 1.4 | 20.1 | — | ||||
a-CP2 | — | 17803 | 324.5 | 10 | ~100 | ~32 | ~20 | 5 | 3B2OL: ~16 | [ |
P/SiO2_9.84 | — | 0.04 | 180 | 10 | 100 | 49.2 | 21.4 | 11.8 | BT: 2.9 | [ |
Table 5 Summary of vapor phase dehydration of 2,3-BDO to MEK in a fixed-bed reactor.
Catalyst | Acidity (μmol/g) | Reaction conditions | X (%) | Selectivity (%) | Ref. | |||||
---|---|---|---|---|---|---|---|---|---|---|
WHSV (h‒1) | T (°C) | N2 (mL/min) | MEK | BD | IBA | Others | ||||
AlP | 930 | 1.5 | 250 | — | 100 | 78.1 | 6.9 | 13.4 | C8-C12: 1.5 | [ |
ZrP | 840 | 400 | 250 | 11.2 | 65.8 | 3.5 | 23.5 | C8-C12: 4.1 | ||
γ-Al2O3 | 189 | 10 | 250 | 25 | 82.8 | 73.3 | 3.2 | 2.8 | C8-C12: 19.9 | [ |
H-BEA | 220 | 10 | 250 | 25 | 81.6 | 51.9 | 4.6 | 16.3 | C8-C12: 26.1, 3B2OL: 0.2 | |
deAl BEA1 | 43 | 75.9 | 50.5 | 4.2 | 17.4 | C8-C12: 27.6, 3B2OL: 0.2 | ||||
Zr-BEA | 270 | 80 | 25.7 | 2.3 | 7.2 | C8-C12: 63.1, 3B2OL: 0.1 | ||||
2%P/HZSM-5 | 1407 | 4 | 180 | 12.5 | ~100 | ~75 | — | ~15 | — | [ |
1%B/HZSM-5 | 963.8 | 4 | 180 | 12.5 | 97.2 | 68.4 | 1.2 | 16.8 | — | [ |
963.8 | 200 | 100 | 69.7 | 1.4 | 20.1 | — | ||||
a-CP2 | — | 17803 | 324.5 | 10 | ~100 | ~32 | ~20 | 5 | 3B2OL: ~16 | [ |
P/SiO2_9.84 | — | 0.04 | 180 | 10 | 100 | 49.2 | 21.4 | 11.8 | BT: 2.9 | [ |
Catalyst | Acidity | Basicity | Reaction conditions | X (%) | Selectivity (%) | Ref. | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
WHSV (h‒1) | T (°C) | N2 (mL/min) | 3B2OL | MEK | IBA | Others | |||||
ZrO2 a | — | — | 1 | 325 | 45c | 62.5 | 48.6 | 16 | 1.3 | IBO: 7.8, acetoin: 14.9, others: 11.4 | [ |
ZrO2 b | — | — | 45 | 76.4 | 43.8 | 17.9 | 1.1 | IBO: 7.4, acetoin: 11.4, others: 18.4 | |||
CaO/ZrO2a | — | 211.3d | 1.06 | 350 | 80c | ~60 | ~70 | — | — | — | [ |
SrO/ZrO2a | — | — | ~60 | ~78 | — | — | |||||
BaO/ZrO2a | — | — | ~75 | ~75 | — | — | |||||
MgO/ZrO2a | — | — | ~40 | ~70 | — | — | |||||
2K_P/SiO2_20 | 30.2f | 21.14f | 1.2 | 400 | 100 | 64 | 78e | 9 | BTO: 10, acetoin + BDOn: 2 | [ | |
1.75 Cs_P/SiO2_20 | 24f | — | 46 | 50e | 10 | BTO: 28.6, acetoin + BDOn: 6 | |||||
1.82 Na_P/SiO2 - 17.2g | 18.15f | 3.63f | 1.11 | 180 | 100 | 94.6 | 53.7 | 17.4 | 1.5 | BD: 13.5, acetoin + BDOn: 1.9, BTO: 4.4 | [ |
3Sc0.5Yb1.5O3 | — | — | 1.06 | 411 | 45c | 99.2 | 35.3 | 14.9 | 6.3 | BD: 9.2, IBO: 5.9, others: 28.4 | [ |
Nd2O3 | — | — | 425 | 87.8 | 35.2 | 16.9 | 4.0 | BD: 0.0, IBO: 6.0, others: 37.9 |
Table 6 Summary of vapor phase dehydration of 2,3-BDO to 3B2OL in a fixed-bed reactor.
Catalyst | Acidity | Basicity | Reaction conditions | X (%) | Selectivity (%) | Ref. | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
WHSV (h‒1) | T (°C) | N2 (mL/min) | 3B2OL | MEK | IBA | Others | |||||
ZrO2 a | — | — | 1 | 325 | 45c | 62.5 | 48.6 | 16 | 1.3 | IBO: 7.8, acetoin: 14.9, others: 11.4 | [ |
ZrO2 b | — | — | 45 | 76.4 | 43.8 | 17.9 | 1.1 | IBO: 7.4, acetoin: 11.4, others: 18.4 | |||
CaO/ZrO2a | — | 211.3d | 1.06 | 350 | 80c | ~60 | ~70 | — | — | — | [ |
SrO/ZrO2a | — | — | ~60 | ~78 | — | — | |||||
BaO/ZrO2a | — | — | ~75 | ~75 | — | — | |||||
MgO/ZrO2a | — | — | ~40 | ~70 | — | — | |||||
2K_P/SiO2_20 | 30.2f | 21.14f | 1.2 | 400 | 100 | 64 | 78e | 9 | BTO: 10, acetoin + BDOn: 2 | [ | |
1.75 Cs_P/SiO2_20 | 24f | — | 46 | 50e | 10 | BTO: 28.6, acetoin + BDOn: 6 | |||||
1.82 Na_P/SiO2 - 17.2g | 18.15f | 3.63f | 1.11 | 180 | 100 | 94.6 | 53.7 | 17.4 | 1.5 | BD: 13.5, acetoin + BDOn: 1.9, BTO: 4.4 | [ |
3Sc0.5Yb1.5O3 | — | — | 1.06 | 411 | 45c | 99.2 | 35.3 | 14.9 | 6.3 | BD: 9.2, IBO: 5.9, others: 28.4 | [ |
Nd2O3 | — | — | 425 | 87.8 | 35.2 | 16.9 | 4.0 | BD: 0.0, IBO: 6.0, others: 37.9 |
Catalyst | Acidity (mmolNH3/g) | Basicity (mmolCO2/g) | Reaction conditions | X (%) | Selectivity (%) | Ref. | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
WHSV (h-1) | T (°C) | N2 (mL/min) | BD | MEK | IBA | Others | ||||||
Sc2O3 | — | — | 1.06 | 411 | 45a | 100 | 88.3 | 1.1 | 0.1 | 3B2OL: 0.8, IBO: 0.3, Others: 9.4 | [ | |
Lu2O3 | — | — | 425 | 99 | 23.2 | 23.1 | 1.8 | 3B2OL: 5.0, IBO: 0.8, Others: 46.1 | ||||
CeO2 | — | — | 425 | 100 | 0.5 | 39.2 | 2.4 | 3B2OL: 0.5, IBO: 0.6, Others: 56.8 | ||||
γ-Al2O3 | 0.24 | 0.059 | 11.8 | 450 | 100 | 100 | 28 | 56.9 | 3.3 | C3: 1.4, Others: 10.4 | [ | |
— | — | 395 | 350 | 75b | 13 | 60 | 11 | 13 | BTO: 15 | [ | ||
GdPO4 | — | — | 30c | 300 | 100 | 100 | ~50 | ~38 | ~12 | — | [ | |
NdPO4 | — | — | 100 | ~55 | ~35 | ~10 | — | |||||
LaPO4 | — | — | ~95 | ~50 | ~40 | ~9 | — | |||||
2K_P/SiO2_20 | 30.2f | 21.14f | 1.2 | 400 | 100 | 64 | 78d | 9e | BDOn + Actn: 2 BTO: 10 | [ | ||
1.5Cs_P/SiO2_20 | — | — | 83 | 50 | 12 | BDOn + Actn: 4 BTO: 7.3 | ||||||
10%CsH2PO4/CARiACT Q10 | — | — | 0.99 | 404 | 30 | >99.9 | 91.9 | 7.0 | 0.3 | 3B2OL: 0.2, Butenes: 0.4, Others: 0.2 | [ |
Table 7 Summary of vapor phase dehydration of 2,3-BDO to BD in fixed-bed reactor.
Catalyst | Acidity (mmolNH3/g) | Basicity (mmolCO2/g) | Reaction conditions | X (%) | Selectivity (%) | Ref. | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
WHSV (h-1) | T (°C) | N2 (mL/min) | BD | MEK | IBA | Others | ||||||
Sc2O3 | — | — | 1.06 | 411 | 45a | 100 | 88.3 | 1.1 | 0.1 | 3B2OL: 0.8, IBO: 0.3, Others: 9.4 | [ | |
Lu2O3 | — | — | 425 | 99 | 23.2 | 23.1 | 1.8 | 3B2OL: 5.0, IBO: 0.8, Others: 46.1 | ||||
CeO2 | — | — | 425 | 100 | 0.5 | 39.2 | 2.4 | 3B2OL: 0.5, IBO: 0.6, Others: 56.8 | ||||
γ-Al2O3 | 0.24 | 0.059 | 11.8 | 450 | 100 | 100 | 28 | 56.9 | 3.3 | C3: 1.4, Others: 10.4 | [ | |
— | — | 395 | 350 | 75b | 13 | 60 | 11 | 13 | BTO: 15 | [ | ||
GdPO4 | — | — | 30c | 300 | 100 | 100 | ~50 | ~38 | ~12 | — | [ | |
NdPO4 | — | — | 100 | ~55 | ~35 | ~10 | — | |||||
LaPO4 | — | — | ~95 | ~50 | ~40 | ~9 | — | |||||
2K_P/SiO2_20 | 30.2f | 21.14f | 1.2 | 400 | 100 | 64 | 78d | 9e | BDOn + Actn: 2 BTO: 10 | [ | ||
1.5Cs_P/SiO2_20 | — | — | 83 | 50 | 12 | BDOn + Actn: 4 BTO: 7.3 | ||||||
10%CsH2PO4/CARiACT Q10 | — | — | 0.99 | 404 | 30 | >99.9 | 91.9 | 7.0 | 0.3 | 3B2OL: 0.2, Butenes: 0.4, Others: 0.2 | [ |
Catalyst | Reaction conditions | X (%) | Selectivity (%) | Ref. | ||||
---|---|---|---|---|---|---|---|---|
WHSV (h‒1) | T (°C) | N2 (mL/min) | Acetoin | BDOn | Others | |||
20Cu-SiO2-10.5 | 60 | 280 | 40 | 76 | 94.5 | — | — | [ |
15Cu-Al2O3 | 2.5 | 220 | 100 | 98 | 49 | 9 | 42 | [ |
15Cu-ZrO2 | 97 | 75 | 15 | 10 | ||||
15Cu-Al2O3a | 2.5 | 220 | 100 | 89 | 39 | — | 69 | [ |
15Cu-ZrO2a | 2.5 | 220 | 100 | 85 | 89 | — | 11 | [ |
Zn-Cr oxide | 1.6b | 375 | — | 70 | ~50 | ~40 | — | [ |
Mg-V oxide | 1b | 350 | 1c | 89 | 26 | 62.3 | — |
Table 8 Summary of vapor phase dehydration of 2,3-BDO to acetoin in a fixed-bed reactor.
Catalyst | Reaction conditions | X (%) | Selectivity (%) | Ref. | ||||
---|---|---|---|---|---|---|---|---|
WHSV (h‒1) | T (°C) | N2 (mL/min) | Acetoin | BDOn | Others | |||
20Cu-SiO2-10.5 | 60 | 280 | 40 | 76 | 94.5 | — | — | [ |
15Cu-Al2O3 | 2.5 | 220 | 100 | 98 | 49 | 9 | 42 | [ |
15Cu-ZrO2 | 97 | 75 | 15 | 10 | ||||
15Cu-Al2O3a | 2.5 | 220 | 100 | 89 | 39 | — | 69 | [ |
15Cu-ZrO2a | 2.5 | 220 | 100 | 85 | 89 | — | 11 | [ |
Zn-Cr oxide | 1.6b | 375 | — | 70 | ~50 | ~40 | — | [ |
Mg-V oxide | 1b | 350 | 1c | 89 | 26 | 62.3 | — |
Catalyst | Reaction conditions | X (%) | Selectivity (%) | Ref. | |||||
---|---|---|---|---|---|---|---|---|---|
WHSV (h‒1) | T (°C) | H2 (mL/min) | Butylene | MEK | IBA | Others | |||
9.2%CuO/ZSM-5(280) | 3.0 | 250 | 5a | 100 | 62.84 | 24.3 | — | Olefines: 2.83 | [ |
5V/SiO2 | 1.5 | 500 | 40b | 100 | ~45 | ~30 | ~15 | C1‒C3: ~5, Others: 5 | [ |
Cu-PMFI | 1 | 250 | 94.8 kPa | 96 | 65 | 21 | — | Pentene: 6.6, Hexenes: 3.0, Others: 4.4 | [ |
Cu/Al-MCM-48 (100) | 3.0 | 250 | 5a | 100 | 72.6 | 10.1 | 0.4 | 16.9 | [ |
Cu/Al-SBA-15 (50) | 76.6 | 4.3 | 0.2 | 18.9 | |||||
Cu/meso-ZSM5 (280) | 40.3 | 1.7 | 58 |
Table 9 Summary of vapor phase conversion of 2,3-BDO to butylenes in a fixed-bed reactor.
Catalyst | Reaction conditions | X (%) | Selectivity (%) | Ref. | |||||
---|---|---|---|---|---|---|---|---|---|
WHSV (h‒1) | T (°C) | H2 (mL/min) | Butylene | MEK | IBA | Others | |||
9.2%CuO/ZSM-5(280) | 3.0 | 250 | 5a | 100 | 62.84 | 24.3 | — | Olefines: 2.83 | [ |
5V/SiO2 | 1.5 | 500 | 40b | 100 | ~45 | ~30 | ~15 | C1‒C3: ~5, Others: 5 | [ |
Cu-PMFI | 1 | 250 | 94.8 kPa | 96 | 65 | 21 | — | Pentene: 6.6, Hexenes: 3.0, Others: 4.4 | [ |
Cu/Al-MCM-48 (100) | 3.0 | 250 | 5a | 100 | 72.6 | 10.1 | 0.4 | 16.9 | [ |
Cu/Al-SBA-15 (50) | 76.6 | 4.3 | 0.2 | 18.9 | |||||
Cu/meso-ZSM5 (280) | 40.3 | 1.7 | 58 |
Catalyst | Acidity | Reaction condition | X (%) | Selectivity (%) | Ref. | ||||
---|---|---|---|---|---|---|---|---|---|
WHSV (h‒1) | T (°C) | N2 (mL/min) | THF | Others | |||||
Fixed-bed reactor | |||||||||
2.5 wt% Yb2O3/ZrO2 | 98.2 | 53.7 | 310 | 30 | — | ~80 | BTO: ~20 | [ | |
m-ZrO2 | 114.5 | — | ~78 | BTO: ~22 | |||||
Al2O3 | — | 2.4 | 325 | 26 | 100 | 97.4 | 3B1OL: 0.1, Others: 2.5 | [ | |
t-ZrO2 | — | 99.9 | 96.8 | 3B1OL: 0.7, GBL: 0.3, Others: 2.3 | |||||
Yb/SiO2 | — | 100 | 98.3 | 3B1OL: 0.2, GBL: 0.1, Others: 1.4 | |||||
Yb/t-ZrO2 | — | 77.1 | 50.7 | 3B1OL: 39.4, GBL: 0.8, Others: 9.1 | |||||
AMW | — | 1.0 | 375 | 30 | 97 | 99 | Others: 1 | [ | |
CaO-ZrO2a | 261 | 1.02 | 350 | 30 | 99.1 | 79.6 | 3B1OL: 18.1, GBL: 1.1, Others: 1.2 | [ | |
Batch reactor | |||||||||
Amberlyst-15 | — | 100 °C, 900 mL pure 1,4-BDO, 5 g catalyst, 1 h | 29.32, 45.7b | Selective c | 1% | [ | |||
Bu4PBr | — | 220 °C, 0.04 mL 1,4-BDO, 0.58 g of catalyst, 15 min | 100 | 72% | BD: 27, Butanal: 1 | [ | |||
HnbMoO6 | 1.9d | 140 °C, 3 mL water solvent, 900 mL 1,4-BDO, 0.05 g catalyst, 3 h | 19 | > 99 | < 1% | [ | |||
HZSM-5 | 200 | 50 | > 99 | < 1% | |||||
HZSM-5 (23) | — | 225 °C, 17 bar N2, 1,4-dioxane solvent, 0.7 mol 1,4-BDO/L, 10 g catalyst, 3 h | 93.8 | 99.6 | < 1% | [ | |||
H-Y (5.1) | — | 89.5 | 99.3 | ||||||
H-Mordenite (90) | — | 88.2 | 99.7 | ||||||
H-Beta (25) | — | 90.3 | 99.9 | ||||||
Ferrierite (20) | — | 80.2 | 99.5 | ||||||
4.6CuO/nano ZSM-5 | — | 170 °C, 2.5 g catalyst, 50 g 1,4-BDO, 3 h | 100 | > 99 | < 1% | [ |
Table 10 Summary of 1,4-BDO dehydration to THF.
Catalyst | Acidity | Reaction condition | X (%) | Selectivity (%) | Ref. | ||||
---|---|---|---|---|---|---|---|---|---|
WHSV (h‒1) | T (°C) | N2 (mL/min) | THF | Others | |||||
Fixed-bed reactor | |||||||||
2.5 wt% Yb2O3/ZrO2 | 98.2 | 53.7 | 310 | 30 | — | ~80 | BTO: ~20 | [ | |
m-ZrO2 | 114.5 | — | ~78 | BTO: ~22 | |||||
Al2O3 | — | 2.4 | 325 | 26 | 100 | 97.4 | 3B1OL: 0.1, Others: 2.5 | [ | |
t-ZrO2 | — | 99.9 | 96.8 | 3B1OL: 0.7, GBL: 0.3, Others: 2.3 | |||||
Yb/SiO2 | — | 100 | 98.3 | 3B1OL: 0.2, GBL: 0.1, Others: 1.4 | |||||
Yb/t-ZrO2 | — | 77.1 | 50.7 | 3B1OL: 39.4, GBL: 0.8, Others: 9.1 | |||||
AMW | — | 1.0 | 375 | 30 | 97 | 99 | Others: 1 | [ | |
CaO-ZrO2a | 261 | 1.02 | 350 | 30 | 99.1 | 79.6 | 3B1OL: 18.1, GBL: 1.1, Others: 1.2 | [ | |
Batch reactor | |||||||||
Amberlyst-15 | — | 100 °C, 900 mL pure 1,4-BDO, 5 g catalyst, 1 h | 29.32, 45.7b | Selective c | 1% | [ | |||
Bu4PBr | — | 220 °C, 0.04 mL 1,4-BDO, 0.58 g of catalyst, 15 min | 100 | 72% | BD: 27, Butanal: 1 | [ | |||
HnbMoO6 | 1.9d | 140 °C, 3 mL water solvent, 900 mL 1,4-BDO, 0.05 g catalyst, 3 h | 19 | > 99 | < 1% | [ | |||
HZSM-5 | 200 | 50 | > 99 | < 1% | |||||
HZSM-5 (23) | — | 225 °C, 17 bar N2, 1,4-dioxane solvent, 0.7 mol 1,4-BDO/L, 10 g catalyst, 3 h | 93.8 | 99.6 | < 1% | [ | |||
H-Y (5.1) | — | 89.5 | 99.3 | ||||||
H-Mordenite (90) | — | 88.2 | 99.7 | ||||||
H-Beta (25) | — | 90.3 | 99.9 | ||||||
Ferrierite (20) | — | 80.2 | 99.5 | ||||||
4.6CuO/nano ZSM-5 | — | 170 °C, 2.5 g catalyst, 50 g 1,4-BDO, 3 h | 100 | > 99 | < 1% | [ |
Catalyst | Acidity | Basicity | Reaction condition | X (%) | Selectivity (%) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
WHSV (h‒1) | T (°C) | N2 (mL/min) | 3B1OL | THF | GBL | Others | Ref. | |||||
ZrO2 | — | — | 6 | 350 | 73a | 86.4 | 48.0 | 44.9 | — | 7.1 | [ | |
1.5 Na-ZrO2 | 0 | 396 | 1.8 | 325 | 73a | 18.7 | 71.8 | 20.8 | 2.1 | 5.3 | [ | |
1.5 Li-ZrO2 | — | — | 19.1 | 63.5 | 27.9 | 1.0 | 7.5 | |||||
1.5 K-ZrO2 | — | — | 19.0 | 63.6 | 26.9 | 3.9 | 5.6 | |||||
1.5P/ZrO2 | 142 | 103 | 99.9 | 11.4 | 80.6 | 0.6 | 7.4 | |||||
CaO/ZrO2 | 295 | 496 | 3.3 | 350 | 30 | 92.6 | 65.4 | 11.3 | — | 23.3 | [ | |
SrO/ZrO2 | 127 | 211 | 84.1 | 45.1 | 33.7 | — | 21.2 | |||||
BaO/ZrO2 | 72 | 164 | 74.3 | 35.9 | 40.8 | — | 23.3 | |||||
12.5CaO/ZrO2 b | 251 | 486 | 1.02 | 350 | 30 | 94.6 | 68.9 | 9.8 | 6.3 | 15 | [ | |
CeO2 | — | — | 0.1662 | 400 | 73 a | 87.6 | 68.1 | 3.7 | — | BD: 1.7, others: 26.5 | [ | |
CeO2 | — | — | 0.073 | 425 | 29 a | 74 | 57.1 | 17.4 | 3.0 | 2B1OL: 7.5, others: 15 | [ | |
CeO2-N | — | — | 1.02c | 375 | — | 78.5 | 55.0 | 3.3 | 2.4 | 39.2 | [ | |
CeO2-AH | — | — | 91.7 | 51.4 | 4.2 | 3.1 | 41.3 | |||||
CeO2 | — | — | 94.5 | 63.2 | 3.0 | 0.9 | 32.9 | |||||
Yb/ZrO2 | 281d | 281d | 2.5 | 325 | 26 | 50.8 | 86.5 | 4.3 | 1.1 | 8.1 | [ | |
Yb2O3 | — | — | 22.17 | 375 | 30 | 33.9 | 87.6 | 1.3 | 0.9 | 2B1OL: 7.5 | [ | |
Sc2O3 | — | — | 20.6 | 70 | 22.8 | 1.7 | 2B1OL: 1.5 | |||||
Mg7Yb3 oxide | 116 | 260.5 | 1.08 | 350 | — | 90.4 | 78.6 | — | — | 21.7 | [ |
Table 11 Summary of vapor phase dehydration of 1,4-BDO to 3B1OL in a fixed-bed reactor.
Catalyst | Acidity | Basicity | Reaction condition | X (%) | Selectivity (%) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
WHSV (h‒1) | T (°C) | N2 (mL/min) | 3B1OL | THF | GBL | Others | Ref. | |||||
ZrO2 | — | — | 6 | 350 | 73a | 86.4 | 48.0 | 44.9 | — | 7.1 | [ | |
1.5 Na-ZrO2 | 0 | 396 | 1.8 | 325 | 73a | 18.7 | 71.8 | 20.8 | 2.1 | 5.3 | [ | |
1.5 Li-ZrO2 | — | — | 19.1 | 63.5 | 27.9 | 1.0 | 7.5 | |||||
1.5 K-ZrO2 | — | — | 19.0 | 63.6 | 26.9 | 3.9 | 5.6 | |||||
1.5P/ZrO2 | 142 | 103 | 99.9 | 11.4 | 80.6 | 0.6 | 7.4 | |||||
CaO/ZrO2 | 295 | 496 | 3.3 | 350 | 30 | 92.6 | 65.4 | 11.3 | — | 23.3 | [ | |
SrO/ZrO2 | 127 | 211 | 84.1 | 45.1 | 33.7 | — | 21.2 | |||||
BaO/ZrO2 | 72 | 164 | 74.3 | 35.9 | 40.8 | — | 23.3 | |||||
12.5CaO/ZrO2 b | 251 | 486 | 1.02 | 350 | 30 | 94.6 | 68.9 | 9.8 | 6.3 | 15 | [ | |
CeO2 | — | — | 0.1662 | 400 | 73 a | 87.6 | 68.1 | 3.7 | — | BD: 1.7, others: 26.5 | [ | |
CeO2 | — | — | 0.073 | 425 | 29 a | 74 | 57.1 | 17.4 | 3.0 | 2B1OL: 7.5, others: 15 | [ | |
CeO2-N | — | — | 1.02c | 375 | — | 78.5 | 55.0 | 3.3 | 2.4 | 39.2 | [ | |
CeO2-AH | — | — | 91.7 | 51.4 | 4.2 | 3.1 | 41.3 | |||||
CeO2 | — | — | 94.5 | 63.2 | 3.0 | 0.9 | 32.9 | |||||
Yb/ZrO2 | 281d | 281d | 2.5 | 325 | 26 | 50.8 | 86.5 | 4.3 | 1.1 | 8.1 | [ | |
Yb2O3 | — | — | 22.17 | 375 | 30 | 33.9 | 87.6 | 1.3 | 0.9 | 2B1OL: 7.5 | [ | |
Sc2O3 | — | — | 20.6 | 70 | 22.8 | 1.7 | 2B1OL: 1.5 | |||||
Mg7Yb3 oxide | 116 | 260.5 | 1.08 | 350 | — | 90.4 | 78.6 | — | — | 21.7 | [ |
Catalyst | Reaction conditions | X (%) | Selectivity (%) | Ref. | |||
---|---|---|---|---|---|---|---|
WHSV (h‒1) | T (°C) | N2 (mL/min) | BD | others | |||
CeO2 | 6 | 275 | 29a | 6.3 | 87.4 | others: 12.6 | [ |
450 | 94.9 | 24.8 | 3B1OL: 25.9, THF: 7.6, Others: 41.7 | ||||
SiO2-Al2O3 | 9 | 200 | 29a | 26.6 | 67.2 | THF: 32.8 | [ |
275 | 99.7 | 5.0 | THF: 92.3, Others: 2.7 | ||||
6 | 425 | 99.8 | 2.7 | THF: 92.6, 3B1OL: 0.1, Others: 4.6 | |||
γ-Al2O3 | 9 | 200 | 29a | 17.3 | 69.5 | THF: 30.5 | [ |
275 | 100 | 0.2 | THF: 99.3, Others: 0.5 | ||||
425 | 100 | 3.1 | THF: 91.8, Others: 5.1 | ||||
Y2Zr2O7 | 0.31 | 375 | 30 | 100 | 58.8 | 3B1OL: 23.8, 2B1OL: 4.4, THF: 3.7, GBL: 0.1, Propylene: 5.8, Others: 3.4 | [ |
Dy2Zr2O7 | 99.8 | 66.4 | 3B1OL: 20.6, 2B1OL: 4.7, THF: 3.0, 3GBL: 0.1, Propylene: 1.8, Others: 3.4 | [ | |||
Yb2O3 | 21.74 | 360 | 30 | 100 | 96.6 | Propylene: 0.7, THF: 0.1, Others: 2.5 | [ |
Bu4PBrb | 220 °C, N2, 0.5 mmol n-hexane, 0.05 mmol HBr, 0.5 mmol 1,4-BDO, 1.7 mmol catalyst, 2 h | 100 | 94 | THF: 5, Butanal: 1 | [ |
Table 12 Summary of vapor phase dehydration of 1,4-BDO to BD.
Catalyst | Reaction conditions | X (%) | Selectivity (%) | Ref. | |||
---|---|---|---|---|---|---|---|
WHSV (h‒1) | T (°C) | N2 (mL/min) | BD | others | |||
CeO2 | 6 | 275 | 29a | 6.3 | 87.4 | others: 12.6 | [ |
450 | 94.9 | 24.8 | 3B1OL: 25.9, THF: 7.6, Others: 41.7 | ||||
SiO2-Al2O3 | 9 | 200 | 29a | 26.6 | 67.2 | THF: 32.8 | [ |
275 | 99.7 | 5.0 | THF: 92.3, Others: 2.7 | ||||
6 | 425 | 99.8 | 2.7 | THF: 92.6, 3B1OL: 0.1, Others: 4.6 | |||
γ-Al2O3 | 9 | 200 | 29a | 17.3 | 69.5 | THF: 30.5 | [ |
275 | 100 | 0.2 | THF: 99.3, Others: 0.5 | ||||
425 | 100 | 3.1 | THF: 91.8, Others: 5.1 | ||||
Y2Zr2O7 | 0.31 | 375 | 30 | 100 | 58.8 | 3B1OL: 23.8, 2B1OL: 4.4, THF: 3.7, GBL: 0.1, Propylene: 5.8, Others: 3.4 | [ |
Dy2Zr2O7 | 99.8 | 66.4 | 3B1OL: 20.6, 2B1OL: 4.7, THF: 3.0, 3GBL: 0.1, Propylene: 1.8, Others: 3.4 | [ | |||
Yb2O3 | 21.74 | 360 | 30 | 100 | 96.6 | Propylene: 0.7, THF: 0.1, Others: 2.5 | [ |
Bu4PBrb | 220 °C, N2, 0.5 mmol n-hexane, 0.05 mmol HBr, 0.5 mmol 1,4-BDO, 1.7 mmol catalyst, 2 h | 100 | 94 | THF: 5, Butanal: 1 | [ |
Catalyst | Reaction condition | X (%) | GBL selectivity (%) | Ref. | |||
---|---|---|---|---|---|---|---|
WHSV (h‒1) | T (°C) | N2 (mL/min) | H2 (mL/min) | ||||
Cu(12)/SiO2 | 2 | 250 | 45 | 17 | 86.7 | 95.8 | [ |
Na(1)-Ca(7)-Cu(12)/SiO2 | 97.0 | 93.6 | |||||
Cu(80)/SiO2 | 98.6a | 99 | |||||
Cu-Ba/SiO2 | 1 | 260 | — | 5b | ~100 | ~100 | [ |
Cu-Ca/SiO2 | ~100 | ~98 | |||||
Cu-Sr/SiO2 | ~100 | ~98 | |||||
Cu/SiO2 | 2 | 250 | 18 | — | ~99 | ~99 | [ |
Cu/MgO | ~60 | ~99 | |||||
Cu/MgO-Al2O3 | ~15 | ~99 | |||||
Cu-Zn-Al | 0.06 | 210 | — | 125c | 100 | 98.6 f | [ |
10Co3O4-20Cu-70MgO | 2 | ~200 | — | 40 | ~83 | ~95 | [ |
10Cr2O3-20Cu-70MgO | ~70 | ~80 | |||||
1ZnO-20Cu-79MgO | ~75 | ~95 | |||||
10Cu/CeO2-Al2O3 | — | 260 | — | 30 | 100 | 98 | [ |
3Au/TiO2d | 140 °C, 1.25 MPae, TBP solvent, 0.069 mL 1,4-BDO/mL of solvent, 8 h | 99 | 100 | [ | |||
3Au/SnO2d | 140 °C, 1.2 MPae, TBP solvent, 0.080 mL 1,4-BDO/ml of solvent, 2 h | 94 | 59 | [ | |||
5Au/SnO2d | 53 | 83 |
Table 13 Summary of the conversion of 1,4-BDO to GBL in a fixed-bed reactor.
Catalyst | Reaction condition | X (%) | GBL selectivity (%) | Ref. | |||
---|---|---|---|---|---|---|---|
WHSV (h‒1) | T (°C) | N2 (mL/min) | H2 (mL/min) | ||||
Cu(12)/SiO2 | 2 | 250 | 45 | 17 | 86.7 | 95.8 | [ |
Na(1)-Ca(7)-Cu(12)/SiO2 | 97.0 | 93.6 | |||||
Cu(80)/SiO2 | 98.6a | 99 | |||||
Cu-Ba/SiO2 | 1 | 260 | — | 5b | ~100 | ~100 | [ |
Cu-Ca/SiO2 | ~100 | ~98 | |||||
Cu-Sr/SiO2 | ~100 | ~98 | |||||
Cu/SiO2 | 2 | 250 | 18 | — | ~99 | ~99 | [ |
Cu/MgO | ~60 | ~99 | |||||
Cu/MgO-Al2O3 | ~15 | ~99 | |||||
Cu-Zn-Al | 0.06 | 210 | — | 125c | 100 | 98.6 f | [ |
10Co3O4-20Cu-70MgO | 2 | ~200 | — | 40 | ~83 | ~95 | [ |
10Cr2O3-20Cu-70MgO | ~70 | ~80 | |||||
1ZnO-20Cu-79MgO | ~75 | ~95 | |||||
10Cu/CeO2-Al2O3 | — | 260 | — | 30 | 100 | 98 | [ |
3Au/TiO2d | 140 °C, 1.25 MPae, TBP solvent, 0.069 mL 1,4-BDO/mL of solvent, 8 h | 99 | 100 | [ | |||
3Au/SnO2d | 140 °C, 1.2 MPae, TBP solvent, 0.080 mL 1,4-BDO/ml of solvent, 2 h | 94 | 59 | [ | |||
5Au/SnO2d | 53 | 83 |
Catalyst | Reaction conditions | X (%) | Selectivity (%) | Ref. | ||||
---|---|---|---|---|---|---|---|---|
WHSV (h‒1) | T (°C) | N2 (mL/min) | UOL | BD | Others | |||
CeO2a | 13.2 | 325 | 73b | 61.0 | 97.7 | — | 2.3c | [ |
Fe(III)-CeO2 | 44.1 | 98.6 | — | 1.4c | ||||
Co(II)-CeO2 | 54.1 | 97.8 | — | 2.2c | ||||
Ni(II)-CeO2 | 69.0 | 96.5 | — | 3.5c | ||||
Yb2O3 | 6.7 | 325 | 20 | 33.4 | 87.3 | — | 4.2 | [ |
Y2O3 | 33.5 | 85.9 | — | 8.3 | ||||
Pr6O11 | 4.4d | 12.1 | — | 40.3 | ||||
Sm2O3 | 3.1d | 16.6 | — | 33.9 | ||||
ZrO2 | 11.4 | 325 | 30 | 25.3 | 60.9 | 0 | 39.4 | [ |
375 | 71.4 | 41.7 | 3.9 | 54.4 | ||||
Yb2O3-ZrO2-800 | 7.35 | 200 | 30 | 83.9 | 94.7 | — | 5.3e | [ |
ZSM-5 (260) | 14.1 | 300 | 60f | >95 | 1Bol: 1.0, 2Bol: 0.3, 3B1OL: 8.7, 3B2OL: 2.3 | 60 | Propylene: 24, MEK: 1.8, MVK: 1.3 | [ |
Al-SBA-15 (102) | >95 | 1Bol: 1.1, 2Bol: 2.2, 3B1OL: 0.6 | 53 | Propylene: 39, MEK: 2.1, MVK: 0.1 | ||||
H-FER (130) | 1.39 | 300 | 50 | 100 | 3B1OL: ~10 | ~60 | Propylene: ~20, MEK: ~10 | [ |
Table 14 Conversion of 1,3-BDO to unsaturated alcohols (UOL) and BD in a fixed-bed reactor.
Catalyst | Reaction conditions | X (%) | Selectivity (%) | Ref. | ||||
---|---|---|---|---|---|---|---|---|
WHSV (h‒1) | T (°C) | N2 (mL/min) | UOL | BD | Others | |||
CeO2a | 13.2 | 325 | 73b | 61.0 | 97.7 | — | 2.3c | [ |
Fe(III)-CeO2 | 44.1 | 98.6 | — | 1.4c | ||||
Co(II)-CeO2 | 54.1 | 97.8 | — | 2.2c | ||||
Ni(II)-CeO2 | 69.0 | 96.5 | — | 3.5c | ||||
Yb2O3 | 6.7 | 325 | 20 | 33.4 | 87.3 | — | 4.2 | [ |
Y2O3 | 33.5 | 85.9 | — | 8.3 | ||||
Pr6O11 | 4.4d | 12.1 | — | 40.3 | ||||
Sm2O3 | 3.1d | 16.6 | — | 33.9 | ||||
ZrO2 | 11.4 | 325 | 30 | 25.3 | 60.9 | 0 | 39.4 | [ |
375 | 71.4 | 41.7 | 3.9 | 54.4 | ||||
Yb2O3-ZrO2-800 | 7.35 | 200 | 30 | 83.9 | 94.7 | — | 5.3e | [ |
ZSM-5 (260) | 14.1 | 300 | 60f | >95 | 1Bol: 1.0, 2Bol: 0.3, 3B1OL: 8.7, 3B2OL: 2.3 | 60 | Propylene: 24, MEK: 1.8, MVK: 1.3 | [ |
Al-SBA-15 (102) | >95 | 1Bol: 1.1, 2Bol: 2.2, 3B1OL: 0.6 | 53 | Propylene: 39, MEK: 2.1, MVK: 0.1 | ||||
H-FER (130) | 1.39 | 300 | 50 | 100 | 3B1OL: ~10 | ~60 | Propylene: ~20, MEK: ~10 | [ |
Catalyst | Reaction conditions | X (%) | Selectivity (%) | Ref. | |||||
---|---|---|---|---|---|---|---|---|---|
WHSV (h‒1) | T (°C) | N2 (mL/min) | 4H2B | MEK | AcH | AcMe | |||
CuO | 28.3 | 240 | 30a | 40.8 | 55.9 | 6.1 | 2.7 | 17.8 | [ |
Cu/ZnO | 66.3 | 55.5 | 19.9 | 1.7 | 9.2 | ||||
Cu/Al2O3 | 98.4 | 2.6 | 51.5 | 3.6 | 15.5 | ||||
CuO/ZrO2 | 99.4 | 7.1 | 50.1 | 3.9 | 19.6 | ||||
Cu/MgO | 89.8 | 22.8 | 22.0 | 7.3 | 28.6 | ||||
PtSb2/ACb | 70 °C, 2 MPa O2, aq. 1,3-BDO (10 g/L), 0.2g catalyst, 14 h | 95.5 | 82.3c | 3-HBAD: 0.3, 2-BA: 6.7, 4-HYBO: 5.7, Others: 5.0 | [ |
Table 15 Summary of dehydrogenation of 1,3-BDO.
Catalyst | Reaction conditions | X (%) | Selectivity (%) | Ref. | |||||
---|---|---|---|---|---|---|---|---|---|
WHSV (h‒1) | T (°C) | N2 (mL/min) | 4H2B | MEK | AcH | AcMe | |||
CuO | 28.3 | 240 | 30a | 40.8 | 55.9 | 6.1 | 2.7 | 17.8 | [ |
Cu/ZnO | 66.3 | 55.5 | 19.9 | 1.7 | 9.2 | ||||
Cu/Al2O3 | 98.4 | 2.6 | 51.5 | 3.6 | 15.5 | ||||
CuO/ZrO2 | 99.4 | 7.1 | 50.1 | 3.9 | 19.6 | ||||
Cu/MgO | 89.8 | 22.8 | 22.0 | 7.3 | 28.6 | ||||
PtSb2/ACb | 70 °C, 2 MPa O2, aq. 1,3-BDO (10 g/L), 0.2g catalyst, 14 h | 95.5 | 82.3c | 3-HBAD: 0.3, 2-BA: 6.7, 4-HYBO: 5.7, Others: 5.0 | [ |
|
[1] | 赵梦, 徐晶, 宋术岩, 张洪杰. 核壳/蛋黄壳纳米反应器用于串联催化[J]. 催化学报, 2023, 50(7): 83-108. |
[2] | 刘润泽, 邵雪, 王畅, 戴卫理, 关乃佳. 甲醇制烃反应机理: 基础及应用研究[J]. 催化学报, 2023, 47(4): 67-92. |
[3] | 禹伟, 高教琪, 姚伦, 周雍进. 多形汉逊酵母细胞工厂实现甲醇生物转化合成3-羟基丙酸[J]. 催化学报, 2023, 46(3): 84-90. |
[4] | 焦龙, 江海龙. 金属有机框架材料在催化领域的研究现状与展望[J]. 催化学报, 2023, 45(2): 1-5. |
[5] | 聂超, 龙向东, 刘琪, 王嘉, 展飞, 赵泽伦, 李炯, 席永杰, 李福伟. 原子分散Ru-P-Ru催化剂的制备及其在多类加氢中的高效应用[J]. 催化学报, 2023, 45(2): 107-119. |
[6] | 孙万军, 朱佳玉, 张美玉, 孟翔宇, 陈梦雪, 冯钰, 陈新龙, 丁勇. 钴基非均相催化剂在光催化水分解、二氧化碳还原和氮还原的研究进展与展望[J]. 催化学报, 2022, 43(9): 2273-2300. |
[7] | 翁雪霏, 杨双莉, 丁丁, 陈明树, 万惠霖. 宽波段原位红外吸收光谱在Pd/SiO2和Cu/SiO2催化剂上CO氧化中的应用[J]. 催化学报, 2022, 43(8): 2001-2009. |
[8] | 蒋亚飞, 刘锦程, 许聪俏, 李隽, 肖海. 打破合成氨反应中线性标度关系的碗型活性位点设计: 来自LaRuSi及其同构电子化物的启示[J]. 催化学报, 2022, 43(8): 2183-2192. |
[9] | 王春鹏, 王哲, 毛善俊, 陈志荣, 王勇. 多相催化剂活性位点的配位环境及其对催化性能的影响[J]. 催化学报, 2022, 43(4): 928-955. |
[10] | 陈辉, 张博, 梁宵, 邹晓新. 轻元素调控的贵金属催化剂在能源相关领域的应用[J]. 催化学报, 2022, 43(3): 611-635. |
[11] | 张涛, 韩晓驰, Nhat Truong Nguyen, 杨磊, 周雪梅. 二氧化钛基光催化剂用于二氧化碳还原和太阳燃料的生产[J]. 催化学报, 2022, 43(10): 2500-2529. |
[12] | 刘晓玲, 陈磊, 许红中, 蒋师, 周瑜, 王军. 直接合成Beta沸石封装Pt纳米粒子用于5-羟甲基糠醛合成2,5-呋喃二甲酸[J]. 催化学报, 2021, 42(6): 994-1003. |
[13] | 刘晓艳, 蓝国钧, 李振清, 钱丽华, 刘健, 李瑛. 用于生物质水相加氢多相负载型金属催化剂的稳定策略[J]. 催化学报, 2021, 42(5): 694-709. |
[14] | 戴志锋, 唐永铨, 张飞, 熊玉兵, 王赛, 孙琦, 王亮, 孟祥举, 赵雷洪, 肖丰收. 双中心多孔聚合物作为多相催化剂实现CO2在温和条件下高效转化[J]. 催化学报, 2021, 42(4): 618-626. |
[15] | 郑仁垟, 谢在库. 多相催化时空演变的全生命周期表征策略[J]. 催化学报, 2021, 42(12): 2141-2148. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||