催化学报 ›› 2023, Vol. 52: 79-98.DOI: 10.1016/S1872-2067(23)64498-5
唐小龙a,b, 李锋a,b, 李方a, 江燕斌a,b,*(), 余长林a,*(
)
收稿日期:
2023-06-27
接受日期:
2023-08-25
出版日期:
2023-09-18
发布日期:
2023-09-25
通讯作者:
*电子信箱: cebjiang@scut.edu.cn (江燕斌),yuchanglinjx@163.com (余长林).
基金资助:
Xiaolong Tanga,b, Feng Lia,b, Fang Lia, Yanbin Jianga,b,*(), Changlin Yua,*(
)
Received:
2023-06-27
Accepted:
2023-08-25
Online:
2023-09-18
Published:
2023-09-25
Contact:
*E-mail: About author:
Yanbin Jiang (School of Chemistry and Chemical Engineering, South China University of Technology) was elected as a member of 2th supercritical fluid technology committee, CIESC (2023‒2028). He received his B.A. degree from Beijing University of Chemical Technology (China) in 1992, and Ph.D. degree from South China University of Technology in 2000. He carried out postdoctoral research at Department of Chemical Engineering in Kyoto University (Japan) from 2003 to 2005. Since July 1995, he has been working in School of Chemistry and Chemical Engineering, South China University of Technology. He won the Science and Technology Award of Guangdong Province five times as a major completer (2000‒2015). His research interests mainly focus on chemical product engineering, especially separation engineering, process and particle technology. He has published more than 160 peer-reviewed papers.Supported by:
摘要:
2011年张涛院士等首次提出单原子催化剂(SACs)的概念, 随后SACs迅速成为催化领域的一个研究热点. 由于催化活性位点的原子级分散和载体的固定作用, SACs兼具了均相催化剂(单活性中心和高选择性)和多相催化剂(结构稳定和易回收重复使用)的优点. 此外, SACs上原子级分散的金属活性位点更容易通过鲍林模式来吸附氧分子, 有效提高了双电子氧还原反应的选择性, 并且能够在相同的金属负载量下提供更多的活性位点, 降低了应用成本. 这些特点使得SACs在光催化和电催化产过氧化氢领域展现出较大优势, 但同时SACs过高的表面自由能也使得其金属负载量较低且稳定性差, 这些问题还需通过进一步研究进行改善.
本综述简要介绍了光催化和电催化产过氧化氢的基本原理, 详述了SACs在该领域中的独特优势. 概述了密度泛函理论(DFT)计算在SACs产过氧化氢研究中发挥的重要作用, DFT计算不仅能够高效方便地筛选出具有应用潜力的金属单原子, 从而有效减少实验工作量, 而且能揭示催化过程中的潜在活性位点, 并结合原位表征为SACs产过氧化氢催化机理解释提供有力证据, 这对合成高性能的SACs具有重要的指导意义. 总结了近期基于贵金属(Pt, Pd和Rh等)和非贵金属(Co, Ni和Sb等)的SACs在光催化和电催化产过氧化氢中的重点工作, 其中包括SACs的理论计算结果和催化反应途径. SACs产过氧化氢的催化活性与单原子金属中心的局部环境密切相关, 中心金属原子种类、配位原子种类和数目以及其周围的环境原子都是影响SACs活性的重要因素, 如何找出这些因素的最优组合是合成高性能SACs的关键.
本文还展望了SACs在光催化和电催化产过氧化氢过程中面临的一些挑战, 虽然SACs具有较高的原子利用效率, 但其表面高自由能会导致金属位点在合成过程和反应过程中容易聚集成簇甚至纳米颗粒, 导致SACs的过氧化氢产率仍停留在毫摩尔水平, 活性和稳定性远远达不到工业要求, 所以未来应当采用更多的原位表征手段来深入地了解SACs在合成过程和催化反应过程中的结构变化规律, 以便更好地指导开发易操作和低成本的合成路线来制备具有理想金属负载量和高稳定性的SACs. 此外, 未来可以考虑将负载单原子与缺陷工程、元素掺杂和异质结工程等其它改性策略相结合, 利用它们的协同作用进一步提升SACs产过氧化氢的性能.
唐小龙, 李锋, 李方, 江燕斌, 余长林. 单原子催化剂在光催化和电催化合成过氧化氢中的研究进展[J]. 催化学报, 2023, 52: 79-98.
Xiaolong Tang, Feng Li, Fang Li, Yanbin Jiang, Changlin Yu. Single-atom catalysts for the photocatalytic and electrocatalytic synthesis of hydrogen peroxide[J]. Chinese Journal of Catalysis, 2023, 52: 79-98.
Fig. 1. A schematic illustration of the electrocatalytic H2O2 production. Reprinted with permission from Ref. [10]. Copyright 2020, Royal Society of Chemistry.
Fig. 2. (a) Three forms of oxygen adsorption on metal surfaces. (b) Different ORR processes for oxygen on ensemble metal sites and the isolation of atomic sites.
Fig. 4. (a) Adsorption energies of CN and NiCN-4 catalysts. Reprinted with permission from Ref. [55]. Copyright 2022, Elsevier. (b) Band structure diagrams of PCN, PCN_Na15, and Sb-SAPC15. Reprinted with permission from Ref. [26]. Copyright 2021, Nature Publishing Group. (c) The distance between the hole and electron center of mass and (d) Coulomb attraction between hole and electron of Melem_3 and Melem_3M. Reprinted with permission from Ref. [58]. Copyright 2021, Elsevier.
Fig. 5. (a) Metal single-atom species involved in screening (left) and the schematic illustration of different carriers loaded with single-atoms (right). (b) The volcano relationship between the Gibbs free energy of OOH* and ultimate potential for single-atom catalysts (SACs). Reprinted with permission from Ref. [61]. Copyright 2019, American Chemical Society. (c) Screening of high-performance SACs with graphene as the substrate. (d) Free energy profiles of 2e- and 4e- ORR processes for Ni@V-c-GY catalysts. Reprinted with permission from Ref. [62]. Copyright 2021, Elsevier.
Fig. 6. Top and side views of the charge density difference in the (a) UCN and (b) carbon nitride photocatalyst (FeSA/CN) models. Yellow and cyan regions indicate electron accumulation and electron depletion, respectively. (c) The possible photodegradation mechanism of the OTC by a FeSA/CN. Reprinted with permission from Ref. [63]. Copyright 2023, Wiley-VCH.
Fig. 7. (a) A schematic diagram of the Al-C3N4 photocatalytic mechanism. Reprinted with permission from Ref. [64]. Copyright 2023, Elsevier. (b) Electrochemical in-situ Raman spectra of NbN4/NC and NbN3-(O)C3N4/carboxyl-functionalized multi-walled carbon nanotubes (OCNT). (c) Free energy diagrams for the 2e? ORR pathway on NbN3-(O)C3N4/OCNT and NbN4/NC. (d) Charge density differences of NbN3-(O)C3N4/OCNT and NbN4/NC. Reprinted with permission from Ref. [65]. Copyright 2023, American Chemical Society.
Fig. 9. (a) A schematic diagram of the synthesis process of h-Pt1-CuSx, where the blue, white, and purple spheres represent Cu, S, and Pt atoms, respectively. (b) A TEM image of Pt1-CuSx, wherein cavities are pointed out by arrows. Reprinted with permission from Ref. [71]. Copyright 2019, Elsevier. (c) Free energy diagrams for the ORR pathways on Pt-S4, Pt-N4, and Pt-C4. The red and black lines represent the 2e? and 4e? ORR, respectively. Reprinted with permission from Ref. [72]. Copyright 2022, Nature Publishing Group.
Fig. 10. (a) In-situ XAS analysis of xPt/SZTC with different metal loadings. (b) A schematic representation of the structural changes of inert and labile Pt-S4 sites in contact with water, where the brown, yellow, gray, red, and white spheres represent C, S, Pt, O and H atoms, respectively. Reprinted with permission from Ref. [73]. Copyright 2023, Elsevier.
Fig. 11. (a) In-situ X-ray diffraction of PdClx/C at different temperatures. Reprinted with permission from Ref. [74]. Copyright 2020, American Chemical Society. (b) Single Pd atoms loaded on different two-dimensional materials. (c) The relationship between the H2O2/water generation activity and stability (Eb?Ec) of SACs. Reprinted with permission from Ref. [75]. Copyright 2022, Elsevier. High-resolution XPS spectra of (d) Mo 3d and (e) S 2p for MoS2 and Au(X)@MoS2 samples. Reprinted with permission from Ref. [76]. Copyright 2019, Elsevier. (f) The catalytic performance of Ru/P-CN prepared under different synthesis conditions and P-CN. Reprinted with permission from Ref. [77]. Copyright 2022, Wiley-VCH.
Catalyst | (1) Electrolyte (2) Light source | Selective (H2O2%) | H2O2 generation rate | Ref. | |
---|---|---|---|---|---|
Electrocatalyst | Pt/HSC | (1) 0.1 mol L‒1 HClO4 | 96 | 97.5 μmol h‒1 cm‒2 | [ |
Pt/TiN | (1) 0.1 mol L‒1 HClO4 | 65 | — | [ | |
Pt/TiC | (1) 0.1 mol L‒1 HClO4 | > 70 | — | [ | |
h-Pt1-CuSx | (1) 0.1 mol L‒1 HClO4 | 92‒96 | 546±30 mol kg‒1 h‒1 | [ | |
Pt-SA/rGO | (1) 0.1 mol L‒1 KOH | 95 | — | [ | |
Pt1Ag1/C | (1) 0.05 mol L‒1 Na2SO4 | >90 | 236.25 mol kg‒1 h‒1 | [ | |
C@C3N4-Pd1 | (1) 0.1 mol L‒1 HClO4 | 94 | — | [ | |
PdClx/C | (1) 0.1 mol L‒1 HClO4 | 90 | — | [ | |
Pt1-meso-S-C | (1) 0.1 mol L‒1 HClO4 | — | 28.25 mmol (2 h) | [ | |
Pt-S-CNT | (1) 0.1 mol L‒1 HClO4 | 81.4 | — | [ | |
Ru0.08Ti0.92O2 | (1) 2 mol L‒1 KHCO3 | 62.8 | 24.2 μmol min‒1 cm‒2 | [ | |
Photocatalysis | Au@MoS2 | (2) 300 W Xe lamp | — | 696.09 μmol (3 h) | [ |
Ru/P-CN | (2) 300 W Xe lamp, λ > 420 nm | — | 385.8 mmol g‒1 h‒1 | [ |
Table 1 Electrocatalytic and photocatalytic generation of H2O2 from noble metal-based single-atom catalysts.
Catalyst | (1) Electrolyte (2) Light source | Selective (H2O2%) | H2O2 generation rate | Ref. | |
---|---|---|---|---|---|
Electrocatalyst | Pt/HSC | (1) 0.1 mol L‒1 HClO4 | 96 | 97.5 μmol h‒1 cm‒2 | [ |
Pt/TiN | (1) 0.1 mol L‒1 HClO4 | 65 | — | [ | |
Pt/TiC | (1) 0.1 mol L‒1 HClO4 | > 70 | — | [ | |
h-Pt1-CuSx | (1) 0.1 mol L‒1 HClO4 | 92‒96 | 546±30 mol kg‒1 h‒1 | [ | |
Pt-SA/rGO | (1) 0.1 mol L‒1 KOH | 95 | — | [ | |
Pt1Ag1/C | (1) 0.05 mol L‒1 Na2SO4 | >90 | 236.25 mol kg‒1 h‒1 | [ | |
C@C3N4-Pd1 | (1) 0.1 mol L‒1 HClO4 | 94 | — | [ | |
PdClx/C | (1) 0.1 mol L‒1 HClO4 | 90 | — | [ | |
Pt1-meso-S-C | (1) 0.1 mol L‒1 HClO4 | — | 28.25 mmol (2 h) | [ | |
Pt-S-CNT | (1) 0.1 mol L‒1 HClO4 | 81.4 | — | [ | |
Ru0.08Ti0.92O2 | (1) 2 mol L‒1 KHCO3 | 62.8 | 24.2 μmol min‒1 cm‒2 | [ | |
Photocatalysis | Au@MoS2 | (2) 300 W Xe lamp | — | 696.09 μmol (3 h) | [ |
Ru/P-CN | (2) 300 W Xe lamp, λ > 420 nm | — | 385.8 mmol g‒1 h‒1 | [ |
Fig. 12. (a) The OOH* adsorption energy and relative charge state of a Co atom when 4H*, 2H*, O*, or 2O* is adsorbed near it. (b) A schematic illustration of the structural changes during the synthesis of Co1-NG(O). (c) The H2O2 current for NG(O), Co1-NG(O), and Co1-NG(R). Reprinted with permission from Ref. [86]. Copyright 2020, Nature Publishing Group. (d) A schematic illustration of the structural changes during the synthesis of Co/NC. (e) Catalytic activity volcano diagrams for the 2e? (red) and 4e? ORR (grey) pathways on C-N4 and O-Co-N2C2. Reprinted with permission from Ref. [89]. Copyright 2022, Wiley-VCH.
Fig. 13. (a) Co single-atom (oxidation center)- and anthraquinone (reduction center)-assisted catalysts for the spatial separation of two-dimensional C3N4 nanosheets. Reprinted with permission from Ref. [90]. Copyright 2020, National Academy of Sciences. (b) Free energy diagrams for oxygen evolution (black) and H2O2 generation reactions over CoSAC@PCN (red) and C@PCN (blue). Reprinted with permission from Ref. [91]. Copyright 2022, American Chemical Society. (c) The FT k3-weighted χ(k)-function of the EXAFS spectra at a Co K-edge. The free energy diagram for H2O2 formation via the (d) O2 reduction pathway and (e) water oxidization route on Co-CN@G, CN@G, and Co-CN. Reprinted with permission from Ref. [92]. Copyright 2023, Nature Publishing Group.
Fig. 14. (a) A schematic diagram of the preparation process of N4Ni1O2/OCNTs and plausible reaction processes of N4Ni1O2, N4Ni1O1, and N4Ni1 for H2O2 electrosynthesis. (b) Free energy diagrams of the 2e- and 4e- ORR processes on N4Ni1O2, N4Ni1O1, N4Ni1C, N4Ni1, and bare OCNT structures. Reprinted with permission from Ref. [93]. Copyright 2022, Wiley-VCH.
Fig. 15. (a) Steady-state photoluminescence spectra. (b) Free energy diagrams of the 2e- and 4e- ORR processes of NiCN-4 catalysts. Reprinted with permission from Ref. [55]. Copyright 2022, Elsevier. (c) A proposed mechanism of photocatalytic H2O2 production from oxygen and water over Ni/Hf-0.5. (d) A comparison of the H2O2 production rates from Ni/Hf under visible light irradiation. Reprinted with permission from Ref. [94]. Copyright 2022, American Chemical Society.
Fig. 16. (a) Photocatalytic H2O2 production rates of PCNs and Sb-SAPCs with different metal loadings. (b) A reaction mechanism diagram of H2O2 generation from Sb/CN photocatalysts via the 2e- ORR pathway. Reprinted with permission from Ref. [26]. Copyright 2021, Nature Publishing Group. (c) The photoluminescence spectra of PCN and the M-SAPCs. (d) Photocatalytic rates of H2O2 production by PCN and M-SAPCs. Reprinted with permission from Ref. [58]. Copyright 2021, Elsevier.
Fig. 17. (a) A schematic of the synthesis process of Fe-F-C, Co-F-C, Ni-F-C, Mn-F-C, and Mn-F-C. Reprinted with permission from Ref. [95]. Copyright 2023, Elsevier. (b) A schematic of the synthesis of In SAs/NSBC. Reprinted with permission from Ref. [96]. Copyright 2022, Wiley-VCH.
Catalyst | (1) Electrolyte (2) Light source | Selectivity (H2O2%) (H2O2%) | H2O2 generation rate | Ref. | |
---|---|---|---|---|---|
Electrocatalyst | Co-NC | (1) 0.1 mol L-1 HClO4 | > 90 | 275 mmol g−1 h−1 | [ |
EA-CoN@CNTs | (1) 0.1 mol L-1 HClO4 | 90 | — | [ | |
HE-CoN@CNTs | (1) 0.1 mol L-1 HClO4 | 100 | 5525 ppm (12 h) | [ | |
Co1/NG(O) | (1) 0.1 mol L-1 KOH | 82 | 418±19 mmol g−1 h−1 | [ | |
Co-SA/V-C | (1) 0.1 mol L-1 KOH | 90 | — | [ | |
Co-N2-C/HO | (1) 0.1 mol L-1 KOH | 91.3 | 1000 mg L−1 (1 h) | [ | |
Co-N-C | (1) 0.5 mol L-1 NaCl | 95.6 | 4.5 mol g−1 h−1 | [ | |
Co-SAs/NC | (1) 0.1 mol L-1 KOH | 76 | 380.9±14.85 μmol (10 h) | [ | |
CoNOC | (1) 0.1 mol L-1 HClO4 | >95 | 590 mmol g−1 h−1 | [ | |
Co/NC | (1) 0.1 mol L-1 PBS | >90 | 20.4 mmol (10 h) | [ | |
Co-F-CNT | (1) 0.1 mol L-1 KOH | 90 | 18.6 mol g−1 h−1 | [ | |
CoPc/CNT | (1) 0.1 mol L-1 H2SO4 | 92 | 3.71 mol g−1 h−1 | [ | |
CoNOC | (1) 0.1 mol L-1 HClO4 | >98 | 760 mmol g−1 h−1 | [ | |
Ni-SA/G | (1) 0.1 mol L-1 KOH | >94 | — | [ | |
Ni-N2O2/C | (1) 0.1 mol L-1 KOH | 96 | 5.9 mol g-1 h-1 | [ | |
Ni SAC/Ni-NiO/NC | (1) 0.1 mol L-1 KOH | 95 | 325 mmol g−1 h−1 | [ | |
NiNx/C-AQNH2 | (1) 0.1 mol L-1 KOH | >80 | — | [ | |
N4Ni1O2/OCNTs | (1) 0.1 mol L-1 KOH | >90 | 5.7 mmol cm-2 h-1 | [ | |
Fe-CNT | (1) 0.1 mol L-1 KOH | >95 | 1.6 mol g−1 h−1 | [ | |
Mo1/OSG-H | (1) 0.1 mol L-1 KOH | >95 | — | [ | |
Mo-F-C | (1) 0.1 mol L-1 KOH | 90 | 27 mol g−1 h−1 | [ | |
W1/NO-C | (1) 0.1 mol L-1 KOH | 90-98 | 1.23 mol g−1 h−1 | [ | |
In SAs/NSBC | (1) 0.1 mol L-1 KOH | >95 | 6.49 mol g−1 h−1 | [ | |
ATO | (1) 0.1 mol L-1 NaClO4 | 80 | 5.4 μmol h−1 cm−2 | [ | |
NbN3-(O)C3N4/OCNT | (1) 0.1 mol L-1 KOH | >95 | 1020.4 mmol g−1 h−1 | [ | |
Sb-NSCF | (1) 0.1 mol L-1 KOH | 97.2 | 7.46 mol g−1 h−1 | [ | |
Photocatalysis | Co1/AQ/C3N4 | (2) 100 mW cm−2, AM 1.5G | — | 230 μmol (8 h) | [ |
CoSAC@PCN | (2) violet LED lamp (410 nm) | — | 62 μmol g-1 h-1 | [ | |
In/CN | (2) 500 W Xe lamp, λ > 420 nm | — | 7.5 mg L−1 (1 h) | [ | |
Sb-SAPC | (2) 300 W Xe lamp, λ > 420 nm | — | 12.4 mg L−1 (2 h) | [ | |
NiCN | (2) 300 W Xe lamp, λ > 420 nm | 87.3 | 27.11 mmol g-1 h-1 | [ | |
Hf-UiO-66-NH2 | (2) 500 W Xe lamp, λ > 420 nm | — | 222 μmol L−1 (3 h) | [ | |
Al-C3N4 | (2) 300 W Xe lamp, AM 1.5G | — | 27.5 mmol g-1 h-1 | [ | |
Cu-NG/CN | (2) 300 W Xe lamp, AM 1.5G | — | 2856 μmol g-1 h-1 | [ |
Table 2 Electrocatalytic and photocatalytic generation of H2O2 from non-noble metal-based single-atom catalysts.
Catalyst | (1) Electrolyte (2) Light source | Selectivity (H2O2%) (H2O2%) | H2O2 generation rate | Ref. | |
---|---|---|---|---|---|
Electrocatalyst | Co-NC | (1) 0.1 mol L-1 HClO4 | > 90 | 275 mmol g−1 h−1 | [ |
EA-CoN@CNTs | (1) 0.1 mol L-1 HClO4 | 90 | — | [ | |
HE-CoN@CNTs | (1) 0.1 mol L-1 HClO4 | 100 | 5525 ppm (12 h) | [ | |
Co1/NG(O) | (1) 0.1 mol L-1 KOH | 82 | 418±19 mmol g−1 h−1 | [ | |
Co-SA/V-C | (1) 0.1 mol L-1 KOH | 90 | — | [ | |
Co-N2-C/HO | (1) 0.1 mol L-1 KOH | 91.3 | 1000 mg L−1 (1 h) | [ | |
Co-N-C | (1) 0.5 mol L-1 NaCl | 95.6 | 4.5 mol g−1 h−1 | [ | |
Co-SAs/NC | (1) 0.1 mol L-1 KOH | 76 | 380.9±14.85 μmol (10 h) | [ | |
CoNOC | (1) 0.1 mol L-1 HClO4 | >95 | 590 mmol g−1 h−1 | [ | |
Co/NC | (1) 0.1 mol L-1 PBS | >90 | 20.4 mmol (10 h) | [ | |
Co-F-CNT | (1) 0.1 mol L-1 KOH | 90 | 18.6 mol g−1 h−1 | [ | |
CoPc/CNT | (1) 0.1 mol L-1 H2SO4 | 92 | 3.71 mol g−1 h−1 | [ | |
CoNOC | (1) 0.1 mol L-1 HClO4 | >98 | 760 mmol g−1 h−1 | [ | |
Ni-SA/G | (1) 0.1 mol L-1 KOH | >94 | — | [ | |
Ni-N2O2/C | (1) 0.1 mol L-1 KOH | 96 | 5.9 mol g-1 h-1 | [ | |
Ni SAC/Ni-NiO/NC | (1) 0.1 mol L-1 KOH | 95 | 325 mmol g−1 h−1 | [ | |
NiNx/C-AQNH2 | (1) 0.1 mol L-1 KOH | >80 | — | [ | |
N4Ni1O2/OCNTs | (1) 0.1 mol L-1 KOH | >90 | 5.7 mmol cm-2 h-1 | [ | |
Fe-CNT | (1) 0.1 mol L-1 KOH | >95 | 1.6 mol g−1 h−1 | [ | |
Mo1/OSG-H | (1) 0.1 mol L-1 KOH | >95 | — | [ | |
Mo-F-C | (1) 0.1 mol L-1 KOH | 90 | 27 mol g−1 h−1 | [ | |
W1/NO-C | (1) 0.1 mol L-1 KOH | 90-98 | 1.23 mol g−1 h−1 | [ | |
In SAs/NSBC | (1) 0.1 mol L-1 KOH | >95 | 6.49 mol g−1 h−1 | [ | |
ATO | (1) 0.1 mol L-1 NaClO4 | 80 | 5.4 μmol h−1 cm−2 | [ | |
NbN3-(O)C3N4/OCNT | (1) 0.1 mol L-1 KOH | >95 | 1020.4 mmol g−1 h−1 | [ | |
Sb-NSCF | (1) 0.1 mol L-1 KOH | 97.2 | 7.46 mol g−1 h−1 | [ | |
Photocatalysis | Co1/AQ/C3N4 | (2) 100 mW cm−2, AM 1.5G | — | 230 μmol (8 h) | [ |
CoSAC@PCN | (2) violet LED lamp (410 nm) | — | 62 μmol g-1 h-1 | [ | |
In/CN | (2) 500 W Xe lamp, λ > 420 nm | — | 7.5 mg L−1 (1 h) | [ | |
Sb-SAPC | (2) 300 W Xe lamp, λ > 420 nm | — | 12.4 mg L−1 (2 h) | [ | |
NiCN | (2) 300 W Xe lamp, λ > 420 nm | 87.3 | 27.11 mmol g-1 h-1 | [ | |
Hf-UiO-66-NH2 | (2) 500 W Xe lamp, λ > 420 nm | — | 222 μmol L−1 (3 h) | [ | |
Al-C3N4 | (2) 300 W Xe lamp, AM 1.5G | — | 27.5 mmol g-1 h-1 | [ | |
Cu-NG/CN | (2) 300 W Xe lamp, AM 1.5G | — | 2856 μmol g-1 h-1 | [ |
|
[1] | 赵彬彬, 钟威, 陈峰, 王苹, 别传彪, 余火根. 高晶化g-C3N4光催化剂: 合成、结构调控和光催化产氢[J]. 催化学报, 2023, 52(9): 127-143. |
[2] | 张季, 俞爱民, 孙成华. 非金属掺杂石墨烯异核双原子催化剂氮还原特性研究[J]. 催化学报, 2023, 52(9): 263-270. |
[3] | 胡金念, 田玲婵, 王海燕, 孟洋, 梁锦霞, 朱纯, 李隽. MXene负载3d金属单原子高效氮还原电催化剂的理论筛选[J]. 催化学报, 2023, 52(9): 252-262. |
[4] | 洪岩, 王琦, 阚子旺, 张禹烁, 郭晶, 李思琦, 刘松, 李斌. 电化学氮还原氨反应催化剂的最新研究进展[J]. 催化学报, 2023, 52(9): 50-78. |
[5] | 蔡铭洁, 刘艳萍, 董珂欣, 陈晓波, 李世杰. 漂浮型Bi2WO6/C3N4/碳布S型异质结光催化材料用于高效净化水体环境[J]. 催化学报, 2023, 52(9): 239-251. |
[6] | 刘勇, 赵晓丽, 隆昶, 王晓艳, 邓邦为, 李康璐, 孙艳娟, 董帆. 原位构筑动态Cu/Ce(OH)x界面用于高活性、高选择性和高稳定性硝酸盐还原合成氨[J]. 催化学报, 2023, 52(9): 196-206. |
[7] | 高晖, 张恭, 程东方, 王永涛, 赵静, 李晓芝, 杜晓伟, 赵志坚, 王拓, 张鹏, 巩金龙. 构建Cu台阶位促进电催化CO2还原制醇类化学品的研究[J]. 催化学报, 2023, 52(9): 187-195. |
[8] | 王思恺, 闵祥婷, 乔波涛, 颜宁, 张涛. 单原子催化: 追寻催化领域的“圣杯”[J]. 催化学报, 2023, 52(9): 1-13. |
[9] | 江梓聪, 程蓓, 张留洋, 张振翼, 别传彪. 氧化锌基梯型异质结光催化剂[J]. 催化学报, 2023, 52(9): 32-49. |
[10] | 邹心仪, 顾均. 酸性条件下二氧化碳高效电还原策略[J]. 催化学报, 2023, 52(9): 14-31. |
[11] | 赵磊, 张震, 朱昭昭, 李平波, 蒋金霞, 杨婷婷, 熊佩, 安旭光, 牛晓滨, 齐学强, 陈俊松, 吴睿. 缺陷氮掺杂碳耦合Co-N5单原子位点用于高效锌-空气电池[J]. 催化学报, 2023, 51(8): 216-224. |
[12] | 刘博文, 蔡家杰, 张建军, 谭海燕, 程蓓, 许景三. MOF/CdS梯型光催化剂同时进行苯甲醇氧化和析氢反应及其机理研究[J]. 催化学报, 2023, 51(8): 204-215. |
[13] | 宋明明, 宋相海, 刘鑫, 周伟强, 霍鹏伟. ZnIn2S4/MOF-808微球结构S型异质结光催化剂的制备及其光还原CO2性能研究[J]. 催化学报, 2023, 51(8): 180-192. |
[14] | 邵秀丽, 李可, 李静萍, 程强, 王国宏, 王楷. 揭示NiS@Ta2O5纳米纤维中梯型电荷转移路径及光催化CO2转化性能[J]. 催化学报, 2023, 51(8): 193-203. |
[15] | 李嘉明, 李源, 王小田, 杨直雄, 张高科. TiO2上原子分散的Fe位点促进光催化CO2还原: 增强的催化活性、 DFT计算和机制洞察[J]. 催化学报, 2023, 51(8): 145-156. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||