催化学报 ›› 2023, Vol. 52: 32-49.DOI: 10.1016/S1872-2067(23)64502-4
江梓聪a, 程蓓a, 张留洋b, 张振翼c, 别传彪b,*()
收稿日期:
2023-07-11
接受日期:
2023-08-09
出版日期:
2023-09-18
发布日期:
2023-09-25
通讯作者:
*电子邮箱: biechuanbiao@cug.edu.cn (别传彪).
基金资助:
Zicong Jianga, Bei Chenga, Liuyang Zhangb, Zhenyi Zhangc, Chuanbiao Bieb,*()
Received:
2023-07-11
Accepted:
2023-08-09
Online:
2023-09-18
Published:
2023-09-25
Contact:
*E-mail: About author:
Chuanbiao Bie (Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences) received his Ph.D. from Wuhan University of Technology in 2021. He is now a postdoctoral researcher at China University of Geosciences (Wuhan). His research interests focus on semiconductor photocatalysis, including photocatalytic H2 evolution, H2O2 production, CO2 reduction, and organic synthesis.
Supported by:
摘要:
随着工业的快速发展和化石燃料的过度开发使用, 能源危机和环境污染日益严重. 光催化技术在能源与环境领域具有良好的应用前景, 是人类社会可持续发展的有效策略之一. 传统氧化锌(ZnO)光催化剂因其无毒性、良好生物相容性和低成本而备受关注. 然而, ZnO光催化性能受限于光生载流子复合严重和光生电子还原能力弱等问题. 常规的改性方法, 包括原子掺杂、缺陷调控、助催化剂负载等, 很难兼顾载流子分离效率和氧化还原能力. 相较而言, 构建梯型异质结可以较好地解决上述问题. 梯型异质结界面处的内建电场可以促进光生载流子的高效分离和转移, 同时保留光催化体系最强的氧化还原能力, 从而实现更高效的光催化反应. 然而, 尽管已有大量关于ZnO基梯型异质结的研究工作被陆续发表, 却很少有评论性文章对该领域进行综述. 因此, 有必要对ZnO基梯型光催化剂的研究成果进行总结, 并为这一研究方向的发展提供及时的指导.
本文首先介绍了异质结的发展历程, 讨论了II型异质结、传统Z型体系、全固态Z型异质结的光催化反应机理, 并在此基础上指出了它们在热力学上的挑战. 其次, 深入分析了梯型异质结的理论基础, 包括还原型半导体和氧化型半导体的选择, 相互接触后的电子转移, 梯型异质结中内建电场的形成, 以及光激发后梯型异质结中光生载流子的分离和迁移, 并诠释了梯型异质结在促进电荷载流子分离以及增强光催化体系的氧化还原能力方面的突出优势. 此外, 阐明了ZnO基梯型异质结的分类和设计原理. 除了常见的ZnO基梯型n-n异质结, 还讨论了以ZnO为还原型半导体的梯型n-p异质结以及以ZnO为氧化型半导体的梯型p-n异质结. 归纳了目前ZnO基梯型异质结光催化剂的制备方法, 包括水/溶剂热法、共沉淀法和静电自组装法等, 剖析了这些制备方法的优缺点以及所制备的ZnO基梯型异质结的界面性质. 概述了以ZnO基梯型异质结为代表的梯型异质结的表征技术, 包括原位辐照X射线光电子能谱、开尔文探针力显微镜、电子顺磁共振波谱和第一性原理计算. 总结了ZnO基梯型异质结近年来在不同光催化应用领域的研究进展, 包括光催化环境修复、制氢、制备双氧水、二氧化碳还原、杀菌、固氮等. 最后, 对ZnO基梯型异质结的未来发展进行了展望, 提出了其所面临的机遇与挑战, 希望能为该领域带来新的启示.
江梓聪, 程蓓, 张留洋, 张振翼, 别传彪. 氧化锌基梯型异质结光催化剂[J]. 催化学报, 2023, 52: 32-49.
Zicong Jiang, Bei Cheng, Liuyang Zhang, Zhenyi Zhang, Chuanbiao Bie. A review on ZnO-based S-scheme heterojunction photocatalysts[J]. Chinese Journal of Catalysis, 2023, 52: 32-49.
Fig. 3. Assumed (a) and thermodynamically favorable (b) PE transfer pathway in TZS. Challenges arising from the Brownian motion and thermal motion (c) and redox couple ions transfer from P1 to P2 in TZS (d).
Fig. 4. Assumed (a) and thermodynamically favorable (b) PE transfer path in ASSZH. Band diagrams of CdS, TiO2, and Au before contact (c) and after contact (d).
Fig. 5. Schematic illustrations of an S-scheme heterojunction. (a) The staggered band configurations of OS and RS before their contact. (b) The formation of IIEF after their contact. (c) The migration route of PE under light irradiation.
Fig. 7. Different types of ZnO-based S-scheme heterojunctions. (a) n-n junction with ZnO as the OS. (b) n-n junction with ZnO as the RS. (c) p-n junction with ZnO as the RS. (d) n-p junction with ZnO as the OS.
Method | Advantage | Disadvantage | Interfacial property |
---|---|---|---|
Hydrothermal/solvothermal | controllable size, high crystallinity, easy operation, mass production | required high temperature and pressure, high cost in solvent for solvothermal method | strong interaction and intimate interface |
Deposition-precipitation | narrow size distributions of particles, relatively rapid reaction rate | poor reproducibility, required post-calcination treatment | strong interaction and intimate interface |
Self-assembly | easy operation | low yield, poor stability | moderate interaction |
Thermal annealing | high synthetic efficiency, simple process | high energy consumption, particles aggregation | strong interaction and intimate interface |
Mechanical agitation | easy operation, low cost | poor reproducibility, uncontrollable size | weak interaction |
Table 1 The summarization of the preparation methods of ZnO-based S-scheme heterojunctions.
Method | Advantage | Disadvantage | Interfacial property |
---|---|---|---|
Hydrothermal/solvothermal | controllable size, high crystallinity, easy operation, mass production | required high temperature and pressure, high cost in solvent for solvothermal method | strong interaction and intimate interface |
Deposition-precipitation | narrow size distributions of particles, relatively rapid reaction rate | poor reproducibility, required post-calcination treatment | strong interaction and intimate interface |
Self-assembly | easy operation | low yield, poor stability | moderate interaction |
Thermal annealing | high synthetic efficiency, simple process | high energy consumption, particles aggregation | strong interaction and intimate interface |
Mechanical agitation | easy operation, low cost | poor reproducibility, uncontrollable size | weak interaction |
Fig. 8. ISIXPS spectra of C 1s (a), N 1s (b), Zn 2p (c), and O 1s (d) in ZnO/g-C3N4 S-scheme heterojunction. Reproduced with permission from Ref. [96] Copyright 2021, American Chemical Society.
Fig. 9. (a) Band configurations of N-ZnO/C and Bi2MoO6 before contact. (b) The transfer route of PC in N-ZnO/C@Bi2MoO6 S-scheme heterojunction under light irradiation. (c) DMPO-?OH and (d) DMPO-?O2? signals of samples. Reproduced with permission from Ref. [92]. Copyright 2021, Elsevier B.V.
Fig. 10. The optimized composite models, charge density difference, and IIEF strength of S-scheme g-C3N4/SnS2 (a,c,e) and O-C3N4/SnS2 (b,d,f) heterojunctions. Reproduced with permission from Ref. [105]. Copyright 2021, Elsevier B.V.
Fig. 11. UV-vis diffuse reflectance spectra (a), transient photocurrent responses (b), electrochemical impedance spectra (c), PL spectra (d), TRPL spectra (e), and the photocatalytic degradation curves (f) of SMX over different samples. (g) The stability test of N-ZnO/C@BiM for SMX degradation; (h) XPS spectra and (i) XRD patterns and SEM image (inset) of N-ZnO/C@BiM before and after four tests. Reproduced with permission from Ref. [48]. Copyright 2021, Elsevier B.V.
Fig. 12. SEM images of Ga2O3/ZnO/WO3 composite nanofibers before (a?c) and after (d?f) calcination. (g) Transfer pathways of PC in Ga2O3/ZnO/WO3 dual S-scheme heterojunction. Reproduced with permission from Ref. [132]. Copyright 2021, Springer Science+Business Media, LLC part of Springer Nature.
S-scheme heterojunction | Pollutant (Concentration) | pH | Dosage (mg mL‒1) | Light source (wavelength) | Photodegradation efficiency (%) | Active | Degradation | Ref. | |
---|---|---|---|---|---|---|---|---|---|
ZnO | Optimal sample | species | product | ||||||
ZnO-CoTe | methylene blue (20 mg L‒1) | 7 | 0.1 | Sunlight | 56.1 | 99.8 | •O2− | — | [ |
g-C3N4/ZnO | azophloxine (10 mg L‒1) | 7 | 1 | 500 W Xe lamp | — | 95 | •O2−, h+ | — | [ |
SrTiO3/porous ZnO | methyl orange (5 mg L‒1) | 7 | 0.1 | 300 W Xe lamp | 32.4 | 48.8 | •O2− | CO2, H2O | [ |
N-ZnO/g-C3N4 | norfloxacin (10 mg L‒1) | 7 | 0.2 | 300 W Xe lamp (λ > 420 nm) | 57.7 | 96.4 | h+ | CO2, H2O, F−, NO3− | [ |
CuO/ZnO | mercury ions (368.3 µmol L‒1) | 4 | 1 | 300 W Xe lamp (λ > 420 nm) | 6 | 100 | e− | Mercury | [ |
ZnO-V2O5-WO3 | methylene blue (10 μmol L‒1) | 7 | 0.6 | Sunlight | 78.8 | 99.8 | •O2− | — | [ |
C-ZnO/Ag3PO4 | ciprofloxacin (10 mg L‒1) | 7 | 2 | 300 W Xe lamp (λ > 420 nm) | — | 96.7 | h+, •O2− | — | [ |
ZnO/ZnMn2O4/ ZnS-PVA | Co-trimoxazole (5 mg L‒1) | 7 | 0.05 | 500 W Visible lamp | — | 90 | — | — | [ |
N-ZnO/C@Bi2MoO6 | sulfamethoxazole (5 mg L‒1) | 9 | 1 | 300 W Xe lamp (λ > 420 nm) | — | 92.9 | h+ | — | [ |
ZnO/Zn3(PO4)2 | tetracycline (20 mg L‒1) | 7 | 1 | 400 W Osram lamps (400 nm< λ <700 nm) | 17 | 82 | •O2− | — | [ |
ZnO/gC3N4 | methyl orange (10 mg L‒1) | 7 | 0.5 | Mercury lamp (Visible light) | 49 | 99 | — | — | [ |
ZnO-g-C3N4@PET | methylene blue (15 mg L‒1) | 7 | — | 350 W Xe lamp (λ > 420 nm) | 16.2 | 92.5 | •OH, h+ | — | [ |
WO3/Ag/ZnO | cephalexin (30 mg L‒1) | 7 | — | Blue LED lamps | 13.9 | 98.8 | •O2−, •OH | — | [ |
ZnO-NiO | azophloxine (20 ppm) | 7 | 0.2 | — | ~27 | 82 | •O2−, •OH | — | [ |
LaFeO3/ZnO | mercury ions (100 ppm) | 4 | 1.25 | 300 W Xe lamp (λ > 420 nm) | 6 | 100 | e− | Mercury | [ |
Bi2O3-ZnO/ bentonite clay | congo red (200 mg L‒1) | 7 | 8 | UV light | — | 100 | — | — | [ |
Curcumin/ZnO | amaranth (0.5 mol L‒1) | 7 | 1 | 300 W Solar simulator | 42 | 93 | •O2− | — | [ |
NiS/ZnO | P-nitrophenol (101 μM) | 7 | 0.12 | 8 W Phillips UV light (λ = 254 nm) | 65 | 96 | •OH | — | [ |
Ga2O3/ZnO/WO3 | Rhodamine B (100 mg L‒1) | 7 | 0.6 | 300 W Xe lamp | — | 98.4 | h+, •O2− | CO2, H2O | [ |
CuO/ZnO | mercury ions (100 mg L‒1) | 4 | 1.8 | Xe lamp | 4.1 | 100 | e− | Mercury | [ |
Table 2 Recent reports of ZnO-based S-scheme heterojunctions in the field of environmental remediation.
S-scheme heterojunction | Pollutant (Concentration) | pH | Dosage (mg mL‒1) | Light source (wavelength) | Photodegradation efficiency (%) | Active | Degradation | Ref. | |
---|---|---|---|---|---|---|---|---|---|
ZnO | Optimal sample | species | product | ||||||
ZnO-CoTe | methylene blue (20 mg L‒1) | 7 | 0.1 | Sunlight | 56.1 | 99.8 | •O2− | — | [ |
g-C3N4/ZnO | azophloxine (10 mg L‒1) | 7 | 1 | 500 W Xe lamp | — | 95 | •O2−, h+ | — | [ |
SrTiO3/porous ZnO | methyl orange (5 mg L‒1) | 7 | 0.1 | 300 W Xe lamp | 32.4 | 48.8 | •O2− | CO2, H2O | [ |
N-ZnO/g-C3N4 | norfloxacin (10 mg L‒1) | 7 | 0.2 | 300 W Xe lamp (λ > 420 nm) | 57.7 | 96.4 | h+ | CO2, H2O, F−, NO3− | [ |
CuO/ZnO | mercury ions (368.3 µmol L‒1) | 4 | 1 | 300 W Xe lamp (λ > 420 nm) | 6 | 100 | e− | Mercury | [ |
ZnO-V2O5-WO3 | methylene blue (10 μmol L‒1) | 7 | 0.6 | Sunlight | 78.8 | 99.8 | •O2− | — | [ |
C-ZnO/Ag3PO4 | ciprofloxacin (10 mg L‒1) | 7 | 2 | 300 W Xe lamp (λ > 420 nm) | — | 96.7 | h+, •O2− | — | [ |
ZnO/ZnMn2O4/ ZnS-PVA | Co-trimoxazole (5 mg L‒1) | 7 | 0.05 | 500 W Visible lamp | — | 90 | — | — | [ |
N-ZnO/C@Bi2MoO6 | sulfamethoxazole (5 mg L‒1) | 9 | 1 | 300 W Xe lamp (λ > 420 nm) | — | 92.9 | h+ | — | [ |
ZnO/Zn3(PO4)2 | tetracycline (20 mg L‒1) | 7 | 1 | 400 W Osram lamps (400 nm< λ <700 nm) | 17 | 82 | •O2− | — | [ |
ZnO/gC3N4 | methyl orange (10 mg L‒1) | 7 | 0.5 | Mercury lamp (Visible light) | 49 | 99 | — | — | [ |
ZnO-g-C3N4@PET | methylene blue (15 mg L‒1) | 7 | — | 350 W Xe lamp (λ > 420 nm) | 16.2 | 92.5 | •OH, h+ | — | [ |
WO3/Ag/ZnO | cephalexin (30 mg L‒1) | 7 | — | Blue LED lamps | 13.9 | 98.8 | •O2−, •OH | — | [ |
ZnO-NiO | azophloxine (20 ppm) | 7 | 0.2 | — | ~27 | 82 | •O2−, •OH | — | [ |
LaFeO3/ZnO | mercury ions (100 ppm) | 4 | 1.25 | 300 W Xe lamp (λ > 420 nm) | 6 | 100 | e− | Mercury | [ |
Bi2O3-ZnO/ bentonite clay | congo red (200 mg L‒1) | 7 | 8 | UV light | — | 100 | — | — | [ |
Curcumin/ZnO | amaranth (0.5 mol L‒1) | 7 | 1 | 300 W Solar simulator | 42 | 93 | •O2− | — | [ |
NiS/ZnO | P-nitrophenol (101 μM) | 7 | 0.12 | 8 W Phillips UV light (λ = 254 nm) | 65 | 96 | •OH | — | [ |
Ga2O3/ZnO/WO3 | Rhodamine B (100 mg L‒1) | 7 | 0.6 | 300 W Xe lamp | — | 98.4 | h+, •O2− | CO2, H2O | [ |
CuO/ZnO | mercury ions (100 mg L‒1) | 4 | 1.8 | Xe lamp | 4.1 | 100 | e− | Mercury | [ |
Fig. 13. (a) Band structures of ZnxCd1-xS-DETA and ZnO. (b) The transfer route of PC in the ZnO/Zn0.5Cd0.5S-DETA S-scheme heterojunction under light irradiation. (c) Charge density difference of ZnO (100)/Zn0.5Cd0.5S (101), the charge accumulation is denoted by yellow, and the charge depletion is denoted by cyan; time courses of photocatalytic H2 production (d) and corresponding H2 evolution rates (e) of the S-scheme photocatalysts. Reproduced with permission. (f) Cycling stability test results for Zn0.5Cd0.5S-DETA and ZOZCS-2. Reproduced with permission from Ref. [31]. Copyright 2022, Wiley-VCH GmbH.
Fig. 14. (a) The transfer route of PC in ZnO/CdS/MoS2 heterojunctions under light irradiation; electrochemical impedance spectroscopy spectra (b), transient photocurrent spectra (c), and photocatalytic H2 evolution activities (d) of samples; stability tests for H2 evolution (e) and XRD patterns before and after 5 cycles (f) over ZCM-3 sample. Reproduced with permission from Ref. [27]. Copyright 2021, Elsevier B.V.
Fig. 15. SEM (a) and transmission electron microscope (TEM) (b) images of ZnO/WO3 composites; Photocatalytic H2O2 production activities (c) and fitted rate constants (d) of H2O2 decomposition (Kd) and formation (Kf) values of different samples. Reproduced with permission from Ref. [13]. Copyright 2021, Elsevier Ltd.
Fig. 16. Schematic illustrations of the ZnMn2O4/ZnO S-scheme heterojunction. (a) Staggered band configurations before contact. (b) Band bending and formation of IIEF after contact. (c) Transfer route of PC under light irradiation. (d) CO2 photoreduction performance of photocatalysts. (e) Recycling performance of ZZM30. Reproduced with permission from Ref. [91]. Copyright 2020, Elsevier B.V.
Fig. 17. Schematic diagram of the U(VI) extraction process from natural seawater using ZnO/Znln2S4 S-scheme heterojunctions. Reproduced with permission from Ref. [73]. Copyright 2022, Elsevier B.V.
|
[1] | 赵彬彬, 钟威, 陈峰, 王苹, 别传彪, 余火根. 高晶化g-C3N4光催化剂: 合成、结构调控和光催化产氢[J]. 催化学报, 2023, 52(9): 127-143. |
[2] | 唐小龙, 李锋, 李方, 江燕斌, 余长林. 单原子催化剂在光催化和电催化合成过氧化氢中的研究进展[J]. 催化学报, 2023, 52(9): 79-98. |
[3] | 蔡铭洁, 刘艳萍, 董珂欣, 陈晓波, 李世杰. 漂浮型Bi2WO6/C3N4/碳布S型异质结光催化材料用于高效净化水体环境[J]. 催化学报, 2023, 52(9): 239-251. |
[4] | 孙丽娟, 于晓慧, 唐丽永, 王伟康, 刘芹芹. 构建K3PW12O40/CdS核壳S型异质结实现同步太阳能光催化分解水和选择性苯甲醇氧化反应[J]. 催化学报, 2023, 52(9): 164-175. |
[5] | 王思恺, 闵祥婷, 乔波涛, 颜宁, 张涛. 单原子催化: 追寻催化领域的“圣杯”[J]. 催化学报, 2023, 52(9): 1-13. |
[6] | 刘博文, 蔡家杰, 张建军, 谭海燕, 程蓓, 许景三. MOF/CdS梯型光催化剂同时进行苯甲醇氧化和析氢反应及其机理研究[J]. 催化学报, 2023, 51(8): 204-215. |
[7] | 宋明明, 宋相海, 刘鑫, 周伟强, 霍鹏伟. ZnIn2S4/MOF-808微球结构S型异质结光催化剂的制备及其光还原CO2性能研究[J]. 催化学报, 2023, 51(8): 180-192. |
[8] | 邵秀丽, 李可, 李静萍, 程强, 王国宏, 王楷. 揭示NiS@Ta2O5纳米纤维中梯型电荷转移路径及光催化CO2转化性能[J]. 催化学报, 2023, 51(8): 193-203. |
[9] | 李嘉明, 李源, 王小田, 杨直雄, 张高科. TiO2上原子分散的Fe位点促进光催化CO2还原: 增强的催化活性、 DFT计算和机制洞察[J]. 催化学报, 2023, 51(8): 145-156. |
[10] | 阎菲, 张由子, 刘思碧, 邹睿卿, Jahan B Ghasemi, 李炫华. 供体-受体型卟啉基金属有机框架实现有效电荷分离高效光催化析氢[J]. 催化学报, 2023, 51(8): 124-134. |
[11] | 孙利娟, 王伟康, 路平, 刘芹芹, 王乐乐, 唐华. 纳米高熵合金实现光催化剂肖特基势垒的调控用于光催化制氢与苯甲醇氧化耦合反应[J]. 催化学报, 2023, 51(8): 90-100. |
[12] | 刘海峰, 黄祥, 陈加藏. 电子态调控促进氢气无损耗纯化中CO的光致富集和氧化[J]. 催化学报, 2023, 51(8): 49-54. |
[13] | 袁鑫, 范海滨, 刘杰, 覃龙州, 王剑, 段秀, 邱江凯, 郭凯. 连续流技术在光氧化还原催化转化的最新进展[J]. 催化学报, 2023, 50(7): 175-194. |
[14] | 余治晗, 关晨, 岳晓阳, 向全军. 碳环渗入的结晶氮化碳S型同质结及其光催化析氢[J]. 催化学报, 2023, 50(7): 361-371. |
[15] | 李慧杰, 池漫洲, 辛兴, 王瑞杰, 刘天府, 吕红金, 杨国昱. 异金属取代的多金属氧酸盐@光响应型金属-有机框架用于高选择性光催化CO2还原[J]. 催化学报, 2023, 50(7): 343-351. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||