催化学报 ›› 2023, Vol. 50: 175-194.DOI: 10.1016/S1872-2067(23)64447-X

• 综述 • 上一篇    下一篇

连续流技术在光氧化还原催化转化的最新进展

袁鑫a, 范海滨a, 刘杰a, 覃龙州a, 王剑a, 段秀a, 邱江凯a,b,*(), 郭凯a,b,*()   

  1. a南京工业大学生物与制药工程学院, 江苏南京 211816
    b南京工业大学材料化工国家重点实验室, 江苏南京 211800
  • 收稿日期:2023-03-15 接受日期:2023-05-03 出版日期:2023-07-18 发布日期:2023-07-25
  • 通讯作者: *电子邮箱: qiujiangkai@njtech.edu.cn (邱江凯), guok@njtech.edu.cn (郭凯).
  • 基金资助:
    国家自然科学基金(21702103);国家自然科学基金(21522604);江苏省先进生物制造协同创新中心(XTD2203);江苏高等教育自然科学研究项目(19KJB150027);江苏省卓越博士后人才资助计划(2022ZB389)

Recent advances in photoredox catalytic transformations by using continuous-flow technology

Xin Yuana, Hai-Bin Fana, Jie Liua, Long-Zhou Qina, Jian Wanga, Xiu Duana, Jiang-Kai Qiua,b,*(), Kai Guoa,b,*()   

  1. aCollege of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, China
    bState Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211800, Jiangsu, China
  • Received:2023-03-15 Accepted:2023-05-03 Online:2023-07-18 Published:2023-07-25
  • Contact: *E-mail: qiujiangkai@njtech.edu.cn (J.-K Qiu), guok@njtech.edu.cn (K. Guo).
  • About author:Jiang-Kai Qiu (College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University) obtained his Ph.D. degree from Nanjing Tech University in 2016. He studied as an exchanged Ph.D. student in Jiangsu Normal University and Texas Tech University (US) in the lab of Prof. Shu-Jiang Tu and Guigen Li from 2013 to 2016. In 2017, he returned to Nanjing Tech University and joined Prof. Kai Guo's group to begin his research work and was promoted as a professor in 2022. His research interests focus on microflow-based green and sustainable technology.
    Kai Guo (College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University) obtained his B.S. degree from Nanjing University in 2004, and Ph.D. degree from the Department of Chemistry at the University of Sheffield (UK) in 2008. Subsequently, he worked as the project manager at AF Chempharm Co. Ltd. (2008‒2009). After that, he began his postdoctoral study in the University of Sheffield (2009‒2010). In 2010, he started his independent research career at Nanjing Tech University as a professor. Currently, his research interests mainly focus on microflow technology and bio-based materials. He received the Second Prize of National Technology Invention Awards (2017), Feng Xinde Polymer Prizer (2017), International Award for Outstanding Young Chemical Engineer (2021), etc. He has published more than 200 peer-reviewed papers in Prog Polym. Sci., Appl. Catal. B, Angew. Chem. Int. Ed., Nat. Commun., Chem. Eng. J. etc.
  • Supported by:
    National Natural Science Foundation of China(21702103);National Natural Science Foundation of China(21522604);Jiangsu Synergetic Innovation Center for Advanced Bio-Manufacture(XTD2203);Natural Science Research Projects of Jiangsu Higher Education(19KJB150027);Jiangsu Funding Program for Excellent Postdoctoral Talent(2022ZB389)

摘要:

光氧化还原催化转化因其具备绿色、温和、可持续和原子经济性高等方面的优势, 近年来被广泛应用于构建有机合成和药物分子骨架. 光子被称为绿色“无痕”试剂, 可以提供能量进而引发化学反应. 光化学过程通常涉及分子分解、分子激发态的重排或发色团激发引起的电子转移(光氧化还原催化)等过程. 20世纪80年代, 太阳光能作为“绿色化学”的有力工具被用于构建新型分子骨架. 随后, 可见光被人们广泛应用于有机合成, 且陆续有新的研究结果报道. 然而, 众多研究表明光氧化还原催化中仍然存在一些基本限制. 近年来, 连续流反应技术成为一种引人注目且功能强大的工具, 该技术可以克服间歇反应器在反应过程中存在的局限. 连续流反应技术的引入可以有效解决传统有机光化学合成中的许多问题, 实现不同类型的光化学转化.

本综述系统地分析了传统光化学釜式反应器存在的限制: 第一, 根据布格-朗伯-比尔定律, 传统的光催化反应的透光率随着反应路径长度的增加衰减较为明显. 因而在使用较大的间歇式光反应器进行规模化放大实验时, 需要增加光照强度来克服光子衰减效应, 但容易过度照射反应体系, 进而引起反应体系受热不均造成反应效率下降和副产物增多等问题; 第二, 间歇式的光化学反应装置容易受混合效果的影响, 进行非均相反应时往往反应效率不高. 总结分析了连续流反应技术解决传统光反应中问题的成功关键在于连续流反应技术具有更好的混合能力、更优的传质传热效率以及更容易规模化放大的优势. 基于光催化剂的类型包括传统金属催化剂、有机光催化剂以及非均相光催化剂, 对近五年连续流技术在光氧化还原催化转化中的应用进行了分类及讨论. 针对不同反应条件包括光催化剂、多相反应和多步骤等体系中连续流反应器的装置材料和光源和溶剂等方面内容, 探讨了连续流反应技术在不同的光催化反应中的影响因素以及反应机理. 本文还提出了目前微流场技术中仍需要解决的问题: (1) 开发更高效的光催化剂; (2) 反应过程中固体堵塞及后处理系统的问题; (3) 实现大规模生产所需要的变革. 在此基础上, 对连续流技术在光氧化还原催化转化的研究前景进行了展望, 如多步骤连续流以及连续流技术在生物和聚合物材料方面的应用.

关键词: 光氧化还原催化, 连续流技术, 过渡金属光敏剂, 有机光催化剂, 非均相光催化剂

Abstract:

Photoredox catalysis is regarded as an economically appealing method for highly efficient and sustainable chemical syntheses. Nevertheless, numerous recent studies have revealed several unresolved disadvantages; for example, based on the Bouguer-Lambert-Beer law, the short propagation distance of photons in traditional batch reactors hampers the scalability of photocatalytic reactions. The introduction of continuous-flow technology for photochemical synthesis has resolved several of these problems. The use of photochemistry in microreactors has resulted in various transformations. Superior mixing ability, more effective heat transfer, and the easier magnification of continuous-flow chemical reactions are key to its success. Continuous-flow technology has allowed the optimization of several different types of conversion. Photoredox catalysts are effective under various reaction conditions because of their single-electron transfer properties. Common photocatalysts include transition metal complexes containing ruthenium, iridium, copper, iron, or manganese; organic photocatalysts; and heterogeneous photocatalysts. This review covers the types of photocatalysts that have recently been used in continuous-flow photochemistry.

Key words: Photoredox catalysis, Continuous-flow technology, Transition metal photosensitizer, Organic photocatalyst, Heterogeneous photocatalyst