催化学报 ›› 2023, Vol. 50: 195-214.DOI: 10.1016/S1872-2067(23)64456-0
Sang Eon Juna,b, Sungkyun Choia, Jaehyun Kima, Ki Chang Kwonb,*(), Sun Hwa Parkb,*(
), Ho Won Janga,c,*(
)
收稿日期:
2023-03-15
接受日期:
2023-05-15
出版日期:
2023-07-18
发布日期:
2023-07-25
通讯作者:
*电子信箱:
Sang Eon Juna,b, Sungkyun Choia, Jaehyun Kima, Ki Chang Kwonb,*(), Sun Hwa Parkb,*(
), Ho Won Janga,c,*(
)
Received:
2023-03-15
Accepted:
2023-05-15
Online:
2023-07-18
Published:
2023-07-25
Contact:
*E-mail: About author:
Ki Chang Kwon is a Senior Research Scientist of the Interdisciplinary Materials Measurement Institute in Korea Research Institute of Standards and Science (KRISS). He earned his Ph.D. from the Department of Materials Science and Engineering in Seoul National University in 2018 under supervision of prof. Ho Won Jang. He worked as a Postdoctoral research staff at Seoul National University at 2018 and at National University of Singapore (NUS) from 2018 to 2021. His research interests include the synthesis of low dimensional materials (1D & 2D), and halide perovskites, and their applications for nanoelectronics, solar water splitting catalysts, and chemoresistive gas sensors.摘要:
非贵金属单原子催化剂(NNMSAC)被认为是贵金属单原子催化剂的经济替代品, 同时保留了源自单原子位点独特电子结构的高催化活性. 通过金属-载体充分的相互作用, NNMSAC可以在各种电催化反应中发挥关键作用, 具有与贵金属单原子催化剂相当的高原子利用效率和选择性. 为此, 本文首先综述了NNMSAC在调节反应选择性、金属-载体相互作用和催化活性中心方面的特点. 随后, 详细介绍了用于析氢反应、析氧反应、氧还原反应、二氧化碳还原反应和氮还原反应的代表性NNMSAC(Co, Ni, Fe, Cu和双金属SAC)催化剂. 最后, 展望了NNMSAC在几何、电子和电化学性能方面进一步发展所面临的挑战.
Sang Eon Jun, Sungkyun Choi, Jaehyun Kim, Ki Chang Kwon, Sun Hwa Park, Ho Won Jang. 用于电化学能量转换反应的非贵金属单原子催化剂[J]. 催化学报, 2023, 50: 195-214.
Sang Eon Jun, Sungkyun Choi, Jaehyun Kim, Ki Chang Kwon, Sun Hwa Park, Ho Won Jang. Non-noble metal single atom catalysts for electrochemical energy conversion reactions[J]. Chinese Journal of Catalysis, 2023, 50: 195-214.
Fig. 3. (a) HAADF-STEM image of Co-C3N4/rGO. (b) XANES spectra at the Co K-edge of Co foil, CoO, Co3O4, CoPc, and Co-C3N4/rGO. (c) FT-EXAFS spectra in R space. (d) LSV curves of Co-C3N4/rGO, Co-C3N4, C3N4/rGO, and Pt/C in 1.0 mol L?1 KOH. (e) Mass activity of Co-C3N4, Pt-C, and Co-C3N4/rGO at the overpotential of 30, 40, 50, and 60 mV. (f) Free energy diagrams of OER on Co-3N and Co-N model. Reprinted with permission from Ref. [50]. Copyright 2022, American Chemical Society.
Fig. 4. (a) HAADF-STEM image of CN-0.5 Ni-HO. (b) FT-EXAFS spectra at the Ni K-edge of Ni foil, NiO, and Ni single atom coordinated CN with various Ni contents from 0.1% to 0.5%. (c) XANES spectra at the Ni K-edge. (d) Density of states of CN and CN-0.2Ni-HO. (e) Work functions of CN and CN-0.2Ni-HO. (f) Photocatalytic H2 production rates of CN, CN-Ni particles, and CN-0.2Ni-HO. Reprinted with permission from Ref. [51]. Copyright 2020, Wiley-VCH.
Fig. 5. (a) Synthesis schematic of Ni-O-G SACs. (b) FT-EXAFS spectra of Ni-O-G SACs with references of NiO and Ni foil. (c) The OER current curves of Ni-O-G SACs, NiO, B Ni-O-G, Ni-N-G SACs, O-G, and RuO2 tested at 5 mV s-1 and 80% iR correction in 1 mol L?1 KOH. Reprinted with permission from Ref. [52]. Copyright 2020, Wiley-VCH. (d) HAADF-STEM image. Yellow circles represent individually dispersed Fe atoms. (e) C K-edge XAS spectra. The inset spectrum exhibits an enlarged view of the C K-edge XAS spectra ranging from 284 to 290 eV. The inset depicts the structural model of Fe1(OH)x/P-C, where Fe, O, C, and H atoms are represented by blue, red, brown, and white spheres, respectively. (f) Turnover frequencies (TOF) at different overpotentials. (g) Pathway of the OER reaction on Fe1(OH)x/P-C. The Fe, O, C, and H atoms are represented by blue, red, brown, and white spheres, respectively. *OH, *O, and *OOH are the intermediates involved in the OER process. Reprinted with permission from Ref. [53]. Copyright 2021, American Chemical Society.
Fig. 6. (a) LSVs of the Co-N-C were recorded in various KOH solutions with varying concentrations of Fe3+. (b) Spherical aberration-corrected HAADF-STEM images of Co-N-C after activation in Fe-containing KOH (Co-Fe-N-C). XANES spectra (c), K-edge energies (at 50% level) (d) of XANES spectra in panel a and cobalt references compounds containing Co(0), Co(II), or Co(III). (e) Fourier transform of Co K-edge EXAFS spectra without phase correction was performed for as-prepared Co-N-C and the catalyst after activation, as well as during the OER process for different time durations. Reprinted with permission from Ref. [54]. Copyright 2019, American Chemical Society.
Fig. 7. Aberration-corrected HAADF-STEM image (a) and Faradaic efficiency (b) of Fe3+-N-C catalyst. XANES spectra on Fe K-edge (c) and Operando Fe K-edge XANES (d) of Fe3+-N-C catalyst. Reprinted with permission from Ref. [57]. Copyright 2019, AAAS. (e) FE of H2, C1 and C2+ products of N0.14C and Cu/NxC. (f) Scheme of Cun-CuN3 cluster transform in reversible pathway under reaction. Reprinted with permission from Ref. [127]. Copyright 2022, Nature Publishing Group. (g) Difference in theoretical limiting potential for CO2RR and HER for Fe1-N4-C, Fe2-N6-C-p-CO, Fe1-N3-C, Fe2-N6-C-o, and Fe2-N6-C-p. (h) Fe K-edge XANES spectra of different Fex-Ny-C and reference samples. (i) The energy diagram with difference of gibbs free energy on CO2RR for Fe1-N4-C, Fe2-N6-C-o, Fe2-N6-C-p, Fe1-N3-C, and Fe2-N6-C-p-CO. Reprinted with permission from Ref. [129]. Copyright 2022, American Chemical Society. (j) Faradaic efficiency for CO in 0.1 mol L?1 KHCO3 solution on ZIF-NC based samples. (k) The corresponding CO partial current density of the catalysts. Reprinted with permission from Ref. [131]. Copyright 2021, American Chemical Society.
Fig. 8. Scheme of preparing electrocatalysts ZnO3C and ZnN4 (a) and LSV curves of in 0.1 mol L?1 KOH electrolyte (b). (c) The free energy diagram of ZnO3C and ZnN4 towards 2 e- and 4 e- ORR pathway. Reprinted with permission from Ref. [138]. Copyright 2022, Wiley-VCH. (d) Bimetallic Fe-Mn sites was indicated with the intensity profile analysis on TEM result. Fe K-edge XANES (e) and FT-EXAFS spectra (f) of Fe,Mn/N-C and references. LSV curves (g) and Tafel plots (h) of Fe,Mn/N-C, Fe/N-C, Mn/N-C, and Pt/C catalyst in O2-saturated 0.1 mol L-1 HClO4 solution. Reprinted with permission from Ref. [140]. Copyright 2021, Nature Publishing Group.
Fig. 9. (a) Schematic illustration of the synthesis of Fe SAC. (b) FT k3-weighted χ(k)-function of the EXAFS spectra at Fe K-edge. (c) Fitting results of the EXAFS spectra of Fe SAC at k-space. (d) Schematic model of Fe SAC: Fe (yellow), N (blue), and C (gray). (e) LSV curves of the Fe SAC in 0.25 mol L?1 K2SO4 electrolyte and 0.50 mol L?1 KNO3/0.10 mol L?1 K2SO4 mixed electrolyte. (f) NH3 FE of Fe SAC at each given potential. Red dot is FE estimated by three independent NMR tests. (g) NH3 yield rate and partial current density of Fe SAC, FeNP/NC, and NC. Reprinted with permission from Ref. [58]. Copyright 2021, Nature Publishing Group.
Fig. 10. TEM images of AgNP/MnO2 at temperature of 50 °C (a) and 300 °C (b), respectively. (c) HAADF-STEM image of Ag1/MnO2. Reprinted with permission from Ref. [147]. Copyright 2021, Wiley-VCH. In-situ ATR-SEIRAS spectra of Fe1-NC (d) and Fe1-NSC (e) at different applied potentials. Reprinted with permission from Ref. [148]. Copyright 2022, Wiley-VCH. In-situ XAENS spectra (f) and EXAFS profiles (g) of Pd-NC. Reprinted with permission from Ref. [149]. Copyright 2020, Wiley-VCH. In-situ CO DRIFT spectra of Rh single atom based catalyst under CO at increasing temperatures (from bottom to top) (h) and CO DRIFT spectra of Rh single atom based catalyst under CO/O2 at 473?K (i). Reprinted with permission from Ref. [150]. Copyright 2019, Nature Publishing Group.
Fig. 11. (a) In-situ XANES spectra for Ni K-edge of NiFe-CNG with applying different potentials and samples for reference. In-situ FT-EXAFS (b) and WT-EXAFS (c) spectra for Ni K-edge of NiFe-CNG with applying potentials. (d) In-situ XANES spectra for Fe K-edge of NiFe-CNG with applying different potentials and samples for reference. In-situ FT-EXAFS (e) and WT-EXAFS (f) spectra for Fe K-edge of NiFe-CNG with applying potentials. Reprinted with permission from Ref. [151]. Copyright 2021, Nature Publishing Group.
Fig. 12. (a) Operando XANES and (b) FT-EXAFS for Cu K-edge region of Cu/N0.14C from open circuit potential to -1.4?V vs. RHE in 0.1 mol L?1 KHCO3 electrolyte. (c) Absorption edge of Cu/N0.14C was related to the coordination number first shell and second shell with respect to the applied potential. Reprinted with permission from Ref. [127]. Copyright 2022, Nature Publishing Group. (d) XANES spectra at the Mn K-edge of Mn-C3N4/CNT under various reaction conditions Reprinted with permission from Ref. [152]. Copyright 2020, Nature Publishing Group. In-situ Raman spectra (e) and In-situ ATR-SEIRAS (f) of Cu(OH)BTA at the applied potential under CO2 atmosphere and CO2-saturated 0.1? mol L?1 KHCO3 electrolyte, respectively. Reprinted with permission from Ref. [153]. Copyright 2023, Nature Publishing Group.
|
[1] | 唐小龙, 李锋, 李方, 江燕斌, 余长林. 单原子催化剂在光催化和电催化合成过氧化氢中的研究进展[J]. 催化学报, 2023, 52(9): 79-98. |
[2] | 张季, 俞爱民, 孙成华. 非金属掺杂石墨烯异核双原子催化剂氮还原特性研究[J]. 催化学报, 2023, 52(9): 263-270. |
[3] | 胡金念, 田玲婵, 王海燕, 孟洋, 梁锦霞, 朱纯, 李隽. MXene负载3d金属单原子高效氮还原电催化剂的理论筛选[J]. 催化学报, 2023, 52(9): 252-262. |
[4] | 洪岩, 王琦, 阚子旺, 张禹烁, 郭晶, 李思琦, 刘松, 李斌. 电化学氮还原氨反应催化剂的最新研究进展[J]. 催化学报, 2023, 52(9): 50-78. |
[5] | 刘勇, 赵晓丽, 隆昶, 王晓艳, 邓邦为, 李康璐, 孙艳娟, 董帆. 原位构筑动态Cu/Ce(OH)x界面用于高活性、高选择性和高稳定性硝酸盐还原合成氨[J]. 催化学报, 2023, 52(9): 196-206. |
[6] | 高晖, 张恭, 程东方, 王永涛, 赵静, 李晓芝, 杜晓伟, 赵志坚, 王拓, 张鹏, 巩金龙. 构建Cu台阶位促进电催化CO2还原制醇类化学品的研究[J]. 催化学报, 2023, 52(9): 187-195. |
[7] | 王思恺, 闵祥婷, 乔波涛, 颜宁, 张涛. 单原子催化: 追寻催化领域的“圣杯”[J]. 催化学报, 2023, 52(9): 1-13. |
[8] | 张雯, 宋彩彩, 王嘉蔚, 蔡舒婷, 高梦语, 冯有祥, 鲁统部. 双向主客体作用促进水溶液中选择性光催化CO2还原与醇氧化[J]. 催化学报, 2023, 52(9): 176-186. |
[9] | 邹心仪, 顾均. 酸性条件下二氧化碳高效电还原策略[J]. 催化学报, 2023, 52(9): 14-31. |
[10] | 赵磊, 张震, 朱昭昭, 李平波, 蒋金霞, 杨婷婷, 熊佩, 安旭光, 牛晓滨, 齐学强, 陈俊松, 吴睿. 缺陷氮掺杂碳耦合Co-N5单原子位点用于高效锌-空气电池[J]. 催化学报, 2023, 51(8): 216-224. |
[11] | 宋明明, 宋相海, 刘鑫, 周伟强, 霍鹏伟. ZnIn2S4/MOF-808微球结构S型异质结光催化剂的制备及其光还原CO2性能研究[J]. 催化学报, 2023, 51(8): 180-192. |
[12] | 邵秀丽, 李可, 李静萍, 程强, 王国宏, 王楷. 揭示NiS@Ta2O5纳米纤维中梯型电荷转移路径及光催化CO2转化性能[J]. 催化学报, 2023, 51(8): 193-203. |
[13] | 李嘉明, 李源, 王小田, 杨直雄, 张高科. TiO2上原子分散的Fe位点促进光催化CO2还原: 增强的催化活性、 DFT计算和机制洞察[J]. 催化学报, 2023, 51(8): 145-156. |
[14] | 刘赵春, 宗雪, Dionisios G. Vlachos, Ivo A. W. Filot, Emiel J. M. Hensen. 金属掺杂SnO2电化学还原CO2制甲酸的计算研究[J]. 催化学报, 2023, 50(7): 249-259. |
[15] | 林敏, 罗美兰, 柳勇志, 沈锦妮, 龙金林, 张子重. 一维S型异质结W18O49-SiC海胆状复合催化剂增强光催化CO2还原[J]. 催化学报, 2023, 50(7): 239-248. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||