催化学报 ›› 2023, Vol. 52: 1-13.DOI: 10.1016/S1872-2067(23)64505-X

• 视角 •    下一篇

单原子催化: 追寻催化领域的“圣杯”

王思恺a,b,1, 闵祥婷c,1, 乔波涛c,d, 颜宁a,b,*(), 张涛c,d,e,*()   

  1. a天津大学滨海新城国际校区, 新加坡国立大学与天津大学联合学院, 福建福州350207, 中国
    b新加坡国立大学化学与生物分子工程系, 新加坡
    c中国科学院大连化学物理研究所, 中国科学院应用催化科学技术重点实验室, 辽宁大连116023, 中国
    d中国科学院大学, 北京100049, 中国
    e中国科学院大连化学物理研究所, 催化基础国家重点实验室, 辽宁大连116023, 中国
  • 收稿日期:2023-07-14 接受日期:2023-08-21 出版日期:2023-09-18 发布日期:2023-09-25
  • 通讯作者: *电子信箱: ning.yan@nus.edu.sg (颜宁),taozhang@dicp.ac.cn (张涛).
  • 作者简介:1共同第一作者.

Single-atom catalysts: In search of the holy grails in catalysis

Sikai Wanga,b,1, Xiang-Ting Minc,1, Botao Qiaoc,d, Ning Yana,b,*(), Tao Zhangc,d,e,*()   

  1. aJoint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, Fujian, China
    bDepartment of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive, Singapore
    cCAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
    dUniversity of Chinese Academy of Sciences, Beijing 100049, China
    eState Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
  • Received:2023-07-14 Accepted:2023-08-21 Online:2023-09-18 Published:2023-09-25
  • Contact: *E-mail: ning.yan@nus.edu.sg (N. Yan),taozhang@dicp.ac.cn (T. Zhang).
  • About author:Ning Yan (Department of Chemical & Biomolecular Engineering, National University of Singapore) currently holds a Dean’s Chair Professorship at National University of Singapore. He received his B.Sc. and Ph.D. degrees in chemistry from Peking University (China) in 2004 and 2009, respectively (supervisor: Prof. Yuan Kou). Then he joined the École Polytechnique Fédérale de Lausanne in Switzerland with a Marie Curie Fellowship until 2012 (collaborator: Prof. Paul Dyson). After that, he started working in the Department of Chemical and Biomolecular Engineering in National University of Singapore and was promoted to a tenured associate professor in 2018. He received NRF Investigatorship Award (2022), NUS Young Researcher Award (2019), ACS Sustainable Chemistry & Engineering Lectureship Award (2018), and RSC Environment, Sustainability and Energy Early Career Award (2017), among others. His research interests lie in advanced heterogeneous catalysis, green chemistry & engineering, and renewable energy & chemical production, with over 200 published peer-reviewed papers.
    Tao Zhang (Dalian Institute of Chemical Physics, Chinese Academy of Sciences) received his Ph.D. in physical chemistry from Dalian Institute of Chemical Physics (DICP) in 1989 under the supervision of Prof. Liwu Lin. After a one-year postdoctoral position with Prof. Frank Berry at Birmingham University, he founded his own group at DICP in 1990 and promoted to full professor there in 1995. Prof. Zhang was the director of DICP in 2007-2017 and has been a vice president of Chinese Academy of Sciences since 2017. He was appointed as the editors-in-chief of Chin. J. Catal. in 2014. Meanwhile, he has been the director representing the China aside of the China-France Joint laboratory for Sustainable Energy since 2008. Prof. Zhang has won many important awards, such as the National Invention Prize (for three times), Distinguished Award of CAS, Excellent Scientist Award of Chinese Catalysis Society, and Ho Leung Ho Lee Prize for Science and Technology. His research interests focus on heterogeneous catalysis, environmental catalysis, and biomass conversion. He authored and coauthored more than 400 publications in peer-reviewed journals.
    1Contribute equally to this work.

摘要:

在催化领域, “圣杯”反应是指对人类未来具有显著的科学、经济和环境可持续性价值的反应. 这些反应利用地球上丰富易得的资源, 如CH4, H2O, CO2和N2等, 生产各种有价值的化工产品. 尽管意义重大, 但由于反应物的化学惰性和产物相对活泼的特点, 反应的转化率通常较低, 对目标产物的选择性较差. 目前, 降低“圣杯”反应的活化能垒仍然是一个巨大的挑战, 需要开发新型催化剂来应对以上挑战. 单原子催化剂(SAC)含有部分带电的金属单原子物种, 具有明确的、可调的结构, 是一类很有前途的负载型催化剂, 不仅可以提升催化性能, 也为深入了解反应机制和构效关系提供便利.

本文总结和评价了SAC在五个“圣杯”反应中的最新应用. 围绕甲烷活化, 介绍了甲烷温和氧化制甲醇和无氧甲烷偶联两类反应. 热催化甲烷氧化通常需要引入共还原剂来提升催化活性, 因此所采用的SAC通过多位点协同作用, 实现串联催化过程以有效活化甲烷; 而光催化过程则可在无共还原剂的情况下, 通过不同单原子金属位点(如Au, Pd, Fe, W)与水或O2的作用, 产生活性氧物种, 实现甲烷活化. 目前用于甲烷氧化的SAC仍缺乏统一的设计和优化标准, 在效率提升和机理研究等方面有很大发展空间. 对于无氧甲烷偶联反应, 目前开发的SAC主要有Fe, Pt和Pd基催化剂, 其中单原子位点有助于抑制积碳, 提升性能稳定性和产物选择性. 然而, 部分SAC在高温无氧气氛下难以维持其单原子结构, 仍需进一步探索和优化. 随后介绍了两种人工光合成反应, 即水分解产氢和CO2还原. 对于光催化产氢, SAC独特且结构明确的位点可显著提升产氢乃至全解水的性能, 也可用于产氢机理的深入研究. 对于光催化CO2还原, 重点介绍了对生成CO, CH4和CH3OH具有高选择性的SAC, 其中, 单原子位点对于调节小分子中间体的吸附起到了重要作用, 从而影响了选择性. 许多用于人工光合成的SAC存在不止一种催化位点, 这些位点可以协同提升目标反应的效率. 最后, 展示了SAC用于氮气活化合成氨的研究进展, 大多采用非贵金属位点(如Fe, Co和La), 通过特定的配位结构实现与N2的特殊作用, 以有效削弱N≡N键强度.

本文最后总结了SAC在“圣杯”反应中的优势和面临的诸多挑战, 并提出了该领域未来可能的发展方向, 其中包括深入探究机理和构效关系, 结合先进信息技术高效筛选符合条件的催化剂, 以及设计新型催化位点以扩大催化材料的应用领域.

关键词: 单原子催化剂, 人工光合成, 选择性甲烷氧化, 无氧甲烷偶联, 光催化制氢, 二氧化碳光还原, 氮气活化

Abstract:

This perspective assesses the recent progress using single-atom catalysts for five “holy grail” reactions, including partial methane oxidation to methanol, non-oxidative methane conversion, photocatalytic CO2 reduction, photocatalytic water splitting, and nitrogen activation. Using selected case studies, we discuss promising efforts in these domains and at the same time identify the remaining challenges in using SACs for selective and efficient chemical transformations across thermal, electrical, and light-driven catalysis. Looking forward, we highlight the significant potential of SAC research in areas like mechanistic studies, high-throughput screening, and novel catalytic system design.

Key words: Single-atom catalyst, Artificial photosynthesis, Selective methane oxidation, Non-oxidative methane coupling, Photocatalytic hydrogen production, Carbon dioxide photoreduction, Nitrogen activation