催化学报 ›› 2023, Vol. 52: 1-13.DOI: 10.1016/S1872-2067(23)64505-X
• 视角 • 下一篇
王思恺a,b,1, 闵祥婷c,1, 乔波涛c,d, 颜宁a,b,*(), 张涛c,d,e,*(
)
收稿日期:
2023-07-14
接受日期:
2023-08-21
出版日期:
2023-09-18
发布日期:
2023-09-25
通讯作者:
*电子信箱: ning.yan@nus.edu.sg (颜宁),taozhang@dicp.ac.cn (张涛).
作者简介:
1共同第一作者.
Sikai Wanga,b,1, Xiang-Ting Minc,1, Botao Qiaoc,d, Ning Yana,b,*(), Tao Zhangc,d,e,*(
)
Received:
2023-07-14
Accepted:
2023-08-21
Online:
2023-09-18
Published:
2023-09-25
Contact:
*E-mail: About author:
Ning Yan (Department of Chemical & Biomolecular Engineering, National University of Singapore) currently holds a Dean’s Chair Professorship at National University of Singapore. He received his B.Sc. and Ph.D. degrees in chemistry from Peking University (China) in 2004 and 2009, respectively (supervisor: Prof. Yuan Kou). Then he joined the École Polytechnique Fédérale de Lausanne in Switzerland with a Marie Curie Fellowship until 2012 (collaborator: Prof. Paul Dyson). After that, he started working in the Department of Chemical and Biomolecular Engineering in National University of Singapore and was promoted to a tenured associate professor in 2018. He received NRF Investigatorship Award (2022), NUS Young Researcher Award (2019), ACS Sustainable Chemistry & Engineering Lectureship Award (2018), and RSC Environment, Sustainability and Energy Early Career Award (2017), among others. His research interests lie in advanced heterogeneous catalysis, green chemistry & engineering, and renewable energy & chemical production, with over 200 published peer-reviewed papers.摘要:
在催化领域, “圣杯”反应是指对人类未来具有显著的科学、经济和环境可持续性价值的反应. 这些反应利用地球上丰富易得的资源, 如CH4, H2O, CO2和N2等, 生产各种有价值的化工产品. 尽管意义重大, 但由于反应物的化学惰性和产物相对活泼的特点, 反应的转化率通常较低, 对目标产物的选择性较差. 目前, 降低“圣杯”反应的活化能垒仍然是一个巨大的挑战, 需要开发新型催化剂来应对以上挑战. 单原子催化剂(SAC)含有部分带电的金属单原子物种, 具有明确的、可调的结构, 是一类很有前途的负载型催化剂, 不仅可以提升催化性能, 也为深入了解反应机制和构效关系提供便利.
本文总结和评价了SAC在五个“圣杯”反应中的最新应用. 围绕甲烷活化, 介绍了甲烷温和氧化制甲醇和无氧甲烷偶联两类反应. 热催化甲烷氧化通常需要引入共还原剂来提升催化活性, 因此所采用的SAC通过多位点协同作用, 实现串联催化过程以有效活化甲烷; 而光催化过程则可在无共还原剂的情况下, 通过不同单原子金属位点(如Au, Pd, Fe, W)与水或O2的作用, 产生活性氧物种, 实现甲烷活化. 目前用于甲烷氧化的SAC仍缺乏统一的设计和优化标准, 在效率提升和机理研究等方面有很大发展空间. 对于无氧甲烷偶联反应, 目前开发的SAC主要有Fe, Pt和Pd基催化剂, 其中单原子位点有助于抑制积碳, 提升性能稳定性和产物选择性. 然而, 部分SAC在高温无氧气氛下难以维持其单原子结构, 仍需进一步探索和优化. 随后介绍了两种人工光合成反应, 即水分解产氢和CO2还原. 对于光催化产氢, SAC独特且结构明确的位点可显著提升产氢乃至全解水的性能, 也可用于产氢机理的深入研究. 对于光催化CO2还原, 重点介绍了对生成CO, CH4和CH3OH具有高选择性的SAC, 其中, 单原子位点对于调节小分子中间体的吸附起到了重要作用, 从而影响了选择性. 许多用于人工光合成的SAC存在不止一种催化位点, 这些位点可以协同提升目标反应的效率. 最后, 展示了SAC用于氮气活化合成氨的研究进展, 大多采用非贵金属位点(如Fe, Co和La), 通过特定的配位结构实现与N2的特殊作用, 以有效削弱N≡N键强度.
本文最后总结了SAC在“圣杯”反应中的优势和面临的诸多挑战, 并提出了该领域未来可能的发展方向, 其中包括深入探究机理和构效关系, 结合先进信息技术高效筛选符合条件的催化剂, 以及设计新型催化位点以扩大催化材料的应用领域.
王思恺, 闵祥婷, 乔波涛, 颜宁, 张涛. 单原子催化: 追寻催化领域的“圣杯”[J]. 催化学报, 2023, 52: 1-13.
Sikai Wang, Xiang-Ting Min, Botao Qiao, Ning Yan, Tao Zhang. Single-atom catalysts: In search of the holy grails in catalysis[J]. Chinese Journal of Catalysis, 2023, 52: 1-13.
Fig. 1. Statistics of published articles about adopting SACs for direct conversion of methane, water, carbon dioxide and nitrogen into value-added chemicals via thermo-catalysis, electrocatalysis or photo(electro)catalysis (using Scopus database, data collected on 30th June 2023).
Fig. 2. Single atom catalysts for direct methane conversion. (a) Scheme of proposed reaction pathway for partial oxidation of CH4 with O2 and H2 over PdCu/Z-5. Reprinted with permission from Ref. [31]. Copyright 2022, John Wiley and Sons. (b) Reaction pathway for partial oxidation of methane over Au1/BP nanosheets under light irradiation. The inset images show the side views of the configurations. Yellow, violet, pink, red, gray, and white spheres refer to Au, surface P, subsurface P, O, C, and H atoms, respectively. Reprinted with permission from Ref. [37]. Copyright 2021, Springer Nature. (c) Schematic showing selective photo-activation of CH4 to CH3OH over PMOF-RuFe(OH) in the presence of O2, H2O and irradiation (hν). (d) Comparison of the methane oxidation activity over various catalysts in batch mode. Reaction conditions: 3 mL water, 20 h visible light, 10 mg catalyst and CH4/O2 (1 atm). Figs. (c) and (d) are reprinted with permission from Ref. [39]. Copyright 2022, Springer Nature. (e) Free-energy profiles of intermediates and transition states for methane activation and transformation on Fe1?SiC2 active center. Reprinted with permission from Ref. [51]. Copyright 2020, John Wiley and Sons. (f) Comparison of nonoxidative methane conversion activity and product selectivity at 975 °C over the different catalysts and controls. Reprinted with permission from Ref. [52]. Copyright 2018, American Chemical Society. (g) Time-dependent photocatalytic C2H6 and C2H4 production over ZnO-AuPd2.7%. Reprinted with permission from Ref. [60]. Copyright 2021, American Chemical Society.
Fig. 3. Selected SACs systems very recently for artificial photosynthesis. (a) H2 evolution rates of the CN@CuS, Pt@CN@CuS and Pt1-CN@CuS. Reprinted with permission from Ref. [77]. Copyright 2020, John Wiley and Sons. (b) UV/Vis-NIR DRS spectra of prepared samples. (c) H2 evolution tests of prepared samples under visible light irradiation (λ > 430 nm) at 30 °C. Figs. (b) and (c) are reprinted with permission from Ref. [81]. Copyright 2022, John Wiley and Sons. (d) Mass distributions of C60V+, C60VO+, and C60V+(H2O) produced via laser vaporization, with and without IR irradiation at 1190 cm-1. (e) IRMPD spectrum of C60V+(H2O) and calculated spectra of C60V+(H2O) with η5 and η6. Figs. (d) and (e) are reprinted with permission from Ref. [82]. Copyright 2021, John Wiley and Sons. (f) Photocatalytic CO evolution over different Fe catalyst. Reprinted with permission from Ref. [88]. Copyright 2022, American Chemical Society. (g) Gas yield and selectivity towards methane for PCN‐Cu SACs, PCN‐Ru SACs and PCN‐RuCu SACs. (h) Schematic of the possible photocatalytic mechanism of PCN‐RuCu for photocatalytic CO2 reduction under light illumination. Nitrogen, carbon, ruthenium and copper atoms are shown in blue, gray, green and pale red, respectively. Figs. (g) and (h) are reprinted with permission from Ref. [90]. Copyright 2022, Elsevier B. V. (i) Production rates of CH4 and CO of CO2 photoreduction for Pd1/C3N4, Pd1+NPs/C3N4, and PdNPs/C3N4. (j) The reaction mechanism for photoreduction of CO2 to CH4 over Pd1+NPs/C3N4. Figs. (i) and (j) are reprinted with permission from Ref. [91]. Copyright 2022, John Wiley and Sons.
Fig. 4. N2 hydrogenation pathway on the steady-state Co1-N3.5 sites (represented by A) (a) and dynamic cyclic sites (CoN6?x/C) (b). Figs. (a) and (b) are reprinted with permission from Ref. [100]. Copyright 2020, Springer Nature. (c) Molecular orbital diagram of N2 and proposed Fe spin configurations in FeN4 and FeN3S1. Reprinted with permission from Ref. [104]. Copyright 2022, John Wiley and Sons. (d) DFT-calculated optimized free energy pathways for NRR on FeS2O2, FeS1O3, FeS1O2 and FeO3 coordination configurations, respectively. Reprinted with permission from Ref. [105]. Copyright 2022, John Wiley and Sons. (e) Diagrams of the nitrogen π* 2p orbital and the electron transfer from La to the adsorbed nitrogen. Reprinted with permission from Ref. [109]. Copyright 2022, Elsevier B. V.
|
[1] | 唐小龙, 李锋, 李方, 江燕斌, 余长林. 单原子催化剂在光催化和电催化合成过氧化氢中的研究进展[J]. 催化学报, 2023, 52(9): 79-98. |
[2] | 胡金念, 田玲婵, 王海燕, 孟洋, 梁锦霞, 朱纯, 李隽. MXene负载3d金属单原子高效氮还原电催化剂的理论筛选[J]. 催化学报, 2023, 52(9): 252-262. |
[3] | 张雯, 宋彩彩, 王嘉蔚, 蔡舒婷, 高梦语, 冯有祥, 鲁统部. 双向主客体作用促进水溶液中选择性光催化CO2还原与醇氧化[J]. 催化学报, 2023, 52(9): 176-186. |
[4] | 赵磊, 张震, 朱昭昭, 李平波, 蒋金霞, 杨婷婷, 熊佩, 安旭光, 牛晓滨, 齐学强, 陈俊松, 吴睿. 缺陷氮掺杂碳耦合Co-N5单原子位点用于高效锌-空气电池[J]. 催化学报, 2023, 51(8): 216-224. |
[5] | 李嘉明, 李源, 王小田, 杨直雄, 张高科. TiO2上原子分散的Fe位点促进光催化CO2还原: 增强的催化活性、 DFT计算和机制洞察[J]. 催化学报, 2023, 51(8): 145-156. |
[6] | 贡立圆, 王颖, 刘杰, 王显, 李阳, 侯帅, 武志坚, 金钊, 刘长鹏, 邢巍, 葛君杰. 重塑位于火山曲线右支的弱吸附金属单原子位点的配位环境及电子结构[J]. 催化学报, 2023, 50(7): 352-360. |
[7] | Sang Eon Jun, Sungkyun Choi, Jaehyun Kim, Ki Chang Kwon, Sun Hwa Park, Ho Won Jang. 用于电化学能量转换反应的非贵金属单原子催化剂[J]. 催化学报, 2023, 50(7): 195-214. |
[8] | 黄正清, 贺姝玥, 班涛, 高新, 许云华, 常春然. Pt-Cu合金催化剂上甲烷无氧偶联的机理与微观动力学研究: 从单原子位点到单团簇位点[J]. 催化学报, 2023, 48(5): 90-100. |
[9] | 姜润, 乔泽龙, 许昊翔, 曹达鹏. 用于氧还原反应的Fe-N-C单原子催化剂的缺陷工程[J]. 催化学报, 2023, 48(5): 224-234. |
[10] | Eun Hyup Kim, Min Hee Lee, Jeehye Kim, Eun Cheol Ra, Ju Hyeong Lee, Jae Sung Lee. 无碱CO2加氢高效制甲酸Pd/g-C3N4催化剂的单原子和纳米簇的协同作用[J]. 催化学报, 2023, 47(4): 214-221. |
[11] | 詹麒尼, 帅婷玉, 徐慧民, 黄陈金, 张志杰, 李高仁. 单原子催化剂的合成及其在电化学能量转换中的应用[J]. 催化学报, 2023, 47(4): 32-66. |
[12] | 聂超, 龙向东, 刘琪, 王嘉, 展飞, 赵泽伦, 李炯, 席永杰, 李福伟. 原子分散Ru-P-Ru催化剂的制备及其在多类加氢中的高效应用[J]. 催化学报, 2023, 45(2): 107-119. |
[13] | 白雪, 韩璟怡, 陈思雨, 牛效迪, 管景奇. 双杂原子配位提高单原子锰位点的析氧活性[J]. 催化学报, 2023, 54(11): 212-219. |
[14] | 韩璟怡, 管景奇. 单原子催化剂大数据库[J]. 催化学报, 2023, 44(1): 1-3. |
[15] | 黎晓阳, 曹宇飞, 熊佳容, 李隽, 肖海, 李昕阳, 苟清强, 戈钧. 酶-金属单原子复合催化剂在一锅法生物-化学反应的应用[J]. 催化学报, 2023, 44(1): 139-145. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||