催化学报 ›› 2023, Vol. 50: 126-174.DOI: 10.1016/S1872-2067(23)64451-1
安国庆a, 张晓伟b,*(), 张灿阳a, 高鸿毅a,c,d,*(
), 刘斯奇a, 秦耕a, 齐辉a, Jitti Kasemchainane, 张建伟a, 王戈a,*(
)
收稿日期:
2023-02-28
接受日期:
2023-04-23
出版日期:
2023-07-18
发布日期:
2023-07-25
通讯作者:
*电子信箱: 基金资助:
Guoqing Ana, Xiaowei Zhangb,*(), Canyang Zhanga, Hongyi Gaoa,c,d,*(
), Siqi Liua, Geng Qina, Hui Qia, Jitti Kasemchainane, Jianwei Zhanga, Ge Wanga,*(
)
Received:
2023-02-28
Accepted:
2023-04-23
Online:
2023-07-18
Published:
2023-07-25
Contact:
*E-mail: About author:
Xiaowei Zhang (Institute of Advanced Materials, Beijing Normal University) received her Ph.D. degree in Materials Science and Engineering from University of Science and Technology Beijing in 2015. She then worked as a postdoc fellow in the Department of Physics at Peking University from 2015 to 2018. Since 2018, she has been working at the Institute of Advanced Materials of Beijing Normal University. Her research interest mainly focuses on organic-inorganic hybrid materials and their applications in energy storage, catalysis and optoelectronics. She has published more than 40 peer-reviewed papers.Supported by:
摘要:
醇的选择性氧化是一类非常重要的有机合成反应, 因其能够生产多种高值化学品和重要的化工原料, 被广泛应用于全合成、精细化工与医药等领域. 目前虽已开发出多种可将醇转化为醛、酮或酸等产物的催化体系, 但仍普遍存在反应条件苛刻、转化率低和选择性差等问题, 且大多数催化氧化体系还涉及使用危险性氧化剂、添加剂或有毒试剂, 导致产生大量有害废弃物和造成环境污染, 因此开发高效、安全且环境友好的用于醇氧化绿色催化剂具有重要意义. 金属有机骨架(MOFs)是一类由有机配体和金属离子/团簇组装而成的具有重复网络结构的多孔晶体材料, 具有比表面积大、孔结构可调、活性位点丰富以及易于回收再利用等优点, 在醇类绿色催化氧化领域中表现出巨大潜力, 受到了研究者的广泛关注. MOFs还可作为载体与其它催化活性组分进行复合构筑MOFs基复合材料, 或作为前驱体通过热处理等手段获得多种MOFs衍生物材料, 这两类MOFs基材料在保留MOFs材料高比表面积、大孔隙率等特征的基础上, 进一步集成了多元活性位点和良好结构稳定性等优势.
本综述总结和讨论了近年来MOFs基材料作为绿色催化剂在醇催化氧化领域的代表性研究进展. 按照MOFs基材料种类(纯MOFs、MOFs复合材料和MOFs衍生物)和反应类型(热催化、光催化和电催化)进行系统分类, 并依据MOFs基材料属性(MOFs金属节点种类、MOFs基复合材料负载活性组分种类、MOFs衍生物金属中心种类以及光催化改性策略种类)对各章节内容进行了分类介绍, 同时围绕材料基本合成工艺、催化反应条件及催化性能、底物普适性、醇氧化机理和材料稳定性等方面对多种所涉及的MOFs基材料进行了详细介绍, 并从计算角度出发介绍了密度泛函理论(DFT)在MOFs基材料催化醇类氧化方面的应用. 此外, 还充分讨论了MOFs基材料作为醇氧化用绿色催化剂的基本特征、设计原则、合成策略和催化机制, 并针对潜在的科学挑战提出了相应的解决方案. 本文旨在介绍当前醇类氧化用MOFs基绿色催化剂及催化体系的研究现状, 为高效、绿色、安全、稳定的催化新体系开发提供设计思路和理论依据, 进一步推动MOFs基催化剂在醇氧化领域的规模化推广与应用. 总体而言, 虽然目前MOFs基材料在稳定性、规模化生产等方面仍面临诸多挑战, 但随着研究的进一步深入, MOFs基催化剂在醇类绿色催化氧化领域将展现出更广阔的应用前景.
安国庆, 张晓伟, 张灿阳, 高鸿毅, 刘斯奇, 秦耕, 齐辉, Jitti Kasemchainan, 张建伟, 王戈. 金属有机骨架基绿色催化剂在醇氧化反应中的研究应用[J]. 催化学报, 2023, 50: 126-174.
Guoqing An, Xiaowei Zhang, Canyang Zhang, Hongyi Gao, Siqi Liu, Geng Qin, Hui Qi, Jitti Kasemchainan, Jianwei Zhang, Ge Wang. Metal-organic-framework-based materials as green catalysts for alcohol oxidation[J]. Chinese Journal of Catalysis, 2023, 50: 126-174.
Scheme 1. Schematic representation of three different types of MOF-based catalysts (MOFs, MOF composites, and MOF derivatives) used for alcohol oxidation reactions.
Entry | Catalyst | Catalyst amount | Co-catalyst | Base | Condition | Substrate | Conv. (%) | Sel. (%) | Reusa bility (cycles) |
---|---|---|---|---|---|---|---|---|---|
1 | Fe-MOF-808 [ | 10 mol% | — | — | CH3CN/TBHP/90 °C/9 h | benzyl alcohol | 99 | 96 | 4 |
2 | UiO-66(Zr)-V [ | 0.34 mol% | — | — | CH3CN/TBHP/80 °C/9 h | trans-2-hexen-1-ol | 88 | > 99 | 3 |
3 | UiO-67-TEMPO (38%) [ | 1 mol% | tertbutyl nitrite (t-BuONO) | — | 1,2-dichlorethane/air/ 25 °C/24 h | benzyl alcohol | > 99 | > 99 | 3 |
4 | UiO-68-TEMPO microcrystal [ | 5 mol% | tertbutyl nitrite (TBN) | — | 1,2-dichlorethane, H2O/air/80 °C/8 h | benzyl alcohol | > 99 | > 99 | 3 |
5 | Cu3(BTC)2 [ | 0.732 mmol | TEMPO | Na2CO3 | CH3CN/O2/75 °C/22 h | benzyl alcohol | 89 | 98 | — |
6 | Cu-MOF-2 [ | 17 mol% | TEMPO | Na2CO3 | CH3CN/O2/120 °C/16 h | benzyl alcohol 4- fluorobenzyl alcohol benzhydrol cinnamyl alcohol | > 99 69 — >99 | > 99 >99 — >99 | 15 |
7 | Cu3(BTC)2-PEG300 [ | 30 mg | TEMPO | — | CH3CN/O2/75 °C/3 h | benzyl alcohol | > 90 | > 98 | 4 |
8 | Cu-MOF-74 [ | 0.025 mmol | TEMPO | 4-dimethylaminopyridine (DMAP) | CH3CN/O2/70 °C/12 h | benzyl alcohol cinnamyl alcohol 4-bromobenzyl alcohol | 89 80 > 99 | > 99 > 99 > 99 | 2 at least |
9 | Cu-FMOF [ | 10 mol% | TEMPO | Na2CO3 | CH3CN/O2/75 °C/16 h | benzyl alcohol 4-methoxybenzyl alcohol 4-fluorobenzyl alcohol | 94 99 89 | 99 99 99 | 5 |
10 | UoB-1(Cu) [ | 3 mol% | — | — | solvent-free/TBHP/ 45 °C/1.5-3 h | benzyl alcohol 4- nitrobenzyl alcohol benzhydrol | 95 85 75 | > 99 > 99 > 99 | 6 |
11 | Cu MOF 1 [ | — | — | — | solvent-free/TBHP/ 100 °C/0.5 h/ Microwave-irradiation | benzyl alcohol 1-phenylethanol | 81 98 | > 99 > 99 | 3 |
12 | [Cu(μ-1kO1:2kO2,3kO3: 4kO4-L)(DMF)]n. 4n(DMF) [ | 40 μmol | — | — | solvent-free/TBHP/ 120 °C/2 h/ Microwave-irradiation | 1-phenylethanol | 94 | > 99 | 4 |
13 | Cu-MOF [ | 0.25 mmol% | — | — | DMF/DTBP/100 °C/ 2.5 h | benzyl alcohol | 95 | > 99 | 6 |
14 | Co-BTC [ | 3.66 mmol% | — | — | DMF/O2/90 °C/10 h | benzyl alcohol | 93 | 97 | 3 |
15 | Co(bdc)(ted)0.5 [ | 35 mol% | — | — | DMF/O2/90 °C/8 h | benzyl alcohol | 82 | > 99 | 3 |
16 | MOF I [ | 3 mol% | proline | — | CH3CN/O2/25 °C/3 h | benzyl alcohol | 95 | > 99 | 5 |
17 | STA-12(Co) [ | 2 mol% | — | — | ethyl acetate /TBHP/ 60 °C | 1-phenylethanol (3 h) benzylalcohol (2.5 h) | > 99 46 | > 99 > 99 | 5 |
18 | UoB-2(Ni) [ | 2 mol% | — | — | solvent-free/TBHP/ 65 °C | benzyl alcohol (1 h) 4-chlorobenzyl alcohol (2 h) | 95 90 | > 99 > 99 | 4 |
19 | UoB-3(Co) [ | 2 mol% | — | — | solvent-free/TBHP/ 65 °C | benzyl alcohol (1 h) 4-chlorobenyl alcohol(2h) | 95 84 | > 99 > 99 | 5 |
20 | STA-12(Fe) [ | 8 mol% | — | — | ethyl acetate /TBHP+Na2S2O4/ 25 °C/2 h | 5- chlorobenzyl alcohol benzyl alcohol 1- phenylethanol cyclohexanol | > 99 95 > 99 20 | > 99 > 99 > 99 > 99 | 14 |
21 | Fe(OH)(BI-m) [ | 29.0 umol | — | — | CH3CN/O2/25 °C/5 h | 4-nitrobenzyl alcohol (4 h) benzylalcohol (2 h) cyclohexanol (4 h) | > 99 > 99 36 | > 99 > 99 > 99 | — |
22 | Fe-MOF [ | 7 mol% | — | — | CH3CN/TBHP/80 °C/3 h | benzyl alcohol | > 91 | > 99 | 4 |
23 | MOFs-253-Ru7 [ | 7 mol% | — | — | dichloromethane/ PhI(OAc)2/40 °C | 1- phenylethanol (2 h) cyclohexanol (4.5 h) octanol (2 h) | 97 98 99 | > 99 > 99 > 99 | 6 |
24 | Ir(III)Cp*Cl@ COMOC-4 [ | 3 mol% | — | — | toluene/O2+iodobenzene /150 °C/24 h | benzyl alcohol | 54 | > 99 | 4 |
25 | Cu(II)/MOF-NH2 [ | 1 mol% | TEMPO | — | CH3CN/O2/70 °C | benzyl alcohol (6 h) 5- chlorobenzyl alcohol (7 h) pyridin-3-yl-methanol (11.5 h) | 98 96 61 | > 99 > 99 > 99 | 5 |
26 | CuII/ZIF-8 [ | 1 mol% | TEMPO | NaHCO3 | CH3CN/O2/60 °C/12 h | benzyl alcohol 4- fluorobenzyl alcohol 2-phenyl-2-propene-1-ol 2-pyridine-methanol | 99 85 92 95 | 99 99 99 99 | 15 |
Table 1 List of pristine MOFs used as catalysts for alcohol oxidation.
Entry | Catalyst | Catalyst amount | Co-catalyst | Base | Condition | Substrate | Conv. (%) | Sel. (%) | Reusa bility (cycles) |
---|---|---|---|---|---|---|---|---|---|
1 | Fe-MOF-808 [ | 10 mol% | — | — | CH3CN/TBHP/90 °C/9 h | benzyl alcohol | 99 | 96 | 4 |
2 | UiO-66(Zr)-V [ | 0.34 mol% | — | — | CH3CN/TBHP/80 °C/9 h | trans-2-hexen-1-ol | 88 | > 99 | 3 |
3 | UiO-67-TEMPO (38%) [ | 1 mol% | tertbutyl nitrite (t-BuONO) | — | 1,2-dichlorethane/air/ 25 °C/24 h | benzyl alcohol | > 99 | > 99 | 3 |
4 | UiO-68-TEMPO microcrystal [ | 5 mol% | tertbutyl nitrite (TBN) | — | 1,2-dichlorethane, H2O/air/80 °C/8 h | benzyl alcohol | > 99 | > 99 | 3 |
5 | Cu3(BTC)2 [ | 0.732 mmol | TEMPO | Na2CO3 | CH3CN/O2/75 °C/22 h | benzyl alcohol | 89 | 98 | — |
6 | Cu-MOF-2 [ | 17 mol% | TEMPO | Na2CO3 | CH3CN/O2/120 °C/16 h | benzyl alcohol 4- fluorobenzyl alcohol benzhydrol cinnamyl alcohol | > 99 69 — >99 | > 99 >99 — >99 | 15 |
7 | Cu3(BTC)2-PEG300 [ | 30 mg | TEMPO | — | CH3CN/O2/75 °C/3 h | benzyl alcohol | > 90 | > 98 | 4 |
8 | Cu-MOF-74 [ | 0.025 mmol | TEMPO | 4-dimethylaminopyridine (DMAP) | CH3CN/O2/70 °C/12 h | benzyl alcohol cinnamyl alcohol 4-bromobenzyl alcohol | 89 80 > 99 | > 99 > 99 > 99 | 2 at least |
9 | Cu-FMOF [ | 10 mol% | TEMPO | Na2CO3 | CH3CN/O2/75 °C/16 h | benzyl alcohol 4-methoxybenzyl alcohol 4-fluorobenzyl alcohol | 94 99 89 | 99 99 99 | 5 |
10 | UoB-1(Cu) [ | 3 mol% | — | — | solvent-free/TBHP/ 45 °C/1.5-3 h | benzyl alcohol 4- nitrobenzyl alcohol benzhydrol | 95 85 75 | > 99 > 99 > 99 | 6 |
11 | Cu MOF 1 [ | — | — | — | solvent-free/TBHP/ 100 °C/0.5 h/ Microwave-irradiation | benzyl alcohol 1-phenylethanol | 81 98 | > 99 > 99 | 3 |
12 | [Cu(μ-1kO1:2kO2,3kO3: 4kO4-L)(DMF)]n. 4n(DMF) [ | 40 μmol | — | — | solvent-free/TBHP/ 120 °C/2 h/ Microwave-irradiation | 1-phenylethanol | 94 | > 99 | 4 |
13 | Cu-MOF [ | 0.25 mmol% | — | — | DMF/DTBP/100 °C/ 2.5 h | benzyl alcohol | 95 | > 99 | 6 |
14 | Co-BTC [ | 3.66 mmol% | — | — | DMF/O2/90 °C/10 h | benzyl alcohol | 93 | 97 | 3 |
15 | Co(bdc)(ted)0.5 [ | 35 mol% | — | — | DMF/O2/90 °C/8 h | benzyl alcohol | 82 | > 99 | 3 |
16 | MOF I [ | 3 mol% | proline | — | CH3CN/O2/25 °C/3 h | benzyl alcohol | 95 | > 99 | 5 |
17 | STA-12(Co) [ | 2 mol% | — | — | ethyl acetate /TBHP/ 60 °C | 1-phenylethanol (3 h) benzylalcohol (2.5 h) | > 99 46 | > 99 > 99 | 5 |
18 | UoB-2(Ni) [ | 2 mol% | — | — | solvent-free/TBHP/ 65 °C | benzyl alcohol (1 h) 4-chlorobenzyl alcohol (2 h) | 95 90 | > 99 > 99 | 4 |
19 | UoB-3(Co) [ | 2 mol% | — | — | solvent-free/TBHP/ 65 °C | benzyl alcohol (1 h) 4-chlorobenyl alcohol(2h) | 95 84 | > 99 > 99 | 5 |
20 | STA-12(Fe) [ | 8 mol% | — | — | ethyl acetate /TBHP+Na2S2O4/ 25 °C/2 h | 5- chlorobenzyl alcohol benzyl alcohol 1- phenylethanol cyclohexanol | > 99 95 > 99 20 | > 99 > 99 > 99 > 99 | 14 |
21 | Fe(OH)(BI-m) [ | 29.0 umol | — | — | CH3CN/O2/25 °C/5 h | 4-nitrobenzyl alcohol (4 h) benzylalcohol (2 h) cyclohexanol (4 h) | > 99 > 99 36 | > 99 > 99 > 99 | — |
22 | Fe-MOF [ | 7 mol% | — | — | CH3CN/TBHP/80 °C/3 h | benzyl alcohol | > 91 | > 99 | 4 |
23 | MOFs-253-Ru7 [ | 7 mol% | — | — | dichloromethane/ PhI(OAc)2/40 °C | 1- phenylethanol (2 h) cyclohexanol (4.5 h) octanol (2 h) | 97 98 99 | > 99 > 99 > 99 | 6 |
24 | Ir(III)Cp*Cl@ COMOC-4 [ | 3 mol% | — | — | toluene/O2+iodobenzene /150 °C/24 h | benzyl alcohol | 54 | > 99 | 4 |
25 | Cu(II)/MOF-NH2 [ | 1 mol% | TEMPO | — | CH3CN/O2/70 °C | benzyl alcohol (6 h) 5- chlorobenzyl alcohol (7 h) pyridin-3-yl-methanol (11.5 h) | 98 96 61 | > 99 > 99 > 99 | 5 |
26 | CuII/ZIF-8 [ | 1 mol% | TEMPO | NaHCO3 | CH3CN/O2/60 °C/12 h | benzyl alcohol 4- fluorobenzyl alcohol 2-phenyl-2-propene-1-ol 2-pyridine-methanol | 99 85 92 95 | 99 99 99 99 | 15 |
Fig. 1. (a) Illustration of the synthesis process and reaction mechanism. (b) SEM images and EDX mapping of Fe-grafted MOF-808. (b) Fe K-edge XANES spectra of Fe-MOF-808 and reference compounds. (c) Fe K-edge EXAFS spectrum of Fe-MOF-808 obtained from experimental data (dots) and the proposed DFT models (solid line). Reprinted with permission from Ref. [93]. Copyright 2019, the Author(s). This article is distributed under a Creative Commons Attribution (CC-BY) license.
Fig. 2. (a) Illustration of the synthesis process of UiO-66-TEMPO(x%) and UiO-67-TEMPO(x%) materials. (b,c) Yield-time curves for the oxidation of diphenylmethanol (b) and benzyl alcohol (c) catalyzed by various catalysts. Reprinted with permission from Ref. [95]. Copyright 2017, American Chemical Society. (d) Illustration of the synthesis process of UiO-68-TEMPO. (e) Leaching test of UiO-68-TEMPO single crystals. (f) Reusability tests of UiO-68-TEMPO single crystals (red column) and UiO-68-TEMPOmicro (blue column). (g) Catalytic mechanisms of UiO-68-TEMPO. Reprinted with permission from Ref. [96]. Copyright 2019, American Chemical Society.
Fig. 3. (a) Schematic diagrams of the catalytic process (top) and deactivation process (down) of Cu3(BTC)2. Reprinted with permission from Ref. [97]. Copyright 2011, American Chemical Society. (b) Illustration of the synthesis process of three different dimensions of [Cu3(BTC)2]. (c) The shape and size-selective effect of g Cu-MOF-2. Reprinted with permission from Ref. [98]. Copyright 2015, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. (d) Schematic illustration of the synthesis process of Cu3(BTC)2-PEG300 catalyst. (e) Reusability of Cu3(BTC)2-PEG300. (f) Conversion curves of benzyl alcohol to benzaldehyde catalyzed by a) Cu3(BTC)2-PEG300, b) Cu3(BTC)2-PEG400, and c) Cu3(BTC)2-PEG600. Reprinted with permission from Ref. [73]. Copyright 2014, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fig. 4. (a) Schematic diagram of the catalytic process of Cu-FMOF. (b) Proposed catalytic mechanism of Cu-FMOF. (c) Cu-FMOF recycling studies. Reprinted with permission from Ref. [100]. Copyright 2017, Elsevier B.V. (d) Illustration of the synthesis process of UoB-1. (e) Plausible catalytic mechanism of UoB-1. Reprinted with permission from Ref. [101]. Copyright 2017, Elsevier B.V.
Fig. 5. (a) Asymmetric unit of Cu MOF 1. (b) 3D packing view of Cu MOF 1. (c,d) Schematic diagram of the catalytic process of Cu MOF 1. Reprinted with permission from Ref. [102]. Copyright 2016, American Chemical Society. (e) Proposed catalytic mechanism of [Cu(μ-1kO1:2kO2,3kO3:4kO4-L)(DMF)]n·4n(DMF). Reprinted with permission from Ref. [103]. Copyright 2019, the Royal Society of Chemistry. (f,g) Unit-cell crystal structure and SBU of Cu-MOF. (h) Crystal structure of Cu-MOF viewed along the [010] direction. Reprinted with permission from Ref. [104]. Copyright 2021, the Author(s). This article is distributed under a Creative Commons Attribution (CC-BY-NC) license.
Fig. 6. (a) Structures and catalytic process of Co-BTC. Reprinted with permission from Ref. [105]. Copyright 2017, the Royal Society of Chemistry. (b) Illustration of the structures of M(bdc)(ted)0.5 (M = Co, Cu, Ni, or Zn). (c) Recycling tests of Co(bdc)(ted)0.5. Reprinted with permission from Ref. [61]. Copyright 2016, the Royal Society of Chemistry. (d,e) Trinuclear SBU and spatial structure of MOF I. (f) Reaction mechanism of the MOF I catalytic system. Reprinted with permission from Ref. [106]. Copyright 2021, the Royal Society of Chemistry.
Fig. 7. (a,c) Synthetic procedures (a) and catalytic stability (c) of UoB-2. Reprinted with permission from Ref. [108]. Copyright 2017, John Wiley & Sons, Ltd. (b,d) Synthetic procedures (b) and catalytic stability (d) of UoB-3. Reprinted with permission from Ref. [62]. Copyright 2019, John Wiley & Sons, Ltd.
Fig. 8. (a,b) Crystal structure (a) and proposed reaction mechanism (b) of Fe(OH)(BIm). Reprinted with permission from Ref. [110]. Copyright 2019, American Chemical Society. (c) Proposed mechanism for the benzyl alcohol oxidation with Fe-MOF. Reprinted with permission from Ref. [111]. Copyright 2021, Elsevier Ltd. All rights reserved. (d) Illustration of the structures and synthetic procedures of MOF-253. Reprinted with permission from Ref. [112]. Copyright 2012, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. (e) Illustration of two different synthetic methods of Ir(III)Cp*Cl@COMOC-4. Reprinted with permission from Ref. [113]. Copyright 2016, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fig. 9. (a) SEM image of catalyst 3. (b,c) Corresponding elemental distributions of Cu2+ (b) and Cl- (c). (d) Schematic diagrams of the catalytic process of catalyst 3. (e) Recyclability test of catalyst 3 for the aerobic oxidation of benzyl alcohol. (f) Illustration of the synthetic route of catalyst 3. Reprinted with permission from Ref. [114]. Copyright 2017, the Author(s). This article is distributed under a Creative Commons Attribution (CC-BY-NC) license.
Entry | Catalyst | Catalyst amount | Co- catalyst | Base | Condition | Substrate | Conv. (%) | Sel. (%) | Reusability (cycles) |
---|---|---|---|---|---|---|---|---|---|
1 | Au@Cu(II)-MOF [ | 3 mol% | — | — | toluene/air/110 °C/15 h | benzyl alcohol benzyl alcohol with other substituents | > 98 > 97 | > 99 > 99 | 5 |
2 | Pd@Cu(II)-MOF [ | 5 mol% | — | — | xylene/air/130 °C/25 h | benzyl alcohol benzyl alcohol with other substituents | 95 ≥ 93 | > 99 > 99 | 7 |
3 | Pd@DE-HKUST-1 [ | 50 mg | — | — | toluene/O2/120 °C/20 h | cinnamyl alcohol | 88.1 | > 93 | 3 |
4 | Pd1-MOF [ | 0.1 mol% | — | — | solvent-free/O2/ 150 °C/24 h | benzyl alcohol | > 78 | > 55 (benz oic acid) | 3 |
5 | Pd-FMOF [ | 5 mg | — | — | m-xylene/air/130 °C/12 h | benzyl alcohol | 89.3 | > 99 | 3 |
6 | Au@Zn/Ni-MOF-2 [ | 15 mg | — | — | toluene/air/ 95 °C/2 h | benzyl alcohol 1-naphthalenemethanol geraniol 2,6-pyridinedimethanol phenethyl alcohol | 98 77 33 37 70 | > 99 > 99 > 99 > 99 > 99 | 5 |
7 | Au@UiO66 [ | 50 mg | — | K2CO3 | solvent-free/O2/80 °C/ trace H2O/10 h | benzyl alcohol | 53.8 | > 99 | 8 |
8 | SPS-Cu(II)@Cu3(BTC)2 [ | 2 mol% | TEMPO | — | CH3CN/O2/75 °C/8 h | benzyl alcohol p-substituted benzylic alcohols pyridin-2-yl-methanol cinnamyl alcohol 3-methyl-2-buten-1-ol 1-phenyl ethanol, 2-cycloh- exen-1-ol and cyclopentanol | > 99 > 99 > 99 > 99 > 99 8 | > 99 > 99 > 99 > 99 > 99 > 99 | 10 |
9 | 0.6CoO@MIL-101 [ | 100 mg | — | — | toluene/O2/100 °C/12 h | benzyl alcohol | 92 | > 99 | 5 |
10 | Fe3O4@MIL-101(Cr) [ | 15 mg | — | — | CH3CN/H2O2/80 °C/1 h | benzyl alcohol | 98 | > 99 | 5 |
11 | Fe3O4@SiO2@APTMS@ V-MIL-101 [ | 40 mg | — | — | CH3CN/TBHP/80 °C/24 h | geraniol | > 99 | > 99 | 5 |
12 | AuNi/MIL-101 [ | 20 mg | — | — | THF/O2/80 °C/4 h | benzyl alcohol 4-methylbenzyl alcohol 4-methoxybenzyl alcohol 4-chlorobenzyl alcohol n-butanol 2-butanol | 84.8 53.7 44.9 23.4 21.9 20.8 | 99.1 98.0 99.1 98.6 99.2 90.0 | 4 |
13 | Pd-Ce NPs/functional Fe-MIL-101-NH2 [ | 25 mg | — | — | CH3CN&H2O/O2/ 60 °C/6 h | glycerol ethanol 1,5-pentanediol benzyl alcohol | 55 64 49 56 | — — — — | 3 |
14 | Au@MIL-53(NH2) [ | 1 mol% | — | — | toluene/O2/100 °C/13 h | benzyl alcohol 4-methylbenzyl alcohol 3-methoxybenzyl alcohol (15 h) 3-fluoro-benzyl alcohol (15 h) 2-thiophene methanol (18 h) | > 99 > 99 90 59 85 | > 99 > 99 > 99 > 99 > 99 | 5 |
15 | MOF-POM [ | 20 mg | — | — | H2O/H2O2/40 °C/24 h | glycerol | 48.6 | 42.7 (acids) | 5 |
16 | MOF-HPW [ | 50 mg | — | — | cetyltrimethyl ammonium bromide (CTAB) micellar solutions/H2O2/80 °C/3 h | benzyl alcohol benzhydrol (9 h) 2-phenylethanol (9 h) cyclohexanol 1-octanol (24 h) | 98 59 66 65 25 | > 99 > 99 > 99 > 99 > 99 | 5 |
17 | PW-MOF [ | 0.01 mmol | — | — | CH3CN/H2O2/85 °C/5 h | benzyl alcohol phenylethyl alcohol 1-octanol 1-heptanol | 85 97 14 16 | 98 98 99 99 | 2 |
18 | HENU-1 [ | 0.2 mol% | — | — | CH3CN/TBHP/60 °C/3 h | 1-phenylethanol methyl/methoxyl/bromo substituted 1-phenylethanol | 97 96 | > 99 > 99 | 5 |
19 | Cu(BDC)/CMC [ | 85 mg | TEMPO | Na2CO3 | CH3CN/O2/80 °C/18-24 h | benzyl alcohol cyclohexanol | 92 24 | > 99 > 99 | 4 |
20 | SCS [ | — | — | — | iso-propanol/air/120 °C/1 h | vanillyl alcohol | > 99 | > 99 | 5 |
Table 2 List of MOF composites used as catalysts for alcohol oxidation.
Entry | Catalyst | Catalyst amount | Co- catalyst | Base | Condition | Substrate | Conv. (%) | Sel. (%) | Reusability (cycles) |
---|---|---|---|---|---|---|---|---|---|
1 | Au@Cu(II)-MOF [ | 3 mol% | — | — | toluene/air/110 °C/15 h | benzyl alcohol benzyl alcohol with other substituents | > 98 > 97 | > 99 > 99 | 5 |
2 | Pd@Cu(II)-MOF [ | 5 mol% | — | — | xylene/air/130 °C/25 h | benzyl alcohol benzyl alcohol with other substituents | 95 ≥ 93 | > 99 > 99 | 7 |
3 | Pd@DE-HKUST-1 [ | 50 mg | — | — | toluene/O2/120 °C/20 h | cinnamyl alcohol | 88.1 | > 93 | 3 |
4 | Pd1-MOF [ | 0.1 mol% | — | — | solvent-free/O2/ 150 °C/24 h | benzyl alcohol | > 78 | > 55 (benz oic acid) | 3 |
5 | Pd-FMOF [ | 5 mg | — | — | m-xylene/air/130 °C/12 h | benzyl alcohol | 89.3 | > 99 | 3 |
6 | Au@Zn/Ni-MOF-2 [ | 15 mg | — | — | toluene/air/ 95 °C/2 h | benzyl alcohol 1-naphthalenemethanol geraniol 2,6-pyridinedimethanol phenethyl alcohol | 98 77 33 37 70 | > 99 > 99 > 99 > 99 > 99 | 5 |
7 | Au@UiO66 [ | 50 mg | — | K2CO3 | solvent-free/O2/80 °C/ trace H2O/10 h | benzyl alcohol | 53.8 | > 99 | 8 |
8 | SPS-Cu(II)@Cu3(BTC)2 [ | 2 mol% | TEMPO | — | CH3CN/O2/75 °C/8 h | benzyl alcohol p-substituted benzylic alcohols pyridin-2-yl-methanol cinnamyl alcohol 3-methyl-2-buten-1-ol 1-phenyl ethanol, 2-cycloh- exen-1-ol and cyclopentanol | > 99 > 99 > 99 > 99 > 99 8 | > 99 > 99 > 99 > 99 > 99 > 99 | 10 |
9 | 0.6CoO@MIL-101 [ | 100 mg | — | — | toluene/O2/100 °C/12 h | benzyl alcohol | 92 | > 99 | 5 |
10 | Fe3O4@MIL-101(Cr) [ | 15 mg | — | — | CH3CN/H2O2/80 °C/1 h | benzyl alcohol | 98 | > 99 | 5 |
11 | Fe3O4@SiO2@APTMS@ V-MIL-101 [ | 40 mg | — | — | CH3CN/TBHP/80 °C/24 h | geraniol | > 99 | > 99 | 5 |
12 | AuNi/MIL-101 [ | 20 mg | — | — | THF/O2/80 °C/4 h | benzyl alcohol 4-methylbenzyl alcohol 4-methoxybenzyl alcohol 4-chlorobenzyl alcohol n-butanol 2-butanol | 84.8 53.7 44.9 23.4 21.9 20.8 | 99.1 98.0 99.1 98.6 99.2 90.0 | 4 |
13 | Pd-Ce NPs/functional Fe-MIL-101-NH2 [ | 25 mg | — | — | CH3CN&H2O/O2/ 60 °C/6 h | glycerol ethanol 1,5-pentanediol benzyl alcohol | 55 64 49 56 | — — — — | 3 |
14 | Au@MIL-53(NH2) [ | 1 mol% | — | — | toluene/O2/100 °C/13 h | benzyl alcohol 4-methylbenzyl alcohol 3-methoxybenzyl alcohol (15 h) 3-fluoro-benzyl alcohol (15 h) 2-thiophene methanol (18 h) | > 99 > 99 90 59 85 | > 99 > 99 > 99 > 99 > 99 | 5 |
15 | MOF-POM [ | 20 mg | — | — | H2O/H2O2/40 °C/24 h | glycerol | 48.6 | 42.7 (acids) | 5 |
16 | MOF-HPW [ | 50 mg | — | — | cetyltrimethyl ammonium bromide (CTAB) micellar solutions/H2O2/80 °C/3 h | benzyl alcohol benzhydrol (9 h) 2-phenylethanol (9 h) cyclohexanol 1-octanol (24 h) | 98 59 66 65 25 | > 99 > 99 > 99 > 99 > 99 | 5 |
17 | PW-MOF [ | 0.01 mmol | — | — | CH3CN/H2O2/85 °C/5 h | benzyl alcohol phenylethyl alcohol 1-octanol 1-heptanol | 85 97 14 16 | 98 98 99 99 | 2 |
18 | HENU-1 [ | 0.2 mol% | — | — | CH3CN/TBHP/60 °C/3 h | 1-phenylethanol methyl/methoxyl/bromo substituted 1-phenylethanol | 97 96 | > 99 > 99 | 5 |
19 | Cu(BDC)/CMC [ | 85 mg | TEMPO | Na2CO3 | CH3CN/O2/80 °C/18-24 h | benzyl alcohol cyclohexanol | 92 24 | > 99 > 99 | 4 |
20 | SCS [ | — | — | — | iso-propanol/air/120 °C/1 h | vanillyl alcohol | > 99 | > 99 | 5 |
Fig. 10. (a,b) Diagrams showing the preparation of Au@Cu(II)-MOF and Pd@Cu(II)-MOF. Reprinted with permission from Ref. [52,116]. Copyright 2016, American Chemical Society. (c) Possible interactions between Pd NPs and DE-HKUST-1: left) Pd NPs stabilized by the missing node sites with N-rich local environment; right) Pd NPs stabilized at the modified coordinatively unsaturated sites (mCUSs). Reprinted with permission from Ref. [117]. Copyright 2019, the Royal Society of Chemistry. (d) Illustration of the two-step postsynthetic route for Pd1-MOF (yellow, blue, red, cyan, and purple spheres represent S, Pd, O, Cu, and Sr atoms). (e) Reaction mechanism for Pd SACs in solution. (f) Reusability of Pd1-MOF. Reprinted with permission from Ref. [118]. Copyright 2021, the Author(s). This article is distributed under a Creative Commons Attribution (CC-BY) license.
Fig. 11. (a) Preparation process of hollow Au@Zn/Ni-MOF-2. (b,c) Catalytic performance test (b) and recyclability tests (c) of Au@Zn/Ni-MOF-2. (d) Catalytic alcohol oxidation using Au@Zn/Ni-MOF-2. Reprinted with permission from Ref. [120]. Copyright 2021, American Chemical Society.
Fig. 12. (a) Schematic diagrams of the catalytic process of Au@MIL-53(NH2). (b) Proposed catalytic mechanism of Au@MIL-53(NH2). (c) Leaching test and reusability of Au@MIL-53(NH2). Reprinted with permission from Ref. [125]. Copyright 2015, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fig. 13. (a) Synthesis process of SPS-Cu(II)@Cu3(BTC)2 composite. (b) Recycling tests for the SPS-Cu(II)@Cu3(BTC)2 composite and SPS-Cu(II). Reprinted with permission from Ref. [121]. Copyright 2015, the Royal Society of Chemistry. (c) TEM image of MIL-101. (d-f) TEM images of 0.6CoO@MIL-101. (g) Catalytic performance and cycle performance of 0.6CoO@MIL-101. (h) Schematic illustration of CoO@MIL-101 synthesized via the CTC strategy. Reprinted with permission from Ref. [122]. Copyright 2021, American Chemical Society. (i) Diagram showing the preparation of V-MIL-101 and Fe3O4@SiO2@APTMS@V-MIL-101. Reprinted with permission from Ref. [123]. Copyright 2014, Elsevier B.V. All rights reserved.
Fig. 14. (a) Illustration of the synthetic pathway for AuNi/MIL-101. (b) Probable catalytic mechanism of AuNi/MIL-101. (c) Recyclability of AuNi/MIL-101-1. Reprinted with permission from Ref. [18]. Copyright 2019, Elsevier B.V. All rights reserved. (d) Synthesis of functionalized Fe-MIL-101-NH2-supported Pd-Ce nanoparticles. Reprinted with permission from Ref. [124]. Copyright 2016, Elsevier B.V. All rights reserved.
Fig. 15. (a) Pathway for glycerol transformation on MOF-POMs (dashed lines represent products detected by GC-MS). Reprinted with permission from Ref. [126]. Copyright 2015, the Royal Society of Chemistry. (b) Illustration of catalytic performances of MOFs with different POMs for the oxidation of benzyl alcohol to benzaldehyde. Reprinted with permission from Ref. [127]. Copyright 2014, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. (c) Several basic formation processes of HENU-1. (d) Oxidation mechanism of 1-phenylethanol catalyzed by HENU-1. (e) Leaching experiment and recyclability of the HENU-1 catalyst. Reprinted with permission from Ref. [129]. Copyright 2019, American Chemical Society.
Fig. 16. (a) Image of the final SCS catalyst. (b) SCS catalyst bundled and hanged by a Cu wire. (c,f) Illustration of the reaction of VAL converted to VN via the SCS catalyst. (d,e) Schematic representation for preparing the HKUST-1 mesh (d) and TEMPO@CC (e). (g) Proposed mechanism for VAL conversion to VN via the SCS catalyst. Reprinted with permission from Ref. [131]. Copyright 2021, Elsevier B.V. (h) Schematic representation for preparing the Cu(BDC)/CMC hybrid. (i) Reaction mechanism of Cu(BDC)/CMC catalyst. Reprinted with permission from Ref. [130]. Copyright 2021, Elsevier Ltd.
Entry | Catalyst | Catalyst amount | Co- catalyst | base | Conditions | Substrate | Conv. (%) | Sel. (%) | Reusability (cycles) |
---|---|---|---|---|---|---|---|---|---|
1 | Co@C-N(800) [ | Co 15 mol% | — | — | n-hexane/air/ 25 °C/96 h | benzyl alcohol 2-methylbenzyl alcohol 3-methylbenzyl alcohol benzylic alcohols substituted with -CO2CH3, -NO2, -F, -Cl, -Br, and -I | > 99 86 94 > 90 | > 99 > 99 > 99 > 99 | 5 |
2 | NC-700 [ | 25 mg | — | K2CO3 | CH3OH/O2/80 °C/12 h | benzyl alcohol 4-methylbenzyl alcohol phenethyl alcohol 2-furanem-ethanol 2-thiophen-emethanol | > 99 98 90 98 85 | > 99 > 97 88 90 89 | 6 |
3 | Co/C-N700 [ | Co 10 mol% | — | — | H2O/air/ 100 °C/48 h | 1-phenylethanol benzyl alcohol 4-methylbenzyl alcohol cyclohexanol diphenylmethanol | 98 92 90 59 98 | > 99 > 99 > 99 > 99 99 | 5 |
4 | MCG-700 [ | 25 mg | — | — | DMF/O2/100 °C/8 h | benzyl alcohol | 89.5 | 97.3 | 4 |
5 | Co@C-N(1)-800 [ | Co 10 mol% | — | — | H2O/air/ 110 °C/1 h | 1-phenylethanol with para substituents (-F, -Br, -Cl) cinnamyl alcohol | > 99 > 95 | > 99 > 88 | 6 |
6 | Co@NC [ | Co 4 mol% | — | — | H2O/O2/50 °C/12 h | benzyl alcohol 4-methylbenzyl alcohol 3-methylbenzyl alcohol 1-octanol | 93 89 78 3 | >99 > 99 > 99 > 99 | 6 |
7 | Ru3/CN [ | Ru 0.1 mol% | — | — | CH3CN/H2O2/80 °C/0.5 h | 2-aminobenzyl alcohol | > 99 | > 99 | — |
8 | B-600 [ | Fe 10 mol% | — | — | H2O/H2O2/110 °C/48 h | benzyl alcohol 4-methylbenzyl alcohol 2-methylbenzyl alcohol benzyl alcohol with para substituents (-NO2, -F, -Cl, -Br) | 99 91 93 84‒99 | 91 99 99 99 | 4 |
9 | FN-1000 [ | 20 mg | — | — | H2O/H2O2/110 °C/6 h | benzyl alcohol | 86 | 77 | — |
10 | Cu@C [ | Cu 5 mol% | TEMPO | N-methyl imidazole | CH3CN/O2/70 °C/9 h | benzyl alcohol 4-methylbenzyl alcohol benzyl alcohol with para substituents (-NO2, -Br, OCH3) | 94 87 91‒99 | — — — | 2 |
Table 3 List of MOF derivatives used as catalysts for alcohol oxidation.
Entry | Catalyst | Catalyst amount | Co- catalyst | base | Conditions | Substrate | Conv. (%) | Sel. (%) | Reusability (cycles) |
---|---|---|---|---|---|---|---|---|---|
1 | Co@C-N(800) [ | Co 15 mol% | — | — | n-hexane/air/ 25 °C/96 h | benzyl alcohol 2-methylbenzyl alcohol 3-methylbenzyl alcohol benzylic alcohols substituted with -CO2CH3, -NO2, -F, -Cl, -Br, and -I | > 99 86 94 > 90 | > 99 > 99 > 99 > 99 | 5 |
2 | NC-700 [ | 25 mg | — | K2CO3 | CH3OH/O2/80 °C/12 h | benzyl alcohol 4-methylbenzyl alcohol phenethyl alcohol 2-furanem-ethanol 2-thiophen-emethanol | > 99 98 90 98 85 | > 99 > 97 88 90 89 | 6 |
3 | Co/C-N700 [ | Co 10 mol% | — | — | H2O/air/ 100 °C/48 h | 1-phenylethanol benzyl alcohol 4-methylbenzyl alcohol cyclohexanol diphenylmethanol | 98 92 90 59 98 | > 99 > 99 > 99 > 99 99 | 5 |
4 | MCG-700 [ | 25 mg | — | — | DMF/O2/100 °C/8 h | benzyl alcohol | 89.5 | 97.3 | 4 |
5 | Co@C-N(1)-800 [ | Co 10 mol% | — | — | H2O/air/ 110 °C/1 h | 1-phenylethanol with para substituents (-F, -Br, -Cl) cinnamyl alcohol | > 99 > 95 | > 99 > 88 | 6 |
6 | Co@NC [ | Co 4 mol% | — | — | H2O/O2/50 °C/12 h | benzyl alcohol 4-methylbenzyl alcohol 3-methylbenzyl alcohol 1-octanol | 93 89 78 3 | >99 > 99 > 99 > 99 | 6 |
7 | Ru3/CN [ | Ru 0.1 mol% | — | — | CH3CN/H2O2/80 °C/0.5 h | 2-aminobenzyl alcohol | > 99 | > 99 | — |
8 | B-600 [ | Fe 10 mol% | — | — | H2O/H2O2/110 °C/48 h | benzyl alcohol 4-methylbenzyl alcohol 2-methylbenzyl alcohol benzyl alcohol with para substituents (-NO2, -F, -Cl, -Br) | 99 91 93 84‒99 | 91 99 99 99 | 4 |
9 | FN-1000 [ | 20 mg | — | — | H2O/H2O2/110 °C/6 h | benzyl alcohol | 86 | 77 | — |
10 | Cu@C [ | Cu 5 mol% | TEMPO | N-methyl imidazole | CH3CN/O2/70 °C/9 h | benzyl alcohol 4-methylbenzyl alcohol benzyl alcohol with para substituents (-NO2, -Br, OCH3) | 94 87 91‒99 | — — — | 2 |
Fig. 17. (a) Schematic illustration of the synthesis of Co-CoO/@N-doped porous carbon nanocomposites via the pyrolysis of ZIF-67. (b,c) Reusability and leaching test of NC-700-3h. (d) Proposed mechanism for direct oxidative esterification of alcohols by NC-700-3h. Reprinted with permission from Ref. [41]. Copyright 2015, the Royal Society of Chemistry.
Fig. 18. (a) Schematic illustration of the synthesis of hollow yolk-shell Co@C-N nanoreactors. (b) Proposed mechanism of catalytic alcohol oxidation over a Co@C-N(1)-800 nanoreactor. Reprinted with permission from Ref. [42]. Copyright 2018, American Chemical Society. (c) Schematic illustration of the synthesis of Co@NC catalysts. (d) SEM and TEM images of Co/NC. Reprinted with permission from Ref. [134]. Copyright 2019, the Royal Society of Chemistry.
Fig. 19. (a) Illustration of the Ru3/CN preparation process. (b,c) Catalytic performance of Ru3/CN. Reprinted with permission from Ref. [135]. Copyright 2017, American Chemical Society.
Fig. 20. (a) Corresponding size distribution of Fe3O4 particles for B-600. (b) Magnetic separation and recycling of B-600. Reprinted with permission from Ref. [136]. Copyright 2016, the Royal Society of Chemistry. (c) Schematic illustration for the preparation of spinel nickel ferrite nanorods. (d) Catalytic results of three MOF-derived samples for benzyl alcohol oxidation. Reprinted with permission from Ref. [137]. Copyright 2021, Elsevier Ltd and Techna S.r.1.
Entry | Catalyst | Catalyst amount | Condition | Substrate | Conv. (%) | Sel. (%) | Reusa bility (cycles) |
---|---|---|---|---|---|---|---|
1 | UiO-66(NH2) [ | 16 mg | Benzotrifluoride/O2/visible-light (> 420 nm)/4 h | benzyl alcohol 4-methylbenzyl alcohol 3-methyl-2-buten-1-ol 4-chlorobenzyl alcohol | 21.2 11.5 35.5 63.3 | > 99 > 99 64.36 2.75 | 3 |
2 | UiO-66-NH2-F [ | 0.1 mmol | Toluene/O2/15 °C/visible-light (400‒700 nm)/24 h | benzyl alcohol | 53.9 | > 99 | — |
3 | Zr(NDC)(NDC-NH2) [ | 20 mg | CH3CN/O2/LED light (> 420 nm)/24 h | 4-methoxybenzyl alcohol | > 99 | > 99 | 4 |
4 | Bi-TATB [ | 20 mg | n-hexane/O2/15 °C/300 W Xe lamp/5 h | benzyl alcohol 4-chlorobenzyl alcohol 4-methylbenzyl alcohol | 37.6 17.2 40.6 | > 99 83.8 78.0 | 3 |
5 | Cr-PCN-600 [ | 20 mg | CH3CN/O2/~ 32 °C/LED light/36 h | benzyl alcohol | > 99 | > 99 | 3 |
6 | QUI-MiL-125(Ti) [ | 30 mg | CH3CN/O2/ 25 °C/white LED light (> 420 nm)/40 h | benzyl alcohol 4-methylbenzyl alcohol 4-fluorobenzyl alcohol 4-methoxybenzyl alcohol | 88 93 71 > 99 | > 99 > 99 > 99 > 99 | 5 |
7 | Ce-UiO-66-H [ | 20 mg | benzotrifluoride/O2/30 °C/300 W Xe lamp (> 400 nm)/24 h | benzyl alcohol | 99 | > 99 | — |
8 | Ni-doped NH2-MiL-125(Ti) [ | 50 mg | benzotrifluoride/O2/25 °C/300 W Xe lamp (> 420 nm)/10 h | benzyl alcohol 4-methylbenzyl alcohol 4-methoxybenzyl alcohol | 21.5 43.2 47.4 | > 99 > 99 > 99 | 3 |
9 | Cu/Cu@UiO-66 [ | 32 mg | CH3CN/O2/25 °C/300 W Xe lamp (> 400 nm)/3 h | benzyl alcohol 4-methylbenzyl alcohol 4-methoxybenzyl alcohol 4-fluorobenzyl alcohol | 49.5 50.3 69.4 26.6 | > 99 > 99 > 99 > 99 | 5 |
10 | 1%Pt/MIL-125-NH2 [ | 100 mg | toluene/O2/15 °C/300 W Xe lamp (> 350 nm)/4 h | benzyl alcohol | 32.5 | >99 | — |
11 | CoFe2O4/Ce-UiO-66 [ | 100 mg | n-hexane/air/25 °C/visible-light/6 h | benzyl alcohol 4-methoxybenzyl alcohol 4-chlorobenzyl alcohol 1-butanol 1-pentol | 75 75 80 71 70 | > 99 > 99 > 99 > 99 > 99 | 5 |
12 | Pd/TiO2@MiL-101 [ | 4.5 mg | 90 °C/24 h | diphenylmethanol | 98 | 97 | 5 |
13 | Ru(bpy)3@MIL- 125-NH2 [ | 5 mg | CH3CN/O2/25 °C/500 W Xe lamp (> 400 nm)/8 h | benzyl alcohol | trace | > 99 | — |
14 | MIL@GO-1% [ | 5 mg | CH3CN+H2O (2:1 v/v)/N2/20 °C/LED light (> 420 nm)/3 h/pH = 8.5 | benzyl alcohol | 84.5 | > 99 | — |
15 | TMU-49/CNNSs-1 wt% [ | 20 mg | n-hexane/air/25 °C/visible-light/3 h | benzyl alcohol | 78 | > 85 | 5 |
16 | CdS-MiL-125(Ti)-2 [ | 25 mg | benzotrifluoride/O2/300 W Xe lamp (> 420 nm)/10 h | benzyl alcohol | 20.1 | > 99 | 3 |
17 | CdS/MIL-53(Fe) [ | 5 mg | CH3CN/Ar/300 W Xe lamp (> 420 nm)/ | benzyl alcohol | — | — | — |
18 | Ru2.5%@N-C [ | Ru 0.2 mol% | benzotrifluoride/O2/25 °C/5 W Xe lamp/1 h | benzyl alcohol 4-methylbenzyl alcohol 4-methoxybenzyl alcohol diphenylmethanol | 91 92 95 74 | > 99 > 99 > 99 > 99 | 5 |
Table 4 List of MOF-based materials used as photocatalysts.
Entry | Catalyst | Catalyst amount | Condition | Substrate | Conv. (%) | Sel. (%) | Reusa bility (cycles) |
---|---|---|---|---|---|---|---|
1 | UiO-66(NH2) [ | 16 mg | Benzotrifluoride/O2/visible-light (> 420 nm)/4 h | benzyl alcohol 4-methylbenzyl alcohol 3-methyl-2-buten-1-ol 4-chlorobenzyl alcohol | 21.2 11.5 35.5 63.3 | > 99 > 99 64.36 2.75 | 3 |
2 | UiO-66-NH2-F [ | 0.1 mmol | Toluene/O2/15 °C/visible-light (400‒700 nm)/24 h | benzyl alcohol | 53.9 | > 99 | — |
3 | Zr(NDC)(NDC-NH2) [ | 20 mg | CH3CN/O2/LED light (> 420 nm)/24 h | 4-methoxybenzyl alcohol | > 99 | > 99 | 4 |
4 | Bi-TATB [ | 20 mg | n-hexane/O2/15 °C/300 W Xe lamp/5 h | benzyl alcohol 4-chlorobenzyl alcohol 4-methylbenzyl alcohol | 37.6 17.2 40.6 | > 99 83.8 78.0 | 3 |
5 | Cr-PCN-600 [ | 20 mg | CH3CN/O2/~ 32 °C/LED light/36 h | benzyl alcohol | > 99 | > 99 | 3 |
6 | QUI-MiL-125(Ti) [ | 30 mg | CH3CN/O2/ 25 °C/white LED light (> 420 nm)/40 h | benzyl alcohol 4-methylbenzyl alcohol 4-fluorobenzyl alcohol 4-methoxybenzyl alcohol | 88 93 71 > 99 | > 99 > 99 > 99 > 99 | 5 |
7 | Ce-UiO-66-H [ | 20 mg | benzotrifluoride/O2/30 °C/300 W Xe lamp (> 400 nm)/24 h | benzyl alcohol | 99 | > 99 | — |
8 | Ni-doped NH2-MiL-125(Ti) [ | 50 mg | benzotrifluoride/O2/25 °C/300 W Xe lamp (> 420 nm)/10 h | benzyl alcohol 4-methylbenzyl alcohol 4-methoxybenzyl alcohol | 21.5 43.2 47.4 | > 99 > 99 > 99 | 3 |
9 | Cu/Cu@UiO-66 [ | 32 mg | CH3CN/O2/25 °C/300 W Xe lamp (> 400 nm)/3 h | benzyl alcohol 4-methylbenzyl alcohol 4-methoxybenzyl alcohol 4-fluorobenzyl alcohol | 49.5 50.3 69.4 26.6 | > 99 > 99 > 99 > 99 | 5 |
10 | 1%Pt/MIL-125-NH2 [ | 100 mg | toluene/O2/15 °C/300 W Xe lamp (> 350 nm)/4 h | benzyl alcohol | 32.5 | >99 | — |
11 | CoFe2O4/Ce-UiO-66 [ | 100 mg | n-hexane/air/25 °C/visible-light/6 h | benzyl alcohol 4-methoxybenzyl alcohol 4-chlorobenzyl alcohol 1-butanol 1-pentol | 75 75 80 71 70 | > 99 > 99 > 99 > 99 > 99 | 5 |
12 | Pd/TiO2@MiL-101 [ | 4.5 mg | 90 °C/24 h | diphenylmethanol | 98 | 97 | 5 |
13 | Ru(bpy)3@MIL- 125-NH2 [ | 5 mg | CH3CN/O2/25 °C/500 W Xe lamp (> 400 nm)/8 h | benzyl alcohol | trace | > 99 | — |
14 | MIL@GO-1% [ | 5 mg | CH3CN+H2O (2:1 v/v)/N2/20 °C/LED light (> 420 nm)/3 h/pH = 8.5 | benzyl alcohol | 84.5 | > 99 | — |
15 | TMU-49/CNNSs-1 wt% [ | 20 mg | n-hexane/air/25 °C/visible-light/3 h | benzyl alcohol | 78 | > 85 | 5 |
16 | CdS-MiL-125(Ti)-2 [ | 25 mg | benzotrifluoride/O2/300 W Xe lamp (> 420 nm)/10 h | benzyl alcohol | 20.1 | > 99 | 3 |
17 | CdS/MIL-53(Fe) [ | 5 mg | CH3CN/Ar/300 W Xe lamp (> 420 nm)/ | benzyl alcohol | — | — | — |
18 | Ru2.5%@N-C [ | Ru 0.2 mol% | benzotrifluoride/O2/25 °C/5 W Xe lamp/1 h | benzyl alcohol 4-methylbenzyl alcohol 4-methoxybenzyl alcohol diphenylmethanol | 91 92 95 74 | > 99 > 99 > 99 > 99 | 5 |
Fig. 21. (a) Working process diagram of UiO-66(NH2). (b) Photocatalytic alcohol oxidation mechanism over UiO-66(NH2). Reprinted with permission from Ref. [147]. Copyright 2013, the Royal Society of Chemistry. (c) Synthesis of the mixed-linker Zr-MOFs. Equimolar quantities of primary linker 2-amino-1,4-benzenedicarboxylic acid and secondary linker 2-X-1,4-benzenedicarboxylic acid (X = H, F, Cl, Br). (d) Fictitious molecular model of mixed-linker Zr-MOF (black, blue, red, and brown represent C, N, O and X, respectively). Reprinted with permission from Ref. [82]. Copyright 2014, Elsevier Ltd. All rights reserved. (e) Schematic diagrams of synthesized Zr(NDC)(NDC-NH2). (f) Reference diagram of synthesis process of Zr(NDC)(NDC-NH2). Reprinted with permission from Ref. [148]. Copyright 2021, the Author(s). Published by Elsevier B.V.
Fig. 22. (a) Photocatalytic alcohol oxidation mechanism over Bi-TATB. Reprinted with permission from Ref. [149]. Copyright 2019, Elsevier B.V. (b) Schematic synthesis of Cr-PCN-600. (c) Possible alcohol oxidation mechanisms of Cr-PCN-600. Reprinted with permission from Ref. [150]. Copyright 2020, Elsevier B.V.
Fig. 23. (a) Diagram depicting the catalytic process of CoFe2O4/Ce-UiO-66. (b) Diagram showing the synthesis of CoFe2O4/Ce-UiO-66. Reprinted with permission from Ref. [155]. Copyright 2021, Elsevier Ltd. (c) Photocatalytic alcohol oxidation process using Ru(bpy)3@MIL-125-NH2. (d) Photocatalytic alcohol oxidation mechanism of Ru(bpy)3@MIL-125-NH2. Reprinted with permission from Ref. [157]. Copyright 2019, the Royal Society of Chemistry.
Fig. 24. (a) Schematic synthesis of TMU-49/CNNSs. (b) Proposed reaction mechanism for the photocatalytic system of TMU-49/CNNSs. (c) Cycle experiments evaluating the catalytic performance. Reprinted with permission from Ref. [159]. Copyright 2021, the Royal Society of Chemistry.
Fig. 25. (a) Schematic synthesis of CdS/MIL-53(Fe). (b) Illustration of the two coupled reactions. (c) Photocatalytic performances of different catalysts. (d) Schematic diagram of the reaction mechanisms of CdS/MIL-53(Fe). Reprinted with permission from Ref. [161]. Copyright 2021, Elsevier B.V.
Fig. 26. (a) Schematic showing the synthesis of Cu@UiO-66 and Cu/Cu@UiO-66 via DSA and ADSA, respectively. (b) Electronic migration in Cu/Cu@UiO-66 and proposed reaction mechanism for photocatalytic alcohol oxidation. Reprinted with permission from Ref. [153]. Copyright 2019, Elsevier B.V. (c) Proposed mechanism of photocatalytic aromatic oxidation using Au/Zr-MOFs (top) and Pt/Zr-MOFs (bottom). Reprinted with permission from Ref. [154]. Copyright 2019, Elsevier Inc.
Entry | Catalyst | Catalyst amount | Condition | Substrate | Conv. (%) | Sel. (%) | Reusa bility (cycles) |
---|---|---|---|---|---|---|---|
1 | ZIF-8 functionalized Pt/Vulcan XC 72R composites [165,166] | trace | electrolyte: KOH (0.5 mol·L‒1) | ethanol | — | — | — |
2 | Ni-MOF@CNT [ | 3 mg | electrolyte: KOH (1.0 mol·L‒1)/reference electrode: Hg/HgO/working electrode: Ni-MOF@CNT-Ni foam | benzyl alcohol | — | — | — |
3 | CNT/MOL-TEMPO-CO2- | 20 mg | electrolyte: Bu4NClO4 (10 mmol·L‒1)/ reference electrode: Ag/AgClO4/working electrode: glassy carbon disk/CH3CN+H2O/100 min | benzyl alcohol 1-phenylethanol 1,4-butanediol 4-phenyl-2-butanol isopropyl alcohol | > 99 76 79 0 0 | > 99 > 99 > 99 — — | 3 |
4 | CNT/MOL-TEMPO-OPO32- [ | benzyl alcohol | > 99 | > 99 | 6 | ||
5 | Co-MOF-C [ | 20 mg | electrolyte: LiClO4 (0.1 mol·L‒1)/anode: Co-MOF-C/ cathode: graphite/CH3CN/25 °C/0.5 h | benzyl alcohol 3-methylbenzyl alcohol p-nitrobenzyl alcohol p-hydroxybenzyl alcohol | 93 82 88 89 | > 99 > 99 > 99 > 99 | — |
6 | TCNQ-doped HKUST-1 SURMOF [ | — | — | small molecule aliphatic alcohols such as methanol and ethanol | — | — | — |
7 | NiCoBDC-NF [ | — | electrolyte: KOH (0.1 mol·L‒1)/reference electrode: Ag/AgCl/working electrode: NiCoBDC-NF/4 h | 5-hydroxymethy- lfurfural | 99 | 95 | 4 |
8 | RuB-RuTB-UiO-67/TiO2/FTO [ | — | electrolyte: 1.06 g LiClO4+100 mL BnOH/CH3CN solvent (5/95, v/v)/ reference electrode: Ag/Ag+ (0.01 mol·L‒1 AgNO3)/working electrode: RuB-RuTB-UiO-67/TiO2/FTO/CH3CN/Xe lamp irradiation/2 h | benzyl alcohol | — | — | — |
9 | [(HOC2H4)2dtoaCu] [59,60] | — | electrolyte: H2SO4 (0.5 mol·L‒1)/reference electrode: Ag/AgCl /working electrode: glassy carbon electrode coated with the catalyst/20 min | ethanol | 6.8 | > 99 | — |
10 | Ni-MOF [ | 100 mg | electrolyte: NaOH (0.1 mol·L‒1)/reference electrode: Ag/AgCl/working electrode: glassy carbon electrode coated with the catalyst/20 min | glucose | — | — | — |
Table 5 List of MOF-based materials used as electrocatalysts.
Entry | Catalyst | Catalyst amount | Condition | Substrate | Conv. (%) | Sel. (%) | Reusa bility (cycles) |
---|---|---|---|---|---|---|---|
1 | ZIF-8 functionalized Pt/Vulcan XC 72R composites [165,166] | trace | electrolyte: KOH (0.5 mol·L‒1) | ethanol | — | — | — |
2 | Ni-MOF@CNT [ | 3 mg | electrolyte: KOH (1.0 mol·L‒1)/reference electrode: Hg/HgO/working electrode: Ni-MOF@CNT-Ni foam | benzyl alcohol | — | — | — |
3 | CNT/MOL-TEMPO-CO2- | 20 mg | electrolyte: Bu4NClO4 (10 mmol·L‒1)/ reference electrode: Ag/AgClO4/working electrode: glassy carbon disk/CH3CN+H2O/100 min | benzyl alcohol 1-phenylethanol 1,4-butanediol 4-phenyl-2-butanol isopropyl alcohol | > 99 76 79 0 0 | > 99 > 99 > 99 — — | 3 |
4 | CNT/MOL-TEMPO-OPO32- [ | benzyl alcohol | > 99 | > 99 | 6 | ||
5 | Co-MOF-C [ | 20 mg | electrolyte: LiClO4 (0.1 mol·L‒1)/anode: Co-MOF-C/ cathode: graphite/CH3CN/25 °C/0.5 h | benzyl alcohol 3-methylbenzyl alcohol p-nitrobenzyl alcohol p-hydroxybenzyl alcohol | 93 82 88 89 | > 99 > 99 > 99 > 99 | — |
6 | TCNQ-doped HKUST-1 SURMOF [ | — | — | small molecule aliphatic alcohols such as methanol and ethanol | — | — | — |
7 | NiCoBDC-NF [ | — | electrolyte: KOH (0.1 mol·L‒1)/reference electrode: Ag/AgCl/working electrode: NiCoBDC-NF/4 h | 5-hydroxymethy- lfurfural | 99 | 95 | 4 |
8 | RuB-RuTB-UiO-67/TiO2/FTO [ | — | electrolyte: 1.06 g LiClO4+100 mL BnOH/CH3CN solvent (5/95, v/v)/ reference electrode: Ag/Ag+ (0.01 mol·L‒1 AgNO3)/working electrode: RuB-RuTB-UiO-67/TiO2/FTO/CH3CN/Xe lamp irradiation/2 h | benzyl alcohol | — | — | — |
9 | [(HOC2H4)2dtoaCu] [59,60] | — | electrolyte: H2SO4 (0.5 mol·L‒1)/reference electrode: Ag/AgCl /working electrode: glassy carbon electrode coated with the catalyst/20 min | ethanol | 6.8 | > 99 | — |
10 | Ni-MOF [ | 100 mg | electrolyte: NaOH (0.1 mol·L‒1)/reference electrode: Ag/AgCl/working electrode: glassy carbon electrode coated with the catalyst/20 min | glucose | — | — | — |
Fig. 27. (a) ZIF-8 functionalized Pt/Vulcan XC 72R material with di?erent possible arrangements of the components: (1) Pt nanoparticle covered by numerous ZIF-8 crystals; (2) Pt nanoparticle covered by single ZIF-8 crystal; (3) naked Pt nanoparticle; and (4) pure ZIF-8 crystal. Reprinted with permission from Ref. [165]. Copyright 2019, American Chemical Society. (b) Schematic representation for synthesizing Ni-MOFs on CNTs. (c) Reaction equations for the alcohol electrooxidation process. (d-g) TEM images of pristine Ni-MOFs (c,d) and Ni-MOF@CNT (e,f). Reprinted with permission from Ref. [167]. Copyright 2020, Published by Elsevier B.V.
Fig. 28. (a-c) Schematic synthesis of CNT/MOL-TEMPO-CO2- (catalyst 1) and CNT/MOL-TEMPO-OPO32- (catalyst 2). (d-f) TEM images of MOLs (d), CNT/MOL (e) and catalyst 1 (f). (g) Relationship between the steric sizes of the R groups on the 4-position of TEMPO and corresponding electrocatalytic oxidation performances for isopropyl alcohol. (h) Shape-selective catalysis of catalyst 1. Reprinted with permission from Ref. [168]. Copyright 2018, American Chemical Society. (i) Schematic illustration of Co-MOF-C. (j) Carboxylation process on the graphite electrode surface. Reprinted with permission from Ref. [169]. Copyright 2022, Author(s). This article is distributed under a Creative Commons Attribution (CC-BY) license.
Fig. 29. (a) Schematic diagram of electro-oxidating HMF over the NiCoBDC-NF catalyst. (b) Competitive water oxidation and HMF oxidation in alkaline solution. (c) Crystal-structure diagram of the 2D MOFs. Reprinted with permission from Ref. [57]. Copyright 2020, Royal Society of Chemistry. (d) Processes of preparing the Ni-MOF catalyst and electrocatalytic glucose oxidation. Reprinted with permission from Ref. [51]. Copyright 2018, the Royal Society of Chemistry.
Fig. 30. (a) TEMPO-assisted oxidation mechanism of alcohols proposed based on DFT calculations. Reprinted with permission from Ref. [173]. Copyright 2022, the Royal Society of Chemistry. (b) Catalytic cycle of hydrophilic and defective Zr nodes in UiO-68-TEMPO for the catalytic oxidation of benzyl alcohol is presented. Reprinted with permission from Ref. [96]. Copyright 2019, American Chemical Society. (c) Yield versus reaction time for Cu-SIM and Cu-SIM-FF. (d) Non-radical (top) and radical (bottom) reaction pathways analyzed by DFT studies. Reprinted with permission from Ref. [176]. Copyright 2020, American Chemical Society.
Fig. 31. (a) Spatial structure of NU-1000, where the individual Zr6 nodes are indicated in the yellow circles. Hypothetical clusters of heterobimetallic complexes (b) and heterobimetallic oxides (c) attached on Zr6 node, where the spheres represent the following: Zr, aqua; M, blue; M′, red, and frames: N, azure; C, gray; O, pink; H, white. (d) Two possible binding structures of Al-Co bimetallic oxide and NU-1000 in model 1a, where the free energy of the right-hand model is 17.1 kcal·mol-1 higher than that of the left-hand model. (e) Reaction mechanism for 1a-catalyzed oxidation of benzyl alcohol to benzaldehyde (1a structure is shown in the middle of the figure and corresponds to A) calculated by DFT. Intermediates B to H are plotted, and the support structure of the active site is depicted as a gray rectangle in the loop. The formate linker is omitted from the central cluster for clarity. Reprinted with permission from Ref. [177]. Copyright 2016, American Chemical Society.
|
[1] | 孙丽娟, 于晓慧, 唐丽永, 王伟康, 刘芹芹. 构建K3PW12O40/CdS核壳S型异质结实现同步太阳能光催化分解水和选择性苯甲醇氧化反应[J]. 催化学报, 2023, 52(9): 164-175. |
[2] | 张雯, 宋彩彩, 王嘉蔚, 蔡舒婷, 高梦语, 冯有祥, 鲁统部. 双向主客体作用促进水溶液中选择性光催化CO2还原与醇氧化[J]. 催化学报, 2023, 52(9): 176-186. |
[3] | 孙利娟, 王伟康, 路平, 刘芹芹, 王乐乐, 唐华. 纳米高熵合金实现光催化剂肖特基势垒的调控用于光催化制氢与苯甲醇氧化耦合反应[J]. 催化学报, 2023, 51(8): 90-100. |
[4] | 赵志月, 蒋志伟, 黄一哲, Mebrouka Boubeche, Valentina G. Matveeva, Hector F. Garces, 罗惠霞, 严凯. 富空穴CoSi合金无溶剂无碱醇氧化[J]. 催化学报, 2023, 48(5): 175-184. |
[5] | 董兴宗, 刘广业, 陈兆安, 张权, 徐云鹏, 刘中民. 性能优异的Pd-[DBU][Cl]/AC无汞催化剂在乙炔氢氯化中的应用[J]. 催化学报, 2023, 46(3): 137-147. |
[6] | Diab khalafallah, 张运祥, 王昊, Jong-Min Lee, 张勤芳. 联产混合电解水策略实现节能电化学制氢的最新进展[J]. 催化学报, 2023, 55(12): 44-115. |
[7] | 吴立清, 梁庆, 赵家仪, 朱娟, 贾宏男, 张伟, 蔡苹, 罗威. 铋掺杂的二氧化钌催化剂用于高效酸性水氧化[J]. 催化学报, 2023, 55(12): 182-190. |
[8] | 李航杰, 肖月华, 肖佳乐, 范凯, 李炳宽, 李晓龙, 王亮, 肖丰收. 镓改性的铜基疏水催化剂用于CO2选择性加氢制二甲醚的研究[J]. 催化学报, 2023, 54(11): 178-187. |
[9] | 付先彪. 关于电还原硝酸根反应的思考[J]. 催化学报, 2023, 53(10): 8-12. |
[10] | 王慧宁, 关安翔, 张俊波, 米玉莹, 李思, 袁涛涛, 静超, 张丽娟, 张林娟, 郑耿锋. 铜掺杂的羟基氧化镍用于高效电催化乙醇氧化[J]. 催化学报, 2022, 43(6): 1478-1484. |
[11] | 张琪, 陈辉, 杨岚, 梁宵, 石磊, 冯庆, 邹永存, 李国栋, 邹晓新. 非催化瞬态铱脱溶—筛选铱基钙钛矿析氧催化剂时不可忽视的实验现象[J]. 催化学报, 2022, 43(3): 885-893. |
[12] | 孟祥东, 甄超, 刘岗, 成会明. Cu3N保护壳层稳定CuO光阴极[J]. 催化学报, 2022, 43(3): 755-760. |
[13] | 冯业芹, 秦琳, 张峻豪, 符方玉, 李慧杰, 相华, 吕红金. 轮型二十核铜取代多金属氧酸盐催化剂: 光催化制氢的机理和稳定性研究[J]. 催化学报, 2022, 43(2): 442-450. |
[14] | 王同宝, 韩光泰, 王子运, 王昱沆. 克服高温二氧化碳电解产生的碳沉积问题[J]. 催化学报, 2022, 43(12): 2938-2945. |
[15] | 魏英聪, 张琪琪, 周颖, 马雄风, 王乐乐, 王严杰, 洒荣建, 龙金林, 付贤智, 员汝胜. 非贵金属等离子共振增强MoO3-x基S型异质结光催化苯甲醇氧化同步产氢和苯甲醛[J]. 催化学报, 2022, 43(10): 2665-2677. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||